Exponential Volume Scaling in (Constrained) Lattice Gauge Theories

Dorota M. Grabowska

TECHNOLOGY INITIATIVE

Motivation

Studying the properties of strongly coupled theories from first principles is necessary to fully understand the Standard Model

Rich phenomena of non-perturbative quantum field theories is a profitable place to look for new answers to the big questions

Real-time dynamics, finite-density nuclear matter and non-perturbative properties of chiral gauge theories are intractable on classical computers

30/06/2022

Motivation

fully understand the Standard Model

Rich phenomena of non-perturbative quantum field theories is a profitable place to look for new answers to the big questions

Quantum computers have a fundamentally different computational strategy and will provide novel probes of fundamental questions in particle and nuclear physics

- The last decade has seen the rapid evolution of real-world quantum computers, with increasing size and decreasing noise

30/06/2022

Studying the properties of strongly coupled theories from first principles is necessary to

Real-time dynamics, finite-density nuclear matter and non-perturbative properties of chiral gauge theories are intractable on classical computers

• It is imperative to carry out exploratory studies of the applicability of this emerging technology

Quantum Simulations of Lattice Gauge Theories

Guiding Principle: Quantum computing is still in its infancy and so we need to think carefully about how best to utilize this novel computational strategy

Theoretical Developments

How do we formulate field theories in a quantum-computing compatible way?

> Need to work simultaneously on three interconnected areas

Benchmarking and Optimization

Which quantum hardware is best-suited for specific physics goals?

QUANTUM TECHNOLOGY INITIATIVE

30/06/2022

exponential volume scaling

change of operator basis

30/06/2022

Scaling of Gate Count for Simulations of Electromagnetism in 2+1 Dimensions

- Main Take-Away Point 1: Naive implementation using only physical states has
- Main Take-Away Point 2: Scaling can be made polynomial with carefully applied

Gauge Invariance and Gauss' Law

Continuum Theory: Integral over electric and magnetic fields

$$H = \int d^2x \left(E^2 + B^2 \right) \qquad \begin{array}{l} \text{Need to in} \\ \text{additional co} \end{array}$$

30/06/2022

mpose $\nabla \cdot E = 4\pi\rho$ $\nabla \cdot B = 0$ onstraints

Gauge Invariance and Gauss' Law

Continuum Theory: Integral over electric and magnetic fields

$$H = \int d^2x \left(E^2 + B^2 \right)$$
 Need to impose
additional const

Gauge Invariance and Redundancies

- **Problem:** Gauss' Law is not automatically satisfied in Hamiltonian formulations
 - Allows for charge-violating transitions
- **Problem:** Naive basis of states is over-complete
 - Requires more quantum resources than strictly necessary

$$\nabla \cdot E = 4\pi\rho$$

Hilbert Space

Dual Basis (Rotor) Formulation

General Idea: Work with "gauge-redundancy free" formulation

 Hamiltonian defined in terms of plaquette variables: electric rotors and magnetic plaquettes

$$[B_p, R_{p'}] = i\delta_{pp'}$$

D. B. Kaplan and J. R. Stryker, Phys. Rev. D 102, 094515; J. F. Unmuth-Yockey, Phys. Rev. D 99, 074502 (2019); J. F. Haase et al., Quantum 5, 393 (2021);; J. Bender and E. Zohar, Phys. Rev. D 102, 114517 (2020); S. D. Drell, H. R. Quinn, B. Svetitsky, and M. Weinstein, Phys. Rev. D 19, 619 (1979); Bauer, C.W. and DMG, arXiv: 2111.08015

QUANTUM TECHNOLOGY INITIATIVE

30/06/2022

Dual Basis (Rotor) Formulation

General Idea: Work with "gauge-redundancy free" formulation

• Hamiltonian defined in terms of plaquette variables: electric rotors and magnetic plaquettes

$$[B_p, R_{p'}] = i\delta_{pp'}$$

QUANTUM TECHNOLOGY INITIATIVE

30/06/2022

Dual Basis (Rotor) Formulation

General Idea: Work with "gauge-redundancy free" formulation

 Hamiltonian defined in terms of plaquette variables: electric rotors and magnetic plaquettes

$$[B_p, R_{p'}] = i\delta_{pp'}$$

- Gauss' law automatically satisfied
- No redundant degrees of freedom

QUANTUM TECHNOLOGY INITIATIVE

Formulations works for all values of the gauge coupling

$$H = \frac{1}{2a} \begin{bmatrix} g^2 \sum_{p} \left(\nabla_L \times R_p \right)^2 + \frac{1}{g^2} \begin{cases} \sum_{p} B_p^2 & \text{no} \\ -2 \sum_{p} \cos B_p & \text{co} \end{cases}$$
$$E_T = \nabla \times R$$

