Exponential Volume Scaling in (Constrained) Lattice Gauge Theories

Dorota M. Grabowska

QUANTUM
TECHNOLOGY
INITIATIVE

Motivation

Studying the properties of strongly coupled theories from first principles is necessary to fully understand the Standard Model

Rich phenomena of non-perturbative quantum field theories is a profitable place to look for new answers to the big questions

Real-time dynamics, finite-density nuclear matter and non-perturbative properties of chiral gauge theories are intractable on classical computers

Motivation

Studying the properties of strongly coupled theories from first principles is necessary to fully understand the Standard Model

Rich phenomena of non-perturbative quantum field theories is a profitable place to look for new answers to the big questions

Real-time dynamics, finite-density nuclear matter and non-perturbative properties of chiral gauge theories are intractable on classical computers

Quantum computers have a fundamentally different computational strategy and will provide novel probes of fundamental questions in particle and nuclear physics

- The last decade has seen the rapid evolution of real-world quantum computers, with increasing size and decreasing noise
- It is imperative to carry out exploratory studies of the applicability of this emerging technology

Quantum Simulations of Lattice Gauge Theories

Guiding Principle: Quantum computing is still in its infancy and so we need to think carefully about how best to utilize this novel computational strategy

Theoretical Developments

How do we formulate field theories in a quantum-computing compatible way?

Algorithmic Developments

How do we map field theories onto quantum circuits that run in reasonable times?

Need to work simultaneously on three interconnected areas

Benchmarking and Optimization

Which quantum hardware is best-suited for specific physics goals?

Q Scaling of Gate Count for Simulations of Electromagnetism in 2+1 Dimensions

Main Take-Away Point 1: Naive implementation using only physical states has exponential volume scaling

Main Take-Away Point 2: Scaling can be made polynomial with carefully applied change of operator basis

Gauge Invariance and Gauss' Law

Continuum Theory: Integral over electric and magnetic fields

$$
H=\int d^{2} x\left(E^{2}+B^{2}\right)
$$

Need to impose
additional constraints

$$
\nabla \cdot E=4 \pi \rho
$$

$$
\nabla \cdot B=0
$$

Gauge Invariance and Gauss' Law

Continuum Theory: Integral over electric and magnetic fields

$$
H=\int d^{2} x\left(E^{2}+B^{2}\right)
$$

Need to impose additional constraints

$$
\nabla \cdot E=4 \pi \rho
$$

$$
\nabla \cdot B=0
$$

Hilbert Space

Gauge Invariance and Redundancies

- Problem: Gauss' Law is not automatically satisfied in Hamiltonian formulations
- Allows for charge-violating transitions
- Problem: Naive basis of states is over-complete
- Requires more quantum resources than strictly necessary

Dual Basis (Rotor) Formulation

Kogut-Susskind
General Idea: Work with "gauge-redundancy free" formulation

- Hamiltonian defined in terms of plaquette variables: electric rotors and magnetic plaquettes

$$
\left[B_{p}, R_{p^{\prime}}\right]=i \delta_{p p^{\prime}}
$$

D. B. Kaplan and J. R. Stryker, Phys. Rev. D 102, 094515; J. F. Unmuth-Yockey, Phys. Rev. D 99, 074502 (2019); J. F. Haase et al. , Quantum 5, 393 (2021);; J. Bender and E. Zohar, Phys. Rev. D 102, 114517 (2020); S. D. Drell, H. R. Quinn, B. Svetitsky, and M. Weinstein, Phys. Rev. D 19, 619 (1979); Bauer, C.W. and DMG, arXiv: 2111.08015

