Exploring the limits of quantum theory inside nucleons

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Michał Eckstein¹ & Paweł Horodecki

 1 Institute of Theoretical Physics, Jagiellonian University, Kraków, Poland

Humboldt Kolleg, Kitzbühel, 30 June 2022

Standard Model \subset QFT = Quantum Mechanics + Special Relativity

- Beyond Standard Model, but still in QFT
- 2 Beyond Special Relativity, but assuming QM (QFT on curved bg, QG)
- Beyond Quantum Mechanics, but assuming (Special) Relativity
 - nonlinear quantum mechanics
 - Objective Collapse Models -- Penrose (GRG 96), RMP 85, 471 (2013)
 and more (de Broglie 60, Weinberg 89, . . .)
 - Generalised Probability Theories
 - Inspired by information-theoretic externatisation of QM (Hardy 2001)
 Barrett (PRA 2007); Chimbela, D'Arrano, Perinotti (PRA 2010/2011)
 - beyond-quantum correlations a theory-independent approach

Standard Model ⊂ QFT = Quantum Mechanics + Special Relativity

- Beyond Standard Model, but still in QFT
- 2 Beyond Special Relativity, but assuming QM (QFT on curved bg, QG)
- Beyond Quantum Mechanics, but assuming (Special) Relativity
 - nonlinear quantum mechanics
 - Objective Callague Models Pennose (CNC 96), IMAP 88, 371 (2013)
 and more (de Broefe 9), Weinberg 89.)
 - Generalised Probability Theories
 - Inspired by information-theoretic axiomatisation of QM (Hardy 2001)
 Barrett (PRA 2007); Chiribela, D'Ariano, Pernotti (PRA 2010/2011)
 - beyond-quantum correlations a theory-independent approach

Standard Model \subset QFT = Quantum Mechanics + Special Relativity

- Beyond Standard Model, but still in QFT
- Beyond Special Relativity, but assuming QM (QFT on curved bg, QG)
- Beyond Quantum Mechanics, but assuming (Special) Relativity
 - nonlinear quantum mechanics

- a Conoralised Probability Theories
- Inspired by information-theoretic axiomatisation of Control
- beyond-quantum correlations a theory-independent approach

 $Standard\ Model \subset QFT = Quantum\ Mechanics + Special\ Relativity$

- Beyond Standard Model, but still in QFT
- Beyond Special Relativity, but assuming QM (QFT on curved bg, QG)
- Beyond Quantum Mechanics, but assuming (Special) Relativity
 - nonlinear quantum mechanics

- Generalised Probability Theories
- Barrett (PRA 2007); Chiribela, D'Ariano, Perinotti (PRA
- beyond-quantum correlations a theory-independent approach

 $Standard\ Model \subset QFT = Quantum\ Mechanics + Special\ Relativity$

- Beyond Standard Model, but still in QFT
- Beyond Special Relativity, but assuming QM (QFT on curved bg, QG)
- Beyond Quantum Mechanics, but assuming (Special) Relativity
 - nonlinear quantum mechanics
 - Objective Collapse Models Penrose (GRG 96), RMP 85, 471 (2013)
 and more (de Broglie 60, Weinberg 89, ...)
 - Generalised Probability Theories
 - Inspired by information-theoretic axiomatisation of QM (Hardy 2001)
 Barrett (PRA 2007); Chiribela, D'Ariano, Perinotti (PRA 2010/2011)
 - beyond-quantum correlations a **theory-independent approach**

 $Standard\ Model \subset QFT = Quantum\ Mechanics + Special\ Relativity$

Routes towards New Physics:

- Beyond Standard Model, but still in QFT
- Beyond Special Relativity, but assuming QM (QFT on curved bg, QG)
- Beyond Quantum Mechanics, but assuming (Special) Relativity
 - nonlinear quantum mechanics
 - Objective Collapse Models Penrose (GRG 96), RMP **85**, 471 (2013)
 - and more (de Broglie 60, Weinberg 89, ...)
 - Generalised Probability Theories
 - Inspired by information-theoretic axiomatisation of QM (Hardy 2001)
 - Barrett (PRA 2007); Chiribela, D'Ariano, Perinotti (PRA 2010/2011)
 - beyond-quantum correlations a **theory-independent approach**

2/8

 $Standard\ Model \subset QFT = Quantum\ Mechanics + Special\ Relativity$

Routes towards New Physics:

