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INTRO

It 1s generally believed that the Universe 1n 1ts early stage underwent a period of rapid expansion

T he expansion can be modelled by de Sitter (dS) space, if reasonable assumptions are made about
the 1sometries of space-time

The dS epoch was followed by an almost flat, Minkowski epoch, to a good approximation. Both of these were phases of
finite temperature, beyond little doubt , ,
N. D. Burrell and P C. W, Davies, °82

17 Mukhanov and 5. Wainitzke Cambridge Unwersity Press (2013)
E. ‘1. Akhmedov, Int. J. Mod. Phys. D23 (2014) 1430001

A simple model that could explain some of the observed features of the CMB 1s a real scalar field ¢ in fixed dS background

Considering QFT in a fixed de Sitter background includes a possible inadequacy reflected by the
uncontrollable infrared (IR) diwergences that appear in observables

Our motivation comes from a model with similar perturbative feature: pure Yang-Mills theory in dimensions d > 5

Perturbatively non-renormalizable system — —— Observables or RG flows at a short interval inside its phase diagram make no sense

/

Appearance of uncontrollable ultraviolet (UV) dwvergences in Feynman diagrams




INTRO

No sensible continuum description in the interior of the phase diagram. Things are different near at least two points:

1) In the Coulomb phase, the Gaussian point. Still problematic however

2) The point of a first order phase transition somewhere in the interior, beyond which a Confined phase appears.

2) 1s a consistent picture since there the system seems to start behaving regularly, as 1f 1t was renormalizable due to the finite
UV cut-oft that the first order transition imposes on the effective theory

N. Irges and ER., Fur. Phys. J. G 81 (2021) 2

An analogy can be now drawn: Consider the de Sitter and Minkowski epochs as two phases of a single cosmological phase
diagram with the transition from the one phase into the other proceeding via a first order phase transition

1. dS background 1s a good approximation near the beginning and near the end of the expanding phase
2. Certain properties of a UV character in the YM theory are to be replaced by IR properties in the cosmological model

The aim 1s to construct propagators of the field ¢ at finite temperature and analyze their etfects on cosmological
observables




A BIT OF TERMINOLOGY
® QFT in dS space:

Conformally flat metric with a time-like coordinate v € (—0o0,0]

357 99

An observer with coordinate T = — o0 1s called an >in™ observer with |in) the associated vacuum state

An observer with coordinate T = 0 15 called an “out” observer with |out) the associated vacuum state

The 7 = 0 surface 1s also called the Horizon of the expanding Poincare patch of dS space

According to our picture the Horizon 1s identified with a first order phase transition

It 15 not a sharp pownt but rather an wnterval around the Horizon, T € (0 — 6,0 +06) with 0 < 6 < < 1

®  Physics for 7 < — § is described by thermal OFT in a dS background and for ¢ > § by thermal OF 1" in a Minkowski
background

By this regularization the out observer is of course located at T = — & rather than at T = 0




THE THERMAL PROPAGATORS

The action which we will quantize taking into account finite temperature effects is

S— / B2 /G | 50" 0uddud — (m? + ER)

Consider a d + 1 dimensional FRW spacetime with metric and (de Sitter) scale factor

1
d82 — a2 (d7'2 — dXQ) and a(r) = ——

Hrt
The classical e.o.m. for the scalar field mode in d-dimensional momentum space, ¢, = Al , In this background is
a
. 2 : 2 2 2 : 2 1 , d? —
Xk T Wik Xk = 0 with @y, = |K[™ + myg the time-dependent mass mjg = —(M -
T

the inverse curvature parameter of dS space, H, satisfying R = 12H?

Linear combinations of the Hankel function H, (z, |k|) and 1ts complex conjugate, solve the e.o.m. with weight

d\/l AM?2
Vel = = —
1™ 9 42

Quantization of this system results in the notion of a time-dependent vacuum state and a doubled Hilbert space

2

DY a2 110
) M7 =12




THE THERMAL PROPAGATORS

® For the former|in) and |out) are empty vacua from the perspective of corresponding local (in conformal time) observers

N. A. Chernikov and E. A. ‘lagirov, *68
B. Allen, Phys. Rev. D32 (1985) 3136

Maximally symmetric Bunch-Davies vacuum

® |in) —=m—m=— |out) via the Bogolyubov Transformation (BT): < J|®'=<1|®’

I,J =in,out and ®' is the field operator with eigenvalue )(Ilkl ( )(|11r<1| = U )(ﬁ(“lt = Vi )

® The doubled Hilbert space can be understood in the context of the Schwinger-Keldysh path integral as being related to a +
(or forward) branch and a — (or backward) branch in conformal time evolution

® The main quantity: The field propagator D in this basis (2 X 2 matrix structure)

<O (I>+(7'2)(I)_(7'1)
(0| @ (71)D" (1)

==
~— ~—
|

= D(11;72) O] T*[@F(11)2"(12)][0) = Dyy(r1;72)
D (11; T2) O] T[®7 (1)@ (12)][0) = D__(71;72)

De(m1572) = Xk (T1)Xy (T2)