 $N_p =$ Number of Plaquettes

30/06/2022

Zohar, Phys. Rev. D 102, 114517 (2020); S. D. Drell, H. R. Quinn, B. Svetitsky, and M. Weinstein, Phys. Rev. D 19, 619 (1979); Bauer, C.W. and DMG, arXiv: 2111.08015

Global Constraints in Rotor Formulation

General Idea: Locally imposed constraints automatically satisfied, but not global

Different ways to see remaining global constraint:

- Rewrite rotors in terms of electric links: too many links if Gauss' law and electric winding is fixed*

30/06/2022

• Solve non-compact case exactly and find decoupled quantum harmonic oscillators + CoM movement

Global Constraints in Rotor Formulation

General Idea: Locally imposed constraints automatically satisfied, but not global

Different ways to see remaining global constraint:

- Rewrite rotors in terms of electric links: too many links if Gauss' law and electric winding is fixed*

$$H = \frac{1}{a} \left[2g^2 \left(R_0^2 + R_1^2 + R_2^2 + R_3^2 - (R_0 + R_1)(R_2 + R_3) \right) + \frac{1}{2g^2} \left(B_0^2 + B_1^2 + B_2^2 + B_3^2 \right) \right]$$

Orthogonal Change of Basis

$$H = \frac{1}{a} \left[2g^2 \left(4\tilde{R}_1^2 + 2\tilde{R}_2^2 + 2\tilde{R}_3^2 \right) + \frac{1}{g^2} \left(\tilde{B}_0^2 + \tilde{B}_1^2 + \tilde{B}_2^2 + \tilde{B}_3^2 \right) \right]$$

In and J. R. Stryker,
D 102, 094515
"Plane wave solution" for \tilde{B}_0

$$\left(R_0^2 + R_1^2 + R_2^2 + R_3^2 - (R_0 + R_1)(R_2 + R_3) \right) + \frac{1}{2g^2} \left(B_0^2 + B_1^2 + B_2^2 + B_3^2 \right)$$

Orthogonal Change of Basis

$$H = \frac{1}{a} \left[2g^2 \left(4\tilde{R}_1^2 + 2\tilde{R}_2^2 + 2\tilde{R}_3^2 \right) + \frac{1}{g^2} \left(\tilde{B}_0^2 + \tilde{B}_1^2 + \tilde{B}_2^2 + \tilde{B}_3^2 \right) \right]$$

"Plane wave solution" for \tilde{B}_0

* D. B. Kaplar *Phys. Rev. D* 102, 094515

QUANTUM TECHNOLOGY INITIATIVE

30/06/2022

Solve non-compact case exactly and find decoupled quantum harmonic oscillators + CoM movement

Example: 2 x 2 Lattice, periodic boundary conditions

Non-local Constraint (Magnetic Gauss Law)

Magnetic Gauss Law: Zeroth plaquette is equal to sum of all others:

Constrained Hamiltonian: Imposing magnetic Gauss' law leads to highly non-local term

Grabowska et al, to appear

$$\sum_{p=1}^{N_P} B_p = -B_0$$

$$\cos B_p + \cos \left(\sum_p B_p \right)$$

Non-local Constraint (Magnetic Gauss Law)

Magnetic Gauss Law: Zeroth plaquette is equal to sum of all others:

Constrained Hamiltonian: Imposing magnetic Gauss' law leads to highly non-local term

Compact formulation

Hilbert space: dim 2^{n_q}

Grabowska et al, to appear

$$\sum_{p=1}^{N_P} B_p = -B_0$$

Non-local Constraint (Magnetic Gauss Law)

Magnetic Gauss Law: Zeroth plaquette is equal to sum of all others: $\sum_{n=1}^{N_P} B_n = -B_0$ *p*=1

Constrained Hamiltonian: Imposing magnetic Gauss' law leads to highly non-local term

Hilbert space: dim 2^{n_q}

Exponential Volume Scaling: If it takes $\mathcal{O}(N_I)$ gates to implement single plaquette term, it will take $\mathcal{O}(N_{r}^{N_{P}})$ gates to implement the non-local term!

This makes even the smallest lattices require thousands of gates for a single time step!