- Beyond Standard Model, but still in QFT
- Beyond Special Relativity, but assuming QM (QFT on curved bg, QG)
- Beyond Quantum Mechanics, but assuming (Special) Relativity
 - nonlinear quantum mechanics
 - Objective Collapse Models Penrose (GRG 96), RMP 85, 471 (2013)
 - and more (de Broglie 60, Weinberg 89, ...)
 - Generalised Probability Theories
 - Inspired by information-theoretic axiomatisation of QM (Hardy 2001)
 - Barrett (PRA 2007); Chiribela, D'Ariano, Perinotti (PRA 2010/2011)
 - beyond-quantum correlations a **theory-independent approach**

2/8

 $Standard\ Model \subset \mathsf{QFT} = \mathsf{Quantum}\ \mathsf{Mechanics} + \mathsf{Special}\ \mathsf{Relativity}$

- Beyond Standard Model, but still in QFT
- Beyond Special Relativity, but assuming QM (QFT on curved bg, QG)
- Beyond Quantum Mechanics, but assuming (Special) Relativity
 - nonlinear quantum mechanics
 - Objective Collapse Models Penrose (GRG 96), RMP 85, 471 (2013)
 - and more (de Broglie 60, Weinberg 89, ...)
 - Generalised Probability Theories
 - Inspired by information-theoretic axiomatisation of QM (Hardy 2001)
 Barrett (PRA 2007): Chiribela D'Ariano Perinotti (PRA 2010/2011)
 - beyond-quantum correlations a theory-independent approach

 $Standard\ Model \subset QFT = Quantum\ Mechanics + Special\ Relativity$

- Beyond Standard Model, but still in QFT
- Beyond Special Relativity, but assuming QM (QFT on curved bg, QG)
- Beyond Quantum Mechanics, but assuming (Special) Relativity
 - nonlinear quantum mechanics
 - Objective Collapse Models Penrose (GRG 96), RMP 85, 471 (2013)
 - and more (de Broglie 60, Weinberg 89, ...)
 - Generalised Probability Theories
 - Inspired by information-theoretic axiomatisation of QM (Hardy 2001)
 - Barrett (PRA 2007); Chiribela, D'Ariano, Perinotti (PRA 2010/2011)
 - beyond-quantum correlations a theory-independent approach

 $Standard\ Model \subset QFT = Quantum\ Mechanics + Special\ Relativity$

- Beyond Standard Model, but still in QFT
- Beyond Special Relativity, but assuming QM (QFT on curved bg, QG)
- Beyond Quantum Mechanics, but assuming (Special) Relativity
 - nonlinear quantum mechanics
 - Objective Collapse Models Penrose (GRG 96), RMP 85, 471 (2013)
 - and more (de Broglie 60, Weinberg 89, ...)
 - Generalised Probability Theories
 - Inspired by information-theoretic axiomatisation of QM (Hardy 2001)
 - Barrett (PRA 2007); Chiribela, D'Ariano, Perinotti (PRA 2010/2011)
 - beyond-quantum correlations a theory-independent approach

 $Standard\ Model \subset QFT = Quantum\ Mechanics + Special\ Relativity$

- Beyond Standard Model, but still in QFT
- Beyond Special Relativity, but assuming QM (QFT on curved bg, QG)
- Beyond Quantum Mechanics, but assuming (Special) Relativity
 - nonlinear quantum mechanics
 - Objective Collapse Models Penrose (GRG 96), RMP 85, 471 (2013)
 - and more (de Broglie 60, Weinberg 89, ...)
 - Generalised Probability Theories
 - Inspired by information-theoretic axiomatisation of QM (Hardy 2001)
 - Barrett (PRA 2007); Chiribela, D'Ariano, Perinotti (PRA 2010/2011)
 - beyond-quantum correlations a theory-independent approach

 $Standard\ Model \subset QFT = Quantum\ Mechanics + Special\ Relativity$

- Beyond Standard Model, but still in QFT
- Beyond Special Relativity, but assuming QM (QFT on curved bg, QG)
- Beyond Quantum Mechanics, but assuming (Special) Relativity
 - nonlinear quantum mechanics
 - Objective Collapse Models Penrose (GRG 96), RMP 85, 471 (2013)
 - and more (de Broglie 60, Weinberg 89, ...)
 - Generalised Probability Theories
 - Inspired by information-theoretic axiomatisation of QM (Hardy 2001)
 - Barrett (PRA 2007); Chiribela, D'Ariano, Perinotti (PRA 2010/2011)
 - beyond-quantum correlations a theory-independent approach

[Sandu Popescu, Nature Physics 10, 264 (2014)]

