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Motivation
Studying the properties of strongly coupled theories from first principles is necessary to 
fully understand the Standard Model 

Rich phenomena of non-perturbative quantum field theories is a profitable place to look 
for new answers to the big questions

Real-time dynamics, finite-density nuclear matter and non-perturbative properties of 
chiral gauge theories are intractable on classical computers
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Motivation
Studying the properties of strongly coupled theories from first principles is necessary to 
fully understand the Standard Model 

Rich phenomena of non-perturbative quantum field theories is a profitable place to look 
for new answers to the big questions

Quantum computers have a fundamentally different computational strategy and will 
provide novel probes of fundamental questions in particle and nuclear physics 

• The last decade has seen the rapid evolution of real-world quantum computers, with 
increasing size and decreasing noise  

• It is imperative to carry out exploratory studies of the applicability of this emerging technology

Real-time dynamics, finite-density nuclear matter and non-perturbative properties of 
chiral gauge theories are intractable on classical computers



Exponential Volume Scaling in (Constrained) Lattice Gauge Theories — DM Grabowska30/06/2022

Quantum Simulations of Lattice Gauge Theories

3

Theoretical Developments 
How do we formulate field theories in a 
quantum-computing compatible way?

Algorithmic Developments 
How do we map field theories onto quantum 

circuits that run in reasonable times?

Benchmarking and Optimization 

Which quantum hardware is best-suited for specific physics goals? 

Need to work 
simultaneously on three 

interconnected areas

Guiding Principle: Quantum computing is still in its infancy and so we need to think carefully 
about how best to utilize this novel computational strategy
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Scaling of Gate Count 
for Simulations of 
Electromagnetism in 
2+1 Dimensions

4

Main Take-Away Point 1: Naive implementation using only physical states has 
exponential volume scaling 

Main Take-Away Point 2: Scaling can be made polynomial with carefully applied 
change of operator basis
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Hilbert Space

Q= 0

Q= 1

Charge-violating 
transition

Gauge 
Orbit

Q= 2

5

Probe theories that are inaccessible through 

Gauge Invariance and Gauss’ Law

Hilbert Space

Continuum Theory: Integral over electric and magnetic fields

H = ∫ d2x (E2 + B2) Need to impose 
additional constraints

Gauge Invariance and Redundancies 
• Problem: Gauss’ Law is not automatically 

satisfied in Hamiltonian formulations 
• Allows for charge-violating transitions 

• Problem: Naive basis of states is over-complete 
• Requires more quantum resources than 

strictly necessary

∇ ⋅ E = 4πρ ∇ ⋅ B = 0
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Dual Basis (Rotor) Formulation
General Idea: Work with “gauge-redundancy free” formulation 

• Hamiltonian defined in terms of plaquette variables: electric rotors 
and magnetic plaquettes 

• Gauss’ law automatically satisfied 

• No redundant degrees of freedom 

• Formulations works for all values of the gauge coupling

[Bp, Rp′ 
] = iδpp′ 

H =
1

2a
g2 ∑

p
(∇L × Rp)

2
+

1
g2

∑p B2
p non compact

−2∑p cos Bp compact
ET = ∇ × R

Np = Number of Plaquettes Electric Link Magnetic Plaquette

Kogut-Susskind

D. B. Kaplan and J. R. Stryker, Phys. Rev. D 102, 094515; J. F. Unmuth-Yockey, Phys. Rev. D 99, 074502 (2019); J. F. Haase et al. , Quantum 5, 393 (2021);; J. Bender and E. 
Zohar, Phys. Rev. D 102, 114517 (2020); S. D. Drell, H. R. Quinn, B. Svetitsky, and M. Weinstein, Phys. Rev. D 19, 619 (1979); Bauer, C.W. and DMG, arXiv: 2111.08015
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Global Constraints in Rotor Formulation
General Idea: Locally imposed constraints automatically satisfied, but not global    

Different ways to see remaining global constraint: 
• Rewrite rotors in terms of electric links: too many links if Gauss’ law and electric winding is fixed*  

• Solve non-compact case exactly and find decoupled quantum harmonic oscillators + CoM movement