Dual Basis (Rotor) Formulation

General Idea: Work with "gauge-redundancy free" formulation

- Hamiltonian defined in terms of plaquette variables: electric rotors and magnetic plaquettes

$$
\left[B_{p}, R_{p^{\prime}}\right]=i \delta_{p p^{\prime}}
$$

Dual Basis

Electric Rotor
\square Magnetic Plaquette

Dual Basis (Rotor) Formulation

Dual Basis
General Idea: Work with "gauge-redundancy free" formulation

- Hamiltonian defined in terms of plaquette variables: electric rotors and magnetic plaquettes

$$
\left[B_{p}, R_{p^{\prime}}\right]=i \delta_{p p^{\prime}}
$$

- Gauss' law automatically satisfied
- No redundant degrees of freedom
- Formulations works for all values of the gauge coupling

$$
H=\frac{1}{2 a}\left[g^{2} \sum_{p}\left(\nabla_{L} \times R_{p}\right)^{2}+\frac{1}{g^{2}}\left\{\begin{array}{ll}
\sum_{p} B_{p}^{2} & \text { non compact } \\
-2 \sum_{p} \cos B_{p} & \text { compact }
\end{array}\right\}\right]
$$

$$
N_{p}=\text { Number of Plaquettes }
$$

Global Constraints in Rotor Formulation

General Idea: Locally imposed constraints automatically satisfied, but not global

Different ways to see remaining global constraint:

- Rewrite rotors in terms of electric links: too many links if Gauss' law and electric winding is fixed*
- Solve non-compact case exactly and find decoupled quantum harmonic oscillators + CoM movement

Global Constraints in Rotor Formulation

General Idea: Locally imposed constraints automatically satisfied, but not global

Different ways to see remaining global constraint:

- Rewrite rotors in terms of electric links: too many links if Gauss' law and electric winding is fixed*
- Solve non-compact case exactly and find decoupled quantum harmonic oscillators + CoM movement

Example: 2×2 Lattice, periodic boundary conditions

$$
\begin{gathered}
H=\frac{1}{a}\left[2 g^{2}\left(R_{0}^{2}+R_{1}^{2}+R_{2}^{2}+R_{3}^{2}-\left(R_{0}+R_{1}\right)\left(R_{2}+R_{3}\right)\right)+\frac{1}{2 g^{2}}\left(B_{0}^{2}+B_{1}^{2}+B_{2}^{2}+B_{3}^{2}\right)\right] \\
\vdots \text { Orthogonal Change of Basis } \\
H=\frac{1}{a}\left[2 g^{2}\left(4 \tilde{R}_{1}^{2}+2 \tilde{R}_{2}^{2}+2 \tilde{R}_{3}^{2}\right)+\frac{1}{g^{2}}\left(\tilde{B}_{0}^{2}+\tilde{B}_{1}^{2}+\tilde{B}_{2}^{2}+\tilde{B}_{3}^{2}\right)\right]
\end{gathered}
$$

Non-local Constraint (Magnetic Gauss Law)

Magnetic Gauss Law: Zeroth plaquette is equal to sum of all others: $\sum_{p=1}^{N_{P}} B_{p}=-B_{0}$
Constrained Hamiltonian: Imposing magnetic Gauss' law leads to highly non-local term

Compact formulation

$$
H_{B}=\frac{1}{a g^{2}} \sum_{p} \cos B_{p}+\cos \left(\sum_{p} B_{p}\right)
$$

Non-local Constraint (Magnetic Gauss Law)

Magnetic Gauss Law: Zeroth plaquette is equal to sum of all others: $\sum_{p=1}^{N_{P}} B_{p}=-B_{0}$
Constrained Hamiltonian: Imposing magnetic Gauss' law leads to highly non-local term

Compact formulation

$$
H_{B}=\frac{1}{a g^{2}} \sum_{p} \cos B_{p}+\cos \left(\sum_{p} B_{p}\right)
$$

Hilbert space dim: $2^{N_{p} n_{q}}$

$$
\text { Hilbert space: dim } 2^{n_{q}}
$$

Non-local Constraint (Magnetic Gauss Law)

Magnetic Gauss Law: Zeroth plaquette is equal to sum of all others: $\sum_{p=1}^{N_{P}} B_{p}=-B_{0}$
Constrained Hamiltonian: Imposing magnetic Gauss' law leads to highly non-local term

Compact formulation

$$
H_{B}=\frac{1}{a g^{2}} \sum_{p} \cos B_{p}+\cos \left(\sum_{p} B_{p}\right)
$$

Hilbert space dim: $2^{N_{p} n_{q}}$
Hilbert space: $\operatorname{dim} 2^{n_{q}}$
Exponential Volume Scaling: If it takes $\mathcal{O}\left(N_{L}\right)$ gates to implement single plaquette term, it will take $\mathcal{O}\left(N_{L}^{N_{P}}\right)$ gates to implement the non-local term!