Grabowska et al, to appear

Requirement: Carry out orthonormal basis change such that no single term in the Hamiltonian spans a Hilbert space larger than than $\mathcal{O}(2^{n_q \log_2 N_p})$

Requirement: Carry out orthonormal basis change such that no single term in the Hamiltonian spans a Hilbert space larger than than $\mathcal{O}(2^{n_q \log_2 N_p})$

Properties of \mathscr{W} and W_d

- ${\mathscr W}$ is block diagonal with $N_s \sim \log_2 N_p$ sub-blocks

- Each sub-block W_d has dimension $d \sim N_p/{\rm log}_2 N_p$

- First column of any W_d has all entries equal to $1/\sqrt{d}$

Requirement: Carry out orthonormal basis change such that no single term in the Hamiltonian spans a Hilbert space larger than than $\mathcal{O}(2^{n_q \log_2 N_p})$

Properties of \mathcal{W} and W_d

- ${\mathscr W}$ is block diagonal with $N_s \sim \log_2 N_p$ sub-blocks

• Each sub-block W_d has dimension $d \sim N_p/\log_2 N_p$

First column of any W_d has all entries equal to $1/\sqrt{d}$

Maximally non-local term now spans **Hilbert space of dimension** $N_p^{n_q}$

Every row of W_d has no more than $\lceil \log_2 d \rceil + 1$ non-zero entries **Previously local terms spans Hilbert** space of dimension $(N_p/\log_2 N_p)^{n_q}$

Requirement: Carry out orthonormal basis change such that no single term in the Hamiltonian spans a Hilbert space larger than than $\mathcal{O}(2^{n_q \log_2 N_p})$

30/06/2022

Implementing new "Weaved" Hamiltonian requires $\mathcal{O}(N_p^{\log_2 N_L})$ gates!

(Recall N_I is volume independent)

Requirement: Carry out orthonormal basis change such that no single term in the Hamiltonian spans a Hilbert space larger than than $\mathcal{O}(2^{n_q \log_2 N_p})$

Implementing new "Weaved" Hamiltonian requires $\mathcal{O}(N_p^{\log_2 N_L})$ gates!

(Recall N_L is volume independent)

Note about Classical Computational Cost

 Carrying out change of basis for 192 x 192 lattice takes few second on laptop

• Scaling is slightly worse than linear in lattice volume ($\sim N_p^{1.25}$)

Quantum computers have a fundamentally different computational strategy and will provide novel probes of fundamental questions in particle and nuclear physics

It is important to carefully consider the scaling of quantum computing resources for simulating gauge theories on far-future fault tolerant quantum computers

Conclusions

Quantum computers have a fundamentally different computational strategy and will provide novel probes of fundamental questions in particle and nuclear physics

It is important to carefully consider the scaling of quantum computing resources for simulating gauge theories on far-future fault tolerant quantum computers

Main Take-Away Point 1: Naive implementation of compact U(1) using only physical states has exponential volume scaling

Main Take-Away Point 2: Scaling can be made polynomial with carefully applied change of operator basis

30/06/2022

Exponential Volume Scaling in (Constrained) Lattice Gauge Theories — DM Grabowska

Back Up Slides

Examples of Weaved Matrices

This simple toy model clearly demonstrates the pitfalls of unwise digitisation choices

Goal: Using only 2L+1 states, how well can we replicate the low-lying states of the QHO?

1) Working in the X basis, it is trivial to digitize X

 $X_k = -X_{\max} + k\delta X$ $\delta X = \frac{X_{\max}}{L}$

 X_{max} is a free parameter

$$H = \frac{1}{2}X^2 + \frac{1}{2}P^2$$

This simple toy model clearly demonstrates the pitfalls of unwise digitisation choices

Goal: Using only 2L+1 states, how well can we replicate the low-lying states of the QHO?

1) Working in the X basis, it is trivial to digitize X

 $X_k = -X_{\max} + k\delta X$ $\delta X = \frac{X_{\max}}{L}$

 X_{max} is a free parameter

2) Question: How to digitizing P, as it is not diagonal in this basis

Option One: Use finite difference version

$$P^{2} = \frac{1}{\delta X^{2}} \begin{pmatrix} 2 & -1 & 0 & 0 & -1 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ -1 & 0 & 0 & -1 & 2 \end{pmatrix}$$

QUANTUM TECHNOLOGY INITIATIVE

$$H = \frac{1}{2}X^2 + \frac{1}{2}P^2$$

This simple toy model clearly demonstrates the pitfalls of unwise digitisation choices

Goal: Using only 2L+1 states, how well can we replicate the low-lying states of the QHO?