* D. B. Kaplan and J. R. Stryker, 
Phys. Rev. D 102, 094515

Example: 2 x 2 Lattice, periodic boundary conditions

H =
1
a [2g2 (R2

0 + R2
1 + R2

2 + R2
3 − (R0 + R1)(R2 + R3)) +

1
2g2 (B2

0 + B2
1 + B2

2 + B2
3)]

Orthogonal Change of Basis

H =
1
a [2g2 (4R̃2

1 + 2R̃2
2 + 2R̃2

3) +
1
g2 (B̃2

0 + B̃2
1 + B̃2

2 + B̃2
3)]

“Plane wave solution” for  B̃0



Exponential Volume Scaling in (Constrained) Lattice Gauge Theories — DM Grabowska30/06/2022 7

Global Constraints in Rotor Formulation
General Idea: Locally imposed constraints automatically satisfied, but not global    

Different ways to see remaining global constraint: 
• Rewrite rotors in terms of electric links: too many links if Gauss’ law and electric winding is fixed*  

• Solve non-compact case exactly and find decoupled quantum harmonic oscillators + CoM movement

* D. B. Kaplan and J. R. Stryker, 
Phys. Rev. D 102, 094515

Example: 2 x 2 Lattice, periodic boundary conditions

H =
1
a [2g2 (R2

0 + R2
1 + R2

2 + R2
3 − (R0 + R1)(R2 + R3)) +

1
2g2 (B2

0 + B2
1 + B2

2 + B2
3)]

Orthogonal Change of Basis

H =
1
a [2g2 (4R̃2

1 + 2R̃2
2 + 2R̃2

3) +
1
g2 (B̃2

0 + B̃2
1 + B̃2

2 + B̃2
3)]

“Plane wave solution” for  B̃0



Exponential Volume Scaling in (Constrained) Lattice Gauge Theories — DM Grabowska30/06/2022 8

Non-local Constraint (Magnetic Gauss Law)

Magnetic Gauss Law: Zeroth plaquette is equal to sum of all others:   

Constrained Hamiltonian: Imposing magnetic Gauss’ law leads to highly non-local term 

Exponential Volume Scaling: If it takes  gates to implement single plaquette term, it 
will take  gates to implement the non-local term!

NP

∑
p=1

Bp = − B0

𝒪(NL)
𝒪(NNP

L )

For the 3 x 3 lattice, this is    

HB =
1

ag2 ∑
p

cos Bp + cos ∑
p

BpCompact formulation

Grabowska et al, to appear
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Non-local Constraint (Magnetic Gauss Law)

Magnetic Gauss Law: Zeroth plaquette is equal to sum of all others:   

Constrained Hamiltonian: Imposing magnetic Gauss’ law leads to highly non-local term 

Exponential Volume Scaling: If it takes  gates to implement single plaquette term, it 
will take  gates to implement the non-local term!

NP

∑
p=1

Bp = − B0

𝒪(NL)
𝒪(NNP

L )

For the 3 x 3 lattice, this is    

HB =
1

ag2 ∑
p

cos Bp + cos ∑
p

Bp

Hilbert space: dim  2nq
Hilbert space dim:  2Npnq

This makes even the smallest lattices require thousands of gates for a single time step!

Compact formulation

Grabowska et al, to appear
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•  is block diagonal with  sub-blocks 

• Each sub-block  has dimension  

• First column of any  has all entries equal to  

• Every row of  has no more than  non-zero entries

𝒲 Ns ∼ log2 Np

Wd d ∼ Np/log2 Np

Wd 1/ d

Wd ⌈log2 d⌉ + 1

9

Reducing (Operator) Non-Locality
Requirement: Carry out orthonormal basis change such that no single term in the 
Hamiltonian spans a Hilbert space larger than than 𝒪(2nq log2 Np)

For the 3 x 3 lattice, this is    

𝒲 =

Wd(1)
0 0 0

0 Wd(2)
0 0

0 0 ⋱ 0
0 0 0 Wd(NS)

Bp → 𝒲pp′ 
Bp′ 

Basis Change

 :  “Weaved” matrix of dimension Wd d

Properties of  and  𝒲 Wd

Previously local terms spans Hilbert 
space of dimension  (Np/log2 Np)nq

Grabowska et al, to appear
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Grabowska et al, to appear