This makes even the smallest lattices require thousands of gates for a single time step!

Reducing (Operator) Non-Locality

Requirement: Carry out orthonormal basis change such that no single term in the Hamiltonian spans a Hilbert space larger than than $\mathcal{O}\left(2^{n_{q}} \log _{2} N_{p}\right)$

$$
\begin{gathered}
\text { Basis Change } \\
B_{p} \rightarrow \mathscr{W}_{p p^{\prime}} B_{p^{\prime}} \\
\mathscr{W}=\left(\begin{array}{cccc}
W_{d_{(1)}} & 0 & 0 & 0 \\
0 & W_{d_{(2)}} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & W_{d_{\left(N_{S}\right)}}
\end{array}\right) \\
W_{d}: \text { "Weaved" matrix of dimension } d
\end{gathered}
$$

Reducing (Operator) Non-Locality

Requirement: Carry out orthonormal basis change such that no single term in the Hamiltonian spans a Hilbert space larger than than $\mathcal{O}\left(2^{n_{q} \log _{2} N_{p}}\right)$

Basis Change

$$
B_{p} \rightarrow \mathscr{W}_{p p^{\prime}} B_{p^{\prime}}
$$

$\mathscr{W}=\left(\begin{array}{cccc}W_{d_{(1)}} & 0 & 0 & 0 \\ 0 & W_{d_{(2)}} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & W_{d_{\left(N_{S}\right)}}\end{array}\right)$
W_{d} : "Weaved" matrix of dimension d

Properties of \mathscr{W} and W_{d}

- \mathscr{W} is block diagonal with $N_{s} \sim \log _{2} N_{p}$ sub-blocks
- Each sub-block W_{d} has dimension $d \sim N_{p} / \log _{2} N_{p}$
- First column of any W_{d} has all entries equal to $1 / \sqrt{d}$

Maximally non-local term now spans Hilbert space of dimension $N_{p}^{n_{q}}$

Reducing (Operator) Non-Locality

Requirement: Carry out orthonormal basis change such that no single term in the Hamiltonian spans a Hilbert space larger than than $\mathcal{O}\left(2^{n_{q} \log _{2} N_{p}}\right)$

Basis Change

$$
B_{p} \rightarrow \mathscr{W}_{p p^{\prime}} B_{p^{\prime}}
$$

$\mathscr{W}=\left(\begin{array}{cccc}W_{d_{(1)}} & 0 & 0 & 0 \\ 0 & W_{d_{(2)}} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & W_{d_{\left(N_{S}\right)}}\end{array}\right)$
W_{d} : "Weaved" matrix of dimension d

Properties of \mathscr{W} and W_{d}

- \mathscr{W} is block diagonal with $N_{s} \sim \log _{2} N_{p}$ sub-blocks
- Each sub-block W_{d} has dimension $d \sim N_{p} / \log _{2} N_{p}$
- First column of any W_{d} has all entries equal to $1 / \sqrt{d}$

Maximally non-local term now spans Hilbert space of dimension $N_{p}^{n_{q}}$

- Every row of W_{d} has no more than $\left\lceil\log _{2} d\right\rceil+1$ non-zero entries

Previously local terms spans Hilbert space of dimension $\left(N_{p} / \log _{2} N_{p}\right)^{n_{q}}$

Reducing (Operator) Non-Locality

Requirement: Carry out orthonormal basis change such that no single term in the Hamiltonian spans a Hilbert space larger than than $\mathcal{O}\left(2^{n_{q} \log _{2} N_{p}}\right)$

Basis Change

$$
B_{p} \rightarrow \mathscr{W}_{p p^{\prime}} B_{p^{\prime}}
$$

$$
\mathscr{W}=\left(\begin{array}{cccc}
W_{d_{(1)}} & 0 & 0 & 0 \\
0 & W_{d_{(2)}} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & W_{d_{\left(N_{S}\right)}}
\end{array}\right)
$$