D ; = DX (1;10), D__(11; = D ; o
>(T1572) <(mi;72) (71572) (113 72) Dyy(113m) =0(11 — 12)De(1512) + 0(19 — 71) D (715 72)




THE THERMAL PROPAGATORS Fimt

~

® The advantage is that Schwinger-Keldysh = Thermofield dynamics (T'D)

Re t t ﬂtO
® The passage to finite temperature is via the transformation Dg = Ug D UBT Ol‘

L —

1 cosh 0| sinh 0y l

with B=— and Ug = . Hopre

P T g (Slnh 9|k| cosh ‘9|k| ‘

ty - iB

The Schwinger-Keldysh contour equivalent of
i Thermofield dynamics
A BT wuth coefficients cosh 6 = and sinh 6, = \/ cosh? O — 1
V1 —ePon L. V Keldysh, JETP 20(4): (1965) 1018-1026.

J- Schwinger, Journal of Mathematical Physics 2(3): (1961) 407—432.
A. Das, Topics in Finite lemperature Field Theory, hep-ph/ 0004125

® All the allowed thermal transformations of D are correlators of the form
Do = (J;a| T[® (®)"]]J]; )

® The doublet field in TD language is (®')" = (®*/,®~') and « is a thermal index, associated with any combination of thermal
transtormations of the form of Uy




THE THERMAL PROPAGATORS

® 2 relevant types of thermal transformations
1. 'The winsertion of an explicit density matrix — |I; > = Uy |1 >

2. The Gibbons-Hawking (GH) effect (for which we will momentarily use the parameter 6 to distinguish it from ) — |I1>=|J;6 >, [#J

® D(i)‘lllt,ﬂ = Dii;‘, _— Near the horizon (m3; = o) the thermal parameters are related
B—o|, 2
b <9 a = [B+de 2 Mds ...
B—o|, 2
B >0: a = 0+ Pe 2 Mds ...
o

Through inspection and due to no backreaction of the scalar — dS space can only sustain the GH temperature

1 H 1
e In and out observers agree on the observed physical thermal eftects only it — =T =T, = =
71
® Key feature is the form of the thermal dS-scalar propagator
I 1 with s = sinh 6, and ¢ = cosh 8
I Ioa&I\T _ * 2 K| K|
Djo=(J;a| T[®(®7)"]|]; ) Dg =D+ (Dy+ + DLy ) (57 + sc) (1 1) for some generic




THE COSMOLOGICAL OBSERVABLES

® Go to equal space-time points, at the time of horizon exit |Hz| = 1 and for horizon exiting modes |kz| = 1

I 1
Dg =D+ (Diy +Di) (s° + sc) (1 1)

® The thermal propagator determines several important observables (ng, ng, ng and fy; relevant here) through the power
spectrum (1 1s the 2 X 2 matrix with unit elements)

Pgﬁl = D[gl‘ﬁ:m

® The picture is that of a two-step BT process Di2 ¢ DOt <y DOt 3 Doy s = Dp)
Din Dout : : 5 — d? 9 d=3M2=0 _ _3
in <> Dout =% Fixes the observables in terms of a K = Wk| ]T]| — ] M m—p =3 M "=0—->Kk=i0ruy,= 5
single parameter ker|=1

/

H \2 H \? . .
Time-independent BT — Py(t) = (2—> <1 + | Kt| ) = P((0) = (2—> , a scale invariant spectrum

/A /A

P R. Anderson, C. Molina-Paris and Emil Mottola, Phys. Rev. D 72 (2005) 043515
P R. Anderson and E. Mottola, Phys. Rev. D 89 (2014) 104038

10



THE COSMOLOGICAL OBSERVABLES

2:8:11‘153 7 Z:CC:ILJ]:E,ﬁ B - Lime-dependent BT wuth 52|k| —w|k|(|C|2 | |5|2)
B. Garbrecht, ‘1. Prokopec and M. G. Schmudt, Fur. Phys. J. (38 (2004) 135-1453
2

H
® 'T'he single parameter now x = A (under defining x = %, for x € [z, o0] which eventually will be fixed to x = z, 1ts natural dS
7Z'

value where T = Tyq ) 15

6—2:6/1

1 — 6—2:1353

A==k (14. 2 > = k coth(xk)

® The spectral index of scalar curvature fluctuations, ng, is shifted due to finite temperature effects =g Pgg = P 51+ 2(s* + sc)]
dIn (’k’gpgﬁ) 27 [ 6—:13/\ T

.l nmg=ngg—1=——
dln |K| ’ A [1—e A

nsp =1-

® All the freedom is included in A which admits its natural value when x = #

11



dn'Y) THE COSMOLOGICAL OBSERVABLES

| dln [k | dln [k 5 [w(—l 1 A?)? (1 + zA cot(%)) + 2A° sinh(a:A)}
1 e~ 2w fnL = —
ng )y = dns [2 -5 (1 5 6—2va)] 6A2|2(~1+ A2) + Asinh(zA)]
Re A
(1) )? - _
(2) (nsﬂ) 4 _3 N 3 B E ) i - 26—23:A N A2 6—2:1:/\
"sB T T sng ST A2 T A2 T A A2 | _ o—2ah AZ (1 — e—22h)2
i ) Al ——
_ 9 Ny ON 0N _ :
fNL_EVpQ Np:(?_p’Npp:(?—annd’O:PS?B A T :
N = ftif dtH the number of e-folds — 0 — 00 |
1076 | 3.5-107 |
P Cremanelly and M. aldarnaga, JCAP 10 (2004) 006 0.01 1600 :
A. Rehagias and A. Riotto, Nucl. Phys. B868 (2013) 577-595 05 118 |
: : - "
L.5117 ™
| Y UV - CFT
® The physical case x = 7, A = 1.5117 O - Bunchou B