Working in the X basis, it is trivial to digitize X

 $X_k = -X_{\max} + k\delta X$ $\delta X = \frac{X_{\max}}{I}$

 X_{max} is a free parameter

2) Question: How to digitizing P, as it is not diagonal in this basis

Option One: Use finite difference version

$$P^{2} = \frac{1}{\delta X^{2}} \begin{pmatrix} 2 & -1 & 0 & 0 & -1 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ -1 & 0 & 0 & -1 & 2 \end{pmatrix}$$

QUANTUM TECHNOLOGY INITIATIVE

This simple toy model clearly demonstrates the pitfalls of unwise digitisation choices

Goal: Using only 2L+1 states, how well can we replicate the low-lying states of the QHO?

1) Working in the X basis, it is trivial to digitize X

 $X_k = -X_{\max} + k\delta X$ $\delta X = \frac{X_{\max}}{L}$

 X_{max} is a free parameter

2) Question: How to digitizing P, as it is not diagonal in this basis

Option One: Use finite difference version Option Two: Use exact form and Fourier transform to change basis

$$P_k = -P_{\max} + k\delta P$$

30/06/2022

 $\delta X \ 2L + 1$

 ∂_P

xmax

This simple toy model clearly demonstrates the pitfalls of a unwise digitization choices

Optimal value can be calculated exactly

$$X_{\max} = L\sqrt{\frac{2\pi}{2L+1}}$$

Intuitive Understanding: Eigenstate has the same width in both position and momentum space and so $\delta x = \delta p$

(Plot done with qubit encoding so different number of states per site) Klco, N. and Savage, M.J.: Phys. Rev. A 99, 052335 (2019) [arXiv: 1808.10378]

This simple toy model clearly demonstrates the pitfalls of a unwise digitization choices

Optimal value can be calculated exactly

$$X_{\max} = L\sqrt{\frac{2\pi}{2L+1}}$$

Intuitive Understanding: Eigenstate has the same width in both position and momentum space and so $\delta x = \delta p$

Value for optimal X_{max} can also be related to Nyquist–Shannon sampling theorem

Macridin, A., Spentzouris, P., Amundson, J., and Harnik, R: Phys. *Rev. Lett.* 121, 110504 (2018) and *Phys. Rev. A* 98, 042312 (2018)

30/06/2022

(Plot done with qubit encoding so different number of states per site) Klco, N. and Savage, M.J.: Phys. Rev. A 99, 052335 (2019) [arXiv: 1808.10378]

General Idea: Combine "gauge-redundancy free" dual representations with digitization method motived by quantum harmonic oscillator example [Bauer, C.W. and DMG arXiv: 2111.08015]

- Magnetic basis and rotor basis related by Fourier transform
- Use exact continuum eigenvalues for digitization

Step One: Digitize rotor and magnetic fields

$$b_p^{(k)} = -b_{\max} + k\,\delta b \qquad \delta b = \frac{b_{\max}}{\ell} \qquad r_p^{(k)} = -r_{\max} + \left(k + \frac{1}{2}\right)\,\delta r \qquad \delta r = \frac{2\pi}{\delta b(2\ell+1)} \qquad r_{\max} = \frac{\pi}{\delta k}$$

• Variable k labels the eigenvalues

• Number of eigenvalues: $2\ell + 1$

General Idea: Combine "gauge-redundancy free" dual representations with digitization method motived by quantum harmonic oscillator example [Bauer, C.W. and DMG arXiv: 2111.08015]

- Magnetic basis and rotor basis related by Fourier transform
- Use exact continuum eigenvalues for digitization

Step One: Digitize rotor and magnetic fields

$$b_p^{(k)} = -b_{\max} + k\,\delta b \qquad \delta b = \frac{b_{\max}}{\ell} \qquad r_p^{(k)} = -r_{\max} + \left(k + \frac{1}{2}\right)\,\delta r \qquad \delta r = \frac{2\pi}{\delta b(2\ell+1)} \qquad r_{\max} = \frac{\pi}{\delta k}$$

• Variable k labels the eigenvalues

Step Two: Define digitized rotor and magnetic operators

$$\langle b_p^{(k)} | B_p | b_{p'}^{(k')} \rangle = b_p^{(k)} \delta_{kk'} \delta_{pp'}$$