W_{d} : "Weaved" matrix of dimension d

Implementing new "Weaved" Hamiltonian

requires $\mathcal{O}\left(N_{p}^{\log _{2} N_{L}}\right)$ gates!
(Recall N_{L} is volume independent)

Reducing (Operator) Non-Locality

Requirement: Carry out orthonormal basis change such that no single term in the Hamiltonian spans a Hilbert space larger than than $\mathcal{O}\left(2^{n_{q} \log _{2} N_{p}}\right)$

Basis Change

$$
B_{p} \rightarrow \mathscr{W}_{p p^{\prime}} B_{p^{\prime}}
$$

$\mathscr{W}=\left(\begin{array}{cccc}W_{d_{(1)}} & 0 & 0 & 0 \\ 0 & W_{d_{(2)}} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & W_{d_{\left(N_{S}\right)}}\end{array}\right)$
W_{d} : "Weaved" matrix of dimension d

Implementing new "Weaved" Hamiltonian

requires $\mathcal{O}\left(N_{p}^{\log _{2} N_{L}}\right)$ gates!
(Recall N_{L} is volume independent)

Note about Classical Computational Cost

- Carrying out change of basis for 192×192 lattice takes few second on laptop
- Scaling is slightly worse than linear in lattice volume ($\sim N_{p}^{1.25}$)

Conclusions

Quantum computers have a fundamentally different computational strategy and will provide novel probes of fundamental questions in particle and nuclear physics

It is important to carefully consider the scaling of quantum computing resources for simulating gauge theories on far-future fault tolerant quantum computers

Conclusions

Quantum computers have a fundamentally different computational strategy and will provide novel probes of fundamental questions in particle and nuclear physics

It is important to carefully consider the scaling of quantum computing resources for simulating gauge theories on far-future fault tolerant quantum computers

Main Take-Away Point 1: Naive implementation of compact $U(1)$ using only physical states has exponential volume scaling

Main Take-Away Point 2: Scaling can be made polynomial with carefully applied change of operator basis

Back Up Slides

Examples of Weaved Matrices

$$
=\left(\begin{array}{ccccccccccc}
\frac{1}{\sqrt{11}} & -\sqrt{\frac{2}{3}} & 0 & -2 \sqrt{\frac{2}{33}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{\sqrt{11}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & -2 \sqrt{\frac{2}{33}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{\sqrt{11}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -2 \sqrt{\frac{2}{33}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{\sqrt{11}} & 0 & 0 & \frac{\sqrt{\frac{3}{22}}}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 & -\frac{1}{2 \sqrt{2}} & 0 & 0 & 0 \\
\frac{1}{\sqrt{11}} & 0 & 0 & \frac{\sqrt{\frac{3}{22}}}{2} & \frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 & -\frac{1}{2 \sqrt{2}} & 0 & 0 & 0 \\
\frac{1}{\sqrt{11}} & 0 & 0 & \frac{\sqrt{\frac{3}{22}}}{2} & 0 & \frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{2 \sqrt{2}} & 0 & 0 & 0 \\
\frac{1}{\sqrt{11}} & 0 & 0 & \frac{\sqrt{\frac{3}{22}}}{2} & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & -\frac{1}{2 \sqrt{2}} & 0 & 0 & 0 \\
\frac{1}{\sqrt{11}} & 0 & 0 & \frac{\sqrt{\frac{3}{22}}}{2} & 0 & 0 & 0 & \frac{1}{2 \sqrt{2}} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 \\
\frac{1}{\sqrt{11}} & 0 & 0 & \frac{\sqrt{\frac{3}{22}}}{2} & 0 & 0 & 0 & \frac{1}{2 \sqrt{2}} & \frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 \\
\frac{1}{\sqrt{11}} & 0 & 0 & \frac{\sqrt{\frac{3}{22}}}{2} & 0 & 0 & 0 & \frac{1}{2 \sqrt{2}} & 0 & \frac{1}{2} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{11}} & 0 & 0 & \frac{\sqrt{\frac{3}{22}}}{2} & 0 & 0 & 0 & \frac{1}{2 \sqrt{2}} & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