Implementing new “Weaved” Hamiltonian 
requires  gates!𝒪(N log2 NL

p )
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Note about Classical Computational Cost 

• Carrying out change of basis for 192 x 192 lattice takes few 
second on laptop 

• Scaling is slightly worse than linear in lattice volume ( )∼ N1.25
p

Grabowska et al, to appear

Implementing new “Weaved” Hamiltonian 
requires  gates!𝒪(N log2 NL

p )
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Conclusions

For the 3 x 3 lattice, this is    

Quantum computers have a fundamentally different computational strategy and will 
provide novel probes of fundamental questions in particle and nuclear physics 

It is important to carefully consider the scaling of quantum computing resources for 
simulating gauge theories on far-future fault tolerant quantum computers 

Main Take-Away Point 1: Naive implementation of compact U(1) using only 
physical states has exponential volume scaling 

Main Take-Away Point 2: Scaling can be made polynomial with carefully 
applied change of operator basis
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Back Up Slides

11
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Examples of Weaved Matrices

12

H =
1
2

P2 +
1
2

X2
[X, P] = i

W4 =

1
2 − 1

2
− 1

2 0

1
2

1

2
− 1

2 0

1
2 0 1

2 − 1

2
1
2 0 1

2
1

2

W11 =

1

11
− 2

3 0 −2 2
33 0 0 0 0 0 0 0

1

11

1

6
− 1

2
−2 2

33 0 0 0 0 0 0 0

1

11

1

6

1

2
−2 2

33 0 0 0 0 0 0 0

1

11
0 0

3
22

2 − 1

2
− 1

2 0 − 1

2 2
0 0 0

1

11
0 0

3
22

2
1

2
− 1

2 0 − 1

2 2
0 0 0

1

11
0 0

3
22

2 0 1
2 − 1

2
− 1

2 2
0 0 0

1

11
0 0

3
22

2 0 1
2

1

2
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2 2
0 0 0

1

11
0 0

3
22

2 0 0 0 1

2 2
− 1

2
− 1

2 0

1

11
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3
22

2 0 0 0 1

2 2

1

2
− 1

2 0

1

11
0 0

3
22

2 0 0 0 1

2 2
0 1

2 − 1

2

1

11
0 0

3
22

2 0 0 0 1

2 2
0 1

2
1

2
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Digitization Example: Quantum Harmonic Oscillator

13

This simple toy model clearly demonstrates the pitfalls of unwise digitisation choices

H =
1
2

P2 +
1
2

X2
[X, P] = i

1) Working in the  basis, it is trivial to digitize  

2) Question: How to digitizing , as it is not diagonal in this basis 

     Option One: Use finite difference version 
     Option Two: Use exact form and Fourier transform to change 
basis 

X X

P

Xk = − Xmax + kδX δX =
Xmax

L

Goal: Using only  states, how well can we replicate the 
low-lying states of the QHO?

2L + 1

 is a free parameterXmax

Pk = − Pmax + kδP δP =
1

δX
2π

2L + 1
P2 =

1
δX2

2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1

−1 0 0 −1 2

H =
1
2

X2 +
1
2

P2
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Digitization Example: Quantum Harmonic Oscillator

14

This simple toy model clearly demonstrates the pitfalls of a unwise digitization choices

H =
1
2

P2 +
1
2

X2
[X, P] = i

Klco, N. and Savage, M.J.: Phys. Rev. A 99, 052335 (2019) 
[arXiv: 1808.10378]

Optimal value can be calculated exactly

Xmax = L
2π

2L + 1

Intuitive Understanding: Eigenstate has the 
same width in both position and momentum 
space and so δx = δp

(Plot done with qubit encoding so different number of states per site)



Exponential Volume Scaling in (Constrained) Lattice Gauge Theories — DM Grabowska30/06/2022
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14

This simple toy model clearly demonstrates the pitfalls of a unwise digitization choices

H =
1
2

P2 +
1
2

X2
[X, P] = i

Klco, N. and Savage, M.J.: Phys. Rev. A 99, 052335 (2019) 
[arXiv: 1808.10378]