30/06/2022

Exponential Volume Scaling in (Constrained) Lattice Gauge Theories — DM Grabowska

• Number of eigenvalues: $2\ell + 1$

$$\langle b_p^{(k)} | R_p | b_{p'}^{(k')} \rangle = \sum_{n=0}^{2\ell} r_p^{(n)} \left(\mathsf{FT} \right)_{kn}^{-1} \left(\mathsf{FT} \right)_{nk'} \delta_{pp'}$$

ax needs to be determined

General Idea: Combine "gauge-redundancy free" dual representations with digitization method motived by quantum harmonic oscillator example [Bauer, C.W. and DMG arXiv: 2111.08015]

Step Three: Choose an optimal value for bmax

Non-Compact Theory

- Simply a complicated coupled harmonic oscillator at all values of the coupling
- Optimal value can be calculated analytically

$$b_{\max}^{NC}(g, \ell) = g\ell \sqrt{\frac{\sqrt{8}\pi}{2\ell+1}}$$

Intuition: Rescaled eigenstate has same width in both rotor and magnetic space and so $\delta b = \delta r$

General Idea: Combine "gauge-redundancy free" dual representations with digitization method motived by quantum harmonic oscillator example [Bauer, C.W. and DMG arXiv: 2111.08015]

Step Three: Choose an optimal value for bmax

Non-Compact Theory

- Simply a complicated coupled harmonic oscillator at all values of the coupling
- Optimal value can be calculated analytically

$$b_{\max}^{NC}(g, \ell) = g\ell \sqrt{\frac{\sqrt{8}\pi}{2\ell+1}}$$

Intuition: Rescaled eigenstate has same width in both rotor and magnetic space and so $\delta b = \delta r$

30/06/2022

Compact Theory

- Reduces to a complicated coupled harmonic oscillator at weak coupling
- Equivalent to Kogut-Susskind Hamiltonian

$$b_{\max}^{C}(g, \ell) = \min\left[b_{\max}^{NC}, \frac{2\pi\ell}{2\ell+1}\right]$$

Intuition: Smooth interpolation between strong and weak coupling regime

General Idea: Combine "gauge-redundancy free" dual representations with digitization method motived by quantum harmonic oscillator example [Bauer, C.W. and DMG arXiv: 2111.08015]

Step Three: Choose an optimal value for bmax

Non-Compact Theory

- Simply a complicated coupled harmonic oscillator at all values of the coupling
- Optimal value can be calculated analytically

$$b_{\max}^{NC}(g, \ell) = g\ell \sqrt{\frac{\sqrt{8}\pi}{2\ell+1}}$$

Intuition: Rescaled eigenstate has same width in both rotor and magnetic space and so $\delta b = \delta r$

Formulation works well for all values of the gauge coupling

30/06/2022

Compact Theory

- Reduces to a complicated coupled harmonic oscillator at weak coupling
- Equivalent to Kogut-Susskind Hamiltonian

$$b_{\max}^{C}(g, \ell) = \min\left[b_{\max}^{NC}, \frac{2\pi\ell}{2\ell+1}\right]$$

Intuition: Smooth interpolation between strong and weak coupling regime

Electromagnetism in Two Spatial Dimensions

- General Idea: Combine "gauge-redundancy free" dual representation with digitization method that strives to minimize violation of commutation relations • Truncation scale and digitization scale are not independent and there is an optimal choice Canonical commutation relations are minimally violated for that optimal choice

QUANTUM TECHNOLOGY INITIATIVE

30/06/2022

Exponential Volume Scaling in (Constrained) Lattice Gauge Theories — DM Grabowska

Bauer, C.W. and Grabowska, D.M. arXiv: 2111.08015

Electromagnetism in Two Spatial Dimensions

- General Idea: Combine "gauge-redundancy free" dual representation with digitization method that strives to minimize violation of commutation relations • Truncation scale and digitization scale are not independent and there is an optimal choice Canonical commutation relations are minimally violated for that optimal choice

Bauer, C.W. and Grabowska, D.M.