Digitization Example: Quantum Harmonic Oscillator

This simple toy model clearly demonstrates the pitfalls of unwise digitisation choices
Goal: Using only ${ }_{2 L+1}$ states, how well can we replicate the low-lying states of the QHO?

$$
H=\frac{1}{2} X^{2}+\frac{1}{2} P^{2}
$$

1) Working in the X basis, it is trivial to digitize X

$$
\begin{gathered}
X_{k}=-X_{\max }+k \delta X \quad \delta X=\frac{X_{\max }}{L} \\
X_{\max } \text { is a free parameter }
\end{gathered}
$$

Digitization Example: Quantum Harmonic Oscillator

This simple toy model clearly demonstrates the pitfalls of unwise digitisation choices
Goal: Using only $2 L+1$ states, how well can we replicate the low-lying states of the QHO?

$$
H=\frac{1}{2} X^{2}+\frac{1}{2} P^{2}
$$

1) Working in the X basis, it is trivial to digitize X

$$
\begin{gathered}
X_{k}=-X_{\max }+k \delta X \quad \delta X=\frac{X_{\max }}{L} \\
X_{\max } \text { is a free parameter }
\end{gathered}
$$

2) Question: How to digitizing P, as it is not diagonal in this basis

Option One: Use finite difference version

$$
P^{2}=\frac{1}{\delta X^{2}}\left(\begin{array}{ccccc}
2 & -1 & 0 & 0 & -1 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
-1 & 0 & 0 & -1 & 2
\end{array}\right)
$$

Digitization Example: Quantum Harmonic Oscillator

This simple toy model clearly demonstrates the pitfalls of unwise digitisation choices
Goal: Using only $2 L+1$ states, how well can we replicate the low-lying states of the QHO?
$H=\frac{1}{2} X^{2}+\frac{1}{2} P^{2}$
Finite Difference Momenta

1) Working in the X basis, it is trivial to digitize X

$$
\begin{gathered}
X_{k}=-X_{\max }+k \delta X \quad \delta X=\frac{X_{\max }}{L} \\
X_{\max } \text { is a free parameter }
\end{gathered}
$$

2) Question: How to digitizing P, as it is not diagonal in this basis

Option One: Use finite difference version

$$
P^{2}=\frac{1}{\delta X^{2}}\left(\begin{array}{ccccc}
2 & -1 & 0 & 0 & -1 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
-1 & 0 & 0 & -1 & 2
\end{array}\right)
$$

— Ground
— 1st Excited

- 3rd Excited
- 2nd Excited

Digitization Example: Quantum Harmonic Oscillator

This simple toy model clearly demonstrates the pitfalls of unwise digitisation choices

Goal: Using only ${ }_{2 L+1}$ states, how well can we replicate the low-lying states of the QHO?

$$
H=\frac{1}{2} X^{2}+\frac{1}{2} P^{2}
$$

Exact Momentum Eigenvalues

1) Working in the X basis, it is trivial to digitize X

$$
\begin{gathered}
X_{k}=-X_{\max }+k \delta X \quad \delta X=\frac{X_{\max }}{L} \\
X_{\max } \text { is a free parameter }
\end{gathered}
$$

2) Question: How to digitizing P, as it is not diagonal in this basis

Option One: Use finite difference version
Option Two: Use exact form and Fourier transform to change basis

$$
P_{k}=-P_{\max }+k \delta P \quad \delta_{P}=\frac{1}{\delta X} \frac{2 \pi}{2 L+1}
$$

Exacivinemum rigenvanues

QUANTUM
TECHNOLOGY

Digitization Example: Quantum Harmonic Oscillator

This simple toy model clearly demonstrates the pitfalls of a unwise digitization choices

Optimal value can be calculated exactly

$$
X_{\max }=L \sqrt{\frac{2 \pi}{2 L+1}}
$$

Intuitive Understanding: Eigenstate has the same width in both position and momentum space and so $\delta x=\delta p$