The *experimental* (frequency) correlation function:

$$C_e(x,y) = \frac{N_{++} + N_{--} - N_{+-} - N_{-+}}{N_{++} + N_{--} + N_{+-} + N_{-+}}$$

Local hidden variables [Bell (1964) / Clauser, Horne, Shimony, Holt (1969)]

$$S_{\mathsf{LHV}} := C_{\mathsf{LHV}}(x,y) + C_{\mathsf{LHV}}(x,y') + C_{\mathsf{LHV}}(x',y) - C_{\mathsf{LHV}}(x',y') \leq 2$$

Quantum Mechanics [Cirelson (1980)]

$$S_{\text{QM}} := C_{\text{QM}}(x, y) + C_{\text{QM}}(x, y') + C_{\text{QM}}(x', y) - C_{\text{QM}}(x', y') \le 2\sqrt{2}$$

$$S_{PR} := C_{PR}(x, y) + C_{PR}(x, y') + C_{PR}(x', y) - C_{PR}(x', y') \le 4$$

[Sandu Popescu, Nature Physics 10, 264 (2014)]

The *experimental* (frequency) correlation function:

$$C_e(x,y) = \frac{N_{++} + N_{--} - N_{+-} - N_{-+}}{N_{++} + N_{--} + N_{+-} + N_{-+}}$$

$$S_{\text{LHV}} := C_{\text{LHV}}(x, y) + C_{\text{LHV}}(x, y') + C_{\text{LHV}}(x', y) - C_{\text{LHV}}(x', y') \le 2$$

$$S_{\text{QM}} := C_{\text{QM}}(x, y) + C_{\text{QM}}(x, y') + C_{\text{QM}}(x', y) - C_{\text{QM}}(x', y') \le 2\sqrt{2}$$

$$S_{PR} := C_{PR}(x, y) + C_{PR}(x, y') + C_{PR}(x', y) - C_{PR}(x', y') \le 4$$

[Sandu Popescu, Nature Physics 10, 264 (2014)]

The *experimental* (frequency) correlation function:

$$C_e(x,y) = \frac{N_{++} + N_{--} - N_{+-} - N_{-+}}{N_{++} + N_{--} + N_{+-} + N_{-+}}$$

Local hidden variables [Bell (1964) / Clauser, Horne, Shimony, Holt (1969)]

$$S_{\mathsf{LHV}} := C_{\mathsf{LHV}}(x,y) + C_{\mathsf{LHV}}(x,y') + C_{\mathsf{LHV}}(x',y) - C_{\mathsf{LHV}}(x',y') \leq 2$$

Quantum Mechanics [Cirelson (1980)]

$$S_{\text{QM}} := C_{\text{QM}}(x, y) + C_{\text{QM}}(x, y') + C_{\text{QM}}(x', y) - C_{\text{QM}}(x', y') \le 2\sqrt{2}$$

$$S_{PR} := C_{PR}(x, y) + C_{PR}(x, y') + C_{PR}(x', y) - C_{PR}(x', y') \le 4$$

[Sandu Popescu, Nature Physics 10, 264 (2014)]

The *experimental* (frequency) correlation function:

$$C_e(x,y) = \frac{N_{++} + N_{--} - N_{+-} - N_{-+}}{N_{++} + N_{--} + N_{+-} + N_{-+}}$$

Local hidden variables [Bell (1964) / Clauser, Horne, Shimony, Holt (1969)]

$$S_{\mathsf{LHV}} := C_{\mathsf{LHV}}(x,y) + C_{\mathsf{LHV}}(x,y') + C_{\mathsf{LHV}}(x',y) - C_{\mathsf{LHV}}(x',y') \leq 2$$

Quantum Mechanics [Cirelson (1980)]

$$S_{\text{QM}} := C_{\text{QM}}(x, y) + C_{\text{QM}}(x, y') + C_{\text{QM}}(x', y) - C_{\text{QM}}(x', y') \le 2\sqrt{2}$$

$$S_{PR} := C_{PR}(x, y) + C_{PR}(x, y') + C_{PR}(x', y) - C_{PR}(x', y') \le 4$$

[Sandu Popescu, Nature Physics 10, 264 (2014)]

The *experimental* (frequency) correlation function:

$$C_e(x,y) = \frac{N_{++} + N_{--} - N_{+-} - N_{-+}}{N_{++} + N_{--} + N_{+-} + N_{-+}}$$