Optimal value can be calculated exactly

Xmax = L
2π

2L + 1

Value for optimal   can also be related 
to Nyquist–Shannon sampling theorem

Xmax

Macridin, A.,Spentzouris, P., Amundson, J., and Harnik, R: Phys. 
Rev. Lett. 121, 110504 (2018) and Phys. Rev. A 98, 042312 (2018)

Intuitive Understanding: Eigenstate has the 
same width in both position and momentum 
space and so δx = δp

(Plot done with qubit encoding so different number of states per site)
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Digitizing the Dual Formulation in the Magnetic Basis

15

General Idea: Combine “gauge-redundancy free” dual representations with digitization 
method motived by quantum harmonic oscillator example [Bauer, C.W. and DMG arXiv: 2111.08015] 

• Magnetic basis and rotor basis related by Fourier transform   

• Use exact continuum eigenvalues for digitization

⟨b(k)
p |Rp |b(k′ )

p′ 
⟩ =

2ℓ

∑
n=0

r(n)
p (FT)−1

kn (FT)nk′ 
δpp′ ⟨b(k)

p |Bp |b(k′ )
p′ 

⟩ = b(k)
p δkk′ 

δpp′ 

b(k)
p = − bmax + k δb δb =

bmax

ℓ
r(k)
p = − rmax + (k +

1
2 ) δr δr =

2π
δb(2ℓ + 1)

rmax =
π
δb

Step One: Digitize rotor and magnetic fields

Step Two: Define digitized rotor and magnetic operators 

Free parameter  needs to be determinedbmax

• Variable  labels the eigenvaluesk • Number of eigenvalues:  2ℓ + 1
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Digitizing the Dual Formulation in the Magnetic Basis

16

General Idea: Combine “gauge-redundancy free” dual representations with digitization 
method motived by quantum harmonic oscillator example [Bauer, C.W. and DMG arXiv: 2111.08015]

bNC
max(g, ℓ) = gℓ

8π
2ℓ + 1

bC
max(g, ℓ) = min [bNC

max,
2πℓ

2ℓ + 1 ]

Non-Compact Theory Compact Theory
• Simply a complicated coupled harmonic 

oscillator at all values of the coupling 

• Optimal value can be calculated analytically

Intuition: Rescaled eigenstate has same width in 
both rotor and magnetic space and so δb = δr

• Reduces to a complicated coupled harmonic 
oscillator at weak coupling 

• Equivalent to Kogut-Susskind Hamiltonian

Intuition: Smooth interpolation between strong 
and weak coupling regime

Step Three: Choose an optimal value for  bmax
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General Idea: Combine “gauge-redundancy free” dual representations with digitization 
method motived by quantum harmonic oscillator example [Bauer, C.W. and DMG arXiv: 2111.08015]

bNC
max(g, ℓ) = gℓ

8π
2ℓ + 1

bC
max(g, ℓ) = min [bNC

max,
2πℓ

2ℓ + 1 ]

Non-Compact Theory Compact Theory
• Simply a complicated coupled harmonic 

oscillator at all values of the coupling 

• Optimal value can be calculated analytically

Intuition: Rescaled eigenstate has same width in 
both rotor and magnetic space and so δb = δr

• Reduces to a complicated coupled harmonic 
oscillator at weak coupling 

• Equivalent to Kogut-Susskind Hamiltonian

Intuition: Smooth interpolation between strong 
and weak coupling regime

Formulation works well for all values of the gauge coupling

Step Three: Choose an optimal value for  bmax
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states per site: 7

17
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General Idea: Combine “gauge-redundancy free” dual representation with digitization 
method that strives to minimize violation of commutation relations 

• Truncation scale and digitization scale are not independent and there is an optimal choice 

• Canonical commutation relations are minimally violated for that optimal choice

Comparison to exact solution

Scanning through truncation scale, compared to optimal truncation scale 
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states per site: 9

Electromagnetism in Two Spatial Dimensions

Bauer, C.W. and Grabowska, D.M. 
arXiv: 2111.08015
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Electromagnetism in Two Spatial Dimensions
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Algorithmic Development: Polynomial Scaling
General Idea: Carry out field operator change of basis to reduce non-locality