(Plot done with qubit encoding so different number of states per site) KIco, N. and Savage, M.J.: Phys. Rev. A 99, 052335 (2019)
[arXiv: 1808.10378]

Digitization Example: Quantum Harmonic Oscillator

This simple toy model clearly demonstrates the pitfalls of a unwise digitization choices

Optimal value can be calculated exactly

$$
X_{\max }=L \sqrt{\frac{2 \pi}{2 L+1}}
$$

Intuitive Understanding: Eigenstate has the same width in both position and momentum
space and so $\delta x=\delta p$

Value for optimal $X_{\text {max }}$ can also be related to Nyquist-Shannon sampling theorem

(Plot done with qubit encoding so different number of states per site) KIco, N. and Savage, M.J.: Phys. Rev. A 99, 052335 (2019)
[arXiv: 1808.10378]

Digitizing the Dual Formulation in the Magnetic Basis

General Idea: Combine "gauge-redundancy free" dual representations with digitization method motived by quantum harmonic oscillator example [Bauer, C.W. and DMG arXiv: 2111.08015]

- Magnetic basis and rotor basis related by Fourier transform
- Use exact continuum eigenvalues for digitization

Step One: Digitize rotor and magnetic fields

$$
b_{p}^{(k)}=-b_{\max }+k \delta b \quad \delta b=\frac{b_{\max }}{\ell} \quad r_{p}^{(k)}=-r_{\max }+\left(k+\frac{1}{2}\right) \delta r \quad \delta r=\frac{2 \pi}{\delta b(2 \ell+1)} \quad r_{\max }=\frac{\pi}{\delta b}
$$

- Variable k labels the eigenvalues - Number of eigenvalues: $2 \ell+1$

Digitizing the Dual Formulation in the Magnetic Basis

General Idea: Combine "gauge-redundancy free" dual representations with digitization method motived by quantum harmonic oscillator example [Bauer, C.W. and DMG arXiv: 2111.08015]

- Magnetic basis and rotor basis related by Fourier transform
- Use exact continuum eigenvalues for digitization

Step One: Digitize rotor and magnetic fields

$$
b_{p}^{(k)}=-b_{\max }+k \delta b \quad \delta b=\frac{b_{\max }}{\ell} \quad r_{p}^{(k)}=-r_{\max }+\left(k+\frac{1}{2}\right) \delta r \quad \delta r=\frac{2 \pi}{\delta b(2 \ell+1)} \quad r_{\max }=\frac{\pi}{\delta b}
$$

- Variable k labels the eigenvalues \quad Number of eigenvalues: $2 \ell+1$

Step Two: Define digitized rotor and magnetic operators

$$
\left\langle b_{p}^{(k)}\right| B_{p}\left|b_{p^{\prime}}^{\left(k^{\prime}\right)}\right\rangle=b_{p}^{(k)} \delta_{k k} \delta_{p p^{\prime}} \quad\left\langle b_{p}^{(k)}\right| R_{p}\left|b_{p^{\prime}}^{(k)}\right\rangle=\sum_{n=0}^{2 \ell} r_{p}^{(n)}(\mathrm{FT})_{k n}^{-1}(\mathrm{FT})_{n k^{\prime}} \delta_{p p^{\prime}}
$$

Free parameter $b_{\text {max }}$ needs to be determined

Digitizing the Dual Formulation in the Magnetic Basis

General Idea: Combine "gauge-redundancy free" dual representations with digitization method motived by quantum harmonic oscillator example [Bauer, C.W. and DMG arXiv: 2111.08015]

Step Three: Choose an optimal value for $b_{\text {max }}$

Non-Compact Theory

- Simply a complicated coupled harmonic oscillator at all values of the coupling
- Optimal value can be calculated analytically

$$
b_{\max }^{\mathrm{NC}}(g, \ell)=g \ell \sqrt{\frac{\sqrt{8} \pi}{2 \ell+1}}
$$

Intuition: Rescaled eigenstate has same width in both rotor and magnetic space and SO sb= δr