= 0 Temperature out vacuum
Im )\ @ P

nS,’B — nS ~ 1 — 0036 — 0964 J n;}ﬁ) ~ 00186 J © = dS Temperature thermal state
(0.9625 = 0.0046) (0.013 £ 0.012)

2) ~
ne ~ 0.1250
fyp & — 17138 J l:) 5P

Planck Collaboration, Y. Akrama et al., Astron. Astrophys. 641 (2020)
(0.022 + 0.012)

12



WHY THIS TITLE?

® The IR CFT can be recognized within perturbation theory as the interacting fixed point of the d = 3 scalar theory with classical

1
Lagrangian & = — Solo - Ac* (o is the Ising field)

M. Bianchi, D.S. Freedman and K. Skenderis Nucl. Phys. B 631 (2002) 159
1. Antomadis, 2 O. Mazur and E. Mottola, JCAP 09 (2012) 024

»*RG Ising RG

v=1-y,

out

RG
dS4

CFT,,.

1n

The connection between the in and out vacua can be seen either as a BT or an RG flow from an UV CFT to an IR CF'T.
The IR Iimit 1s a 3d GF1 as long as the B'I' preserves the SO(4) 1sometry. The claim 1s that 1t has to be 1n the universality
class of the interacting 3d Ising model.

13



WHY THIS TITLE?
® In the dS/CFT correspondence a bulk field ¢ with dimension A_ is dual to an operator 0 of the boundary CFT of dimension A,

A_|_ — g—|—V

(A—,At)a = (0,3) <<|k|<—|k|> ~ 1 J Maldacena, J. High Energy Phys. 05 (2003) 013
<O|k|0—|k|> J- M. Maldacena and G. L. Pimentel, JHEP 09 (2011) 045

® Then the spectral index is

ns =1 dhj|k\ [m (|k|3ps’ﬁ)} N dlril|k\ i (’k|3<<|k‘c—|k’>)

1 d
-0 (O O_)) (dlﬂlk!w'kl@M)

® Using the Callan-Symanzik

( 0 B 5}\2 +(3— 2Ao)) <O|k|0—|k|> — 0 I Larsen and R. McNees, JHEP 07 (2003) 051
0ln |k OA 5 P van der Schaar, JHEP 01 (2004) 070
\ 8

ng=1-2I'p — ﬁxﬁ (O O_ k)

14



WHY THIS TITLE?
For us 0 = © = Tr T;; with the spectral index

nsg — 1 | 81?1” ln<@(x1)@( )> =1 — BA_ ln< ($1)@($2)>

For ® = B,6* the holographic interpretation of the running of A imposes the eigenvalue equation

2Jo)) E Larsen and R. McNees, THEP 07 (2003) 051
__ 2 5
5A5<@@> - <5>\ -2 O\ ) <@@> F B van der Schaar, fHEP 01 (2004) 070
. . . op, aﬁz
Very close to the IR Wilson-Fisher fixed point f; < < —, an H ~ 2y, =

(ﬁ,\a% - ) (0(21)0 () ~ 0

n 1s the critical exponent of the Ising field and non-perturbative admits the numerical value = 0.036 (MC simulation). The spectral
index 1s

ng~1-—mn ——] nsg ~1—0.036 = 0.964

So A = 1.5117 1s indeed fixed independently (without connection to the inflationary characteristics)

15



CONCLUSIONS

We considered a thermal scalar in de Sitter background. Starting from the Bunch-Dawvies |in) vacuum, a Bogolyubov Transtormation placed
us somewhere 1n the interior of the finite temperature phase diagram.

Then we took the low temperature limit in such a way that instead of returning to the BD vacuum, we landed on the nearly zero temperature
| out) vacuum, which 1s connected to an interacting IR CFI] in the universality class of the 3d Ising model.

This interacting CEF'1" 15 rather special, 1in the sense that the boundary operator that couples to the scalar curvature perturbations in the bulk
has a classical scaling dimension. The critical exponent 5 1s the order parameter of the breaking of the scale invariant spectrum of curvature
fluctuations

n fixes the parametric freedom n the dbS scalar theory, yielding the prediction ng ; ~ 0.964, up to errors associated with 1ts lattice Monte Carlo
measurements.

Heating up the system T = T g numerically in a controlled way we evaluated additional cosmological observables nélﬁ), far and ns(zﬂ) We finally

note that our predicted values of ng 4, nélﬁ) and fy; are well within current experimental bounds while ns(zﬂ) exceeds them

16



THANK YOU
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