Rp → 𝒲pp′ 
Rp′ 

Bp → 𝒲pp′ 
Bp′ 

 is a block diagonal rotation matrix with  sub-blocks of dimension 𝒲 NS di

cos
Np

∑
i=1

Bp → cos [
Ns

∑
i=1

d(i)BD(i)] cos [Bi] →
d(i)

∑
k=1

cos
d(i)

∑
j=1

Ω(i)
kj BD(i)+j−1

Non-local term becomes more local Local terms becomes more non-local

Time Evolution: Implementing a single time step requires  gates𝒪 (Nnq
p )

Example: Small 8 x 8 lattice with two qubits (four states) per plaquette requires

 quantum gates104  classical FLOPs to create circuit105

Grabowska et al, to appear shortly
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Sign Problems in Lattice Gauge Theories

19

Probe theories that are inaccessible through 

Lattice Simulations: Numerically estimation of lattice-regulated quantum path integral via Monte 
Carlo importance sampling requires the existence of a positive probability measure 

“Sign Problem” prohibits first-principles study of phenomenologically-relevant theories 

Real-Time Dynamics 
Early Universe Phase Transitions 

Requires Minkowski space simulations

Finite-Density Nuclear Matter 
Neutron stars and QCD phase diagram 

Complex fermion determinant

Chiral Gauge Theories 
Fully defined Standard Model 
Complex fermion determinant

𝒵 = ∫ [DU] det DF(U) e−S[U]

Can quantum computing help?

Must be real and positive
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Probe theories that are inaccessible through 

Quantum Simulations of Gauge Theories
Quantum Lattice: Very young field, utilizing NISQ-era hardware and quantum simulators 
to carry out exploratory studies on lower-dimensional toy models

General Procedure: Simulation proceeds in three steps 
1. Initial State Preparation 
2. Evolution via multiple applications of time translation operator 
3. Measurement 

4. Circuit is re-run multiple times to build up expectation value

eiH(t1)Δt

…
. eiH(t2)Δt eiH(tn)Δt

…. MeasurementInitial State 
Preparation
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Probe theories that are inaccessible through 

Quantum Simulations of Gauge Theories
Quantum Lattice: Very young field, utilizing NISQ-era hardware and quantum simulators 
to carry out exploratory studies on lower-dimensional toy models

General Procedure: Simulation proceeds in three steps 
1. Initial State Preparation 
2. Evolution via multiple applications of time translation operator 
3. Measurement 

4. Circuit is re-run multiple times to build up expectation value

eiH(t1)Δt

…
. eiH(t2)Δt eiH(tn)Δt

…. MeasurementInitial State 
Preparation

Overarching Research Goal 
“Re-write” theory into quantum circuit formulation that runs in reasonable amount of time
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(Finite difference)

21

Theoretical Development: Time Evolution Operator
Ex: Quantum Harmonic Oscillator offers various choices

Position + Momentum

[x, p] = i

Position Eigenstates

|x⟩

Ladder Operators

[a, a†] = 1

Non-interacting Eigenstates

|n⟩

a† |nmax⟩ = 0a† |nmax⟩ = nmax + 1 |0⟩
or

Commutation relations violated in both formulations

̂p |x⟩ := i∂x |x⟩

Momentum Operator Eigenvalues

pn ∼
n
N

2π
δx

Operator Basis

State Basis

Finite Matrix 
Representation

a |0⟩ = nmax + 1 |nmax⟩ a |0⟩ = 0

Operator Boundary Conditions

or



Exponential Volume Scaling in (Constrained) Lattice Gauge Theories — DM Grabowska30/06/2022

(Finite difference)

21

Theoretical Development: Time Evolution Operator
Ex: Quantum Harmonic Oscillator offers various choices

Position + Momentum

[x, p] = i

Position Eigenstates

|x⟩

Ladder Operators

[a, a†] = 1

Non-interacting Eigenstates

|n⟩

a† |nmax⟩ = 0a† |nmax⟩ = nmax + 1 |0⟩
or

Commutation relations violated in both formulations

̂p |x⟩ := i∂x |x⟩

Momentum Operator Eigenvalues

pn ∼
n
N

2π
δx

Operator Basis

State Basis

Finite Matrix 
Representation

a |0⟩ = nmax + 1 |nmax⟩ a |0⟩ = 0

Operator Boundary Conditions

or