Digitizing the Dual Formulation in the Magnetic Basis

General Idea: Combine "gauge-redundancy free" dual representations with digitization method motived by quantum harmonic oscillator example [Bauer, C.W. and DMG arXiv: 2111.08015]

Step Three: Choose an optimal value for $b_{\text {max }}$

Non-Compact Theory

- Simply a complicated coupled harmonic oscillator at all values of the coupling
- Optimal value can be calculated analytically

$$
b_{\max }^{\mathrm{NC}}(g, \ell)=g \ell \sqrt{\frac{\sqrt{8} \pi}{2 \ell+1}}
$$

Intuition: Rescaled eigenstate has same width in both rotor and magnetic space and SO sb = or

Compact Theory

- Reduces to a complicated coupled harmonic oscillator at weak coupling
- Equivalent to Kogut-Susskind Hamiltonian

$$
b_{\max }^{\mathrm{C}}(g, \ell)=\min \left[b_{\max }^{\mathrm{NC}}, \frac{2 \pi \ell}{2 \ell+1}\right]
$$

Intuition: Smooth interpolation between strong and weak coupling regime

Digitizing the Dual Formulation in the Magnetic Basis

General Idea: Combine "gauge-redundancy free" dual representations with digitization method motived by quantum harmonic oscillator example [Bauer, C.W. and DMG arXiv: 2111.08015]

Step Three: Choose an optimal value for $b_{\text {max }}$

Non-Compact Theory

- Simply a complicated coupled harmonic oscillator at all values of the coupling
- Optimal value can be calculated analytically

$$
b_{\max }^{\mathrm{NC}}(g, \ell)=g \ell \sqrt{\frac{\sqrt{8} \pi}{2 \ell+1}}
$$

Intuition: Rescaled eigenstate has same width in both rotor and magnetic space and so sb = or

Compact Theory

- Reduces to a complicated coupled harmonic oscillator at weak coupling
- Equivalent to Kogut-Susskind Hamiltonian

$$
b_{\max }^{\mathrm{C}}(g, \ell)=\min \left[b_{\max }^{\mathrm{NC}}, \frac{2 \pi \ell}{2 \ell+1}\right]
$$

Intuition: Smooth interpolation between strong and weak coupling regime

Formulation works well for all values of the gauge coupling

Electromagnetism in Two Spatial Dimensions

General Idea: Combine "gauge-redundancy free" dual representation with digitization method that strives to minimize violation of commutation relations

- Truncation scale and digitization scale are not independent and there is an optimal choice
- Canonical commutation relations are minimally violated for that optimal choice

Electromagnetism in Two Spatial Dimensions

General Idea: Combine "gauge-redundancy free" dual representation with digitization method that strives to minimize violation of commutation relations

- Truncation scale and digitization scale are not independent and there is an optimal choice
- Canonical commutation relations are minimally violated for that optimal choice

Algorithmic Development: Polynomial Scaling

General Idea: Carry out field operator change of basis to reduce non-locality

$$
B_{p} \rightarrow \mathscr{W}_{p p^{\prime}} B_{p^{\prime}}
$$

$$
R_{p} \rightarrow \mathscr{W}_{p p^{\prime}} R_{p^{\prime}}
$$

\mathscr{W} is a block diagonal rotation matrix with N_{S} sub-blocks of dimension d_{i}
$\cos \left[\sum_{i=1}^{N_{p}} B_{p}\right] \rightarrow \cos \left[\sum_{i=1}^{N_{s}} \sqrt{d_{(i)}} B_{D_{(i)}}\right]$
Non-local term becomes more local

$$
\cos \left[B_{i}\right] \rightarrow \sum_{k=1}^{d_{(i)}} \cos \left[\sum_{j=1}^{d_{(i)}} \Omega_{k j}^{(i)} B_{D_{(i)}+j-1}\right]
$$

Local terms becomes more non-local

Algorithmic Development: Polynomial Scaling

General Idea: Carry out field operator change of basis to reduce non-locality

$$
B_{p} \rightarrow \mathscr{V}_{p p^{\prime}} B_{p^{\prime}} \quad R_{p} \rightarrow \mathscr{V}_{p p^{\prime}} R_{p^{\prime}}
$$