Algorithmic Development: Polynomial Scaling

General Idea: Carry out field operator change of basis to reduce non-locality

$$B_p \to \mathcal{W}_{pp'}B_{p'}$$

 \mathscr{W} is a block diagonal rotation matrix with N_{S} sub-blocks of dimension d_{i}

$$\cos\left[\sum_{i=1}^{N_p} B_p\right] \to \cos\left[\sum_{i=1}^{N_s} \sqrt{d_{(i)}} B_{D_{(i)}}\right]$$

Non-local term becomes more local

 $R_p \to \mathcal{W}_{pp'}R_{p'}$

$$\cos \left[B_i\right] \to \sum_{k=1}^{d_{(i)}} \cos \left[\sum_{j=1}^{d_{(i)}} \Omega_{kj}^{(i)} B_{D_{(i)}+j-1}\right]$$

Local terms becomes more non-local

Grabowska et al, to appear shortly

Algorithmic Development: Polynomial Scaling

General Idea: Carry out field operator change of basis to reduce non-locality

$$B_p \to \mathcal{W}_{pp'}B_{p'}$$

 \mathscr{W} is a block diagonal rotation matrix with N_{S} sub-blocks of dimension d_{i}

$$\cos\left[\sum_{i=1}^{N_p} B_p\right] \to \cos\left[\sum_{i=1}^{N_s} \sqrt{d_{(i)}} B_{D_{(i)}}\right]$$

Non-local term becomes more local

Time Evolution: Implementing a single time ste

Example: Small 8 x 8 lattice with two qubits (four states) per plaquette requires

$$10^4$$
 quantum gates 10^5 cla

 $R_n \to \mathcal{W}_{DD'}R_{D'}$

$$\cos \left[B_i\right] \rightarrow \sum_{k=1}^{d_{(i)}} \cos \left[\sum_{j=1}^{d_{(i)}} \Omega_{kj}^{(i)} B_{D_{(i)}+j-1}\right]$$

Local terms becomes more non-local

ep requires
$$\mathcal{O}\left(N_p^{n_q}\right)$$
 gates

assical FLOPs to create circuit

Grabowska et al, to appear shortly

Sign Problems in Lattice Gauge Theories

Lattice Simulations: Numerically estimation of lattice-regulated quantum path integral via Monte Carlo importance sampling requires the existence of a positive probability measure

30/06/2022

Must be real and positive

Sign Problems in Lattice Gauge Theories

Lattice Simulations: Numerically estimation of lattice-regulated quantum path integral via Monte Carlo importance sampling requires the existence of a positive probability measure

$$\mathscr{Z} = \int [DU] \mathbf{C}$$

"Sign Problem" prohibits first-principles study of phenomenologically-relevant theories

Real-Time Dynamics

Early Universe Phase Transitions **Requires Minkowski space simulations**

Finite-Density Nuclear Matter

Neutron stars and QCD phase diagram Complex fermion determinant

Can quantum computing help?

30/06/2022

Must be real and positive

Chiral Gauge Theories

Fully defined Standard Model Complex fermion determinant

Quantum Simulations of Gauge Theories

to carry out exploratory studies on lower-dimensional toy models

General Procedure: Simulation proceeds in three steps

- **Initial State Preparation** 1.
- Evolution via multiple applications of time translation operator 2.
- Measurement 3.

Circuit is re-run multiple times to build up expectation value 4.

- Quantum Lattice: Very young field, utilizing NISQ-era hardware and quantum simulators

Quantum Simulations of Gauge Theories

to carry out exploratory studies on lower-dimensional toy models

General Procedure: Simulation proceeds in three steps

- Initial State Preparation 1.
- Evolution via multiple applications of time translation operator 2.
- Measurement 3.

Circuit is re-run multiple times to build up expectation value 4.

Overarching Research Goal

"Re-write" theory into quantum circuit formulation that runs in reasonable amount of time

QUANTUM TECHNOLOGY

- **Quantum Lattice:** Very young field, utilizing NISQ-era hardware and quantum simulators

Theoretical Development: Time Evolution Operator Ex: Quantum Harmonic Oscillator offers various choices **Operator Basis** Ladder Operators Position + Momentum $[a, a^{\dagger}] = 1$ [x,p] = i**Position Eigenstates** Non-interacting Eigenstates State Basis $|\chi\rangle$

QUANTUM TECHNOLOGY INITIATIVE

30/06/2022

Exponential Volume Scaling in (Constrained) Lattice Gauge Theories — DM Grabowska

Operator Basis Position + Momentum [x,p] = i**Position Eigenstates** State Basis $|x\rangle$ Momentum Operator Eigenvalues Finite Matrix Representation $\hat{p} |x\rangle := i\partial_x |x\rangle$ or $p_n \sim \frac{n}{N} \frac{2\pi}{\delta x}$ (Finite difference)

Commutation relations violated in both formulations