\mathscr{V} is a block diagonal rotation matrix with N_{S} sub-blocks of dimension d_{i}

$$
\cos \left[\sum_{i=1}^{N_{p}} B_{p}\right] \rightarrow \cos \left[\sum_{i=1}^{N_{s}} \sqrt{d_{(i)}} B_{D_{(i)}}\right] \quad \cos \left[B_{i}\right] \rightarrow \sum_{k=1}^{d_{(i)}} \cos \left[\sum_{j=1}^{d_{(i)}} \Omega_{k j}^{(i)} B_{D_{(i)}+j-1}\right]
$$

Non-local term becomes more local
Local terms becomes more non-local
Time Evolution: Implementing a single time step requires $\mathcal{O}\left(N_{p}^{n_{q}}\right)$ gates
Example: Small 8×8 lattice with two qubits (four states) per plaquette requires
10^{4} quantum gates $\quad 10^{5}$ classical FLOPs to create circuit
Grabowska et al, to appear shortly

Sign Problems in Lattice Gauge Theories

Lattice Simulations: Numerically estimation of lattice-regulated quantum path integral via Monte Carlo importance sampling requires the existence of a positive probability measure

$$
\mathscr{Z}=\int[D U] \operatorname{det} D_{F}(U) e^{-S[U]} \text { Must be real and positive }
$$

Sign Problems in Lattice Gauge Theories

Lattice Simulations: Numerically estimation of lattice-regulated quantum path integral via Monte Carlo importance sampling requires the existence of a positive probability measure

$$
\mathscr{Z}=\int[D U] \operatorname{det} D_{F}(U) e^{-S[U]} \text { Must be real and positive }
$$

"Sign Problem" prohibits first-principles study of phenomenologically-relevant theories

Real-Time Dynamics

Early Universe Phase Transitions
Requires Minkowski space simulations

Chiral Gauge Theories

Fully defined Standard Model Complex fermion determinant

Finite-Density Nuclear Matter
Neutron stars and QCD phase diagram
Complex fermion determinant

Can quantum computing help?

Quantum Simulations of Gauge Theories

Quantum Lattice: Very young field, utilizing NISQ-era hardware and quantum simulators to carry out exploratory studies on lower-dimensional toy models

General Procedure: Simulation proceeds in three steps

1. Initial State Preparation
2. Evolution via multiple applications of time translation operator
3. Measurement

4. Circuit is re-run multiple times to build up expectation value

Quantum Simulations of Gauge Theories

Quantum Lattice: Very young field, utilizing NISQ-era hardware and quantum simulators to carry out exploratory studies on lower-dimensional toy models

General Procedure: Simulation proceeds in three steps

1. Initial State Preparation
2. Evolution via multiple applications of time translation operator
3. Measurement

4. Circuit is re-run multiple times to build up expectation value

Overarching Research Goal

"Re-write" theory into quantum circuit formulation that runs in reasonable amount of time

Theoretical Development: Time Evolution Operator

Ex: Quantum Harmonic Oscillator offers various choices

Ladder Operators $\left[a, a^{\dagger}\right]=1$	Operator Basis	$\begin{gathered} \text { Position }+ \text { Momentum } \\ \qquad[x, p]=i \end{gathered}$
Non-interacting Eigenstates $\|n\rangle$	State Basis	Position Eigenstates $\|x\rangle$

Theoretical Development: Time Evolution Operator

Ex: Quantum Harmonic Oscillator offers various choices

$a^{\dagger}\left\|n_{\max }\right\rangle=\sqrt{n_{\max }+1}\|0\rangle$		$a^{\dagger}\left\|n_{\max }\right\rangle=0$			
	or				
$a\|0\rangle=\sqrt{n_{\max }+1}\left\|n_{\max }\right\rangle$		$a\|0\rangle=0$	\quad	$\hat{p}\|x\rangle:=i \partial_{x}\|x\rangle$	or
:---:	:---:	$p_{n} \sim \frac{n}{N} \frac{2 \pi}{\delta x}$			

Commutation relations violated in both formulations