Local hidden variables [Bell (1964) / Clauser, Horne, Shimony, Holt (1969)]

$$S_{\mathsf{LHV}} := C_{\mathsf{LHV}}(x,y) + C_{\mathsf{LHV}}(x,y') + C_{\mathsf{LHV}}(x',y) - C_{\mathsf{LHV}}(x',y') \leq 2$$

Quantum Mechanics [Cirelson (1980)]

$$S_{\mathsf{QM}} := C_{\mathsf{QM}}(x,y) + C_{\mathsf{QM}}(x,y') + C_{\mathsf{QM}}(x',y) - C_{\mathsf{QM}}(x',y') \le 2\sqrt{2}$$

$$S_{PR} := C_{PR}(x, y) + C_{PR}(x, y') + C_{PR}(x', y) - C_{PR}(x', y') \le 4$$

- We regard a chosen physical system as a Q-data box, which can be probed with quantum information.
- Quantum mechanics is valid outside the box, but not necessarily inside.

- The pure input state is **prepared**, $P: x \to \psi_{in}$.
- The *output state* is reconstructed via **quantum** tomography from the outcomes of projective measurements $M: \rho_{\text{out}} \to a$.
- p are classical parameters (e.g. scattering kinematics)

- We regard a chosen physical system as a Q-data box, which can be probed with quantum information.
- Quantum mechanics is valid *outside* the box, but not necessarily *inside*.

- The pure input state is prepared, $P: x \to \psi_{in}$.
- The *output state* is reconstructed via **quantum** tomography from the outcomes of projective measurements $M: \rho_{\text{out}} \to a$.
- p are classical parameters (e.g. scattering kinematics)

- We regard a chosen physical system as a Q-data box, which can be probed with quantum information.
- Quantum mechanics is valid outside the box, but not necessarily inside.

- [..... . ..,5. 10, 20 . (201.)]
- The pure input state is **prepared**, $P: x \to \psi_{in}$.
- The *output state* is reconstructed via **quantum** tomography from the outcomes of projective measurements $M: \rho_{\text{out}} \to a$.
- p are classical parameters (e.g. scattering kinematics)

- We regard a chosen physical system as a Q-data box, which can be probed with quantum information.
- Quantum mechanics is valid *outside* the box, but not necessarily *inside*.

[Nat. Phys. 10, 264 (2014)]

- The pure input state is **prepared**, $P: x \to \psi_{in}$.
- The *output state* is reconstructed via **quantum** tomography from the outcomes of projective measurements $M: \rho_{\text{out}} \to a$.
- p are classical parameters (e.g. scattering kinematics)

[J. Huwer et al., New J. Phys. 15, 025033 (2013)]

- We regard a chosen physical system as a Q-data box, which can be probed with quantum information.
- Quantum mechanics is valid *outside* the box, but not necessarily *inside*.

[Nat. Phys. 10, 264 (2014)]

- The pure input state is **prepared**, $P: x \to \psi_{in}$.
- The *output state* is reconstructed via **quantum** tomography from the outcomes of projective measurements $M: \rho_{\text{out}} \to a$.
- p are classical parameters (e.g. scattering kinematics)

[J. Huwer et al., New J. Phys. 15, 025033 (2013)]

- Suppose that we have two available inputs ψ^1, ψ^2 .
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate:

$$P_{\mathsf{succ}}(\psi^1, \psi^2) := \frac{1}{2} \sum_{i=1}^2 P(a = i \,|\, \psi^i),$$

$$P_{\mathrm{succ}} \leq P_{\mathrm{succ}}^{\mathrm{QM}} := \frac{1}{2} \left(1 + \sqrt{1 - |\langle \psi_1 | \psi_2 \rangle|^2}
ight)$$

- If $P_{\rm succ}(\rho_{\rm out}^1,\rho_{\rm out}^2)>P_{\rm succ}(\psi^1,\psi^2)$ then the Q-data box is **not** quantum.
- Violation of the Helstrom bound occurs in non-linear modifications of QM.

- \bullet Suppose that we have two available inputs $\psi^1,\psi^2.$
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate:

$$P_{\mathsf{succ}}(\psi^1, \psi^2) := \frac{1}{2} \sum_{i=1}^2 P(a = i \,|\, \psi^i),$$

ullet In quantum theory $P_{
m succ}$ cannot exceed the **Helstrom bound**

$$P_{\mathsf{succ}} \leq P_{\mathsf{succ}}^{\mathsf{QM}} := \frac{1}{2} \left(1 + \sqrt{1 - |\langle \psi_1 | \psi_2 \rangle|^2} \right)$$

- If $P_{\rm succ}(\rho_{\rm out}^1,\rho_{\rm out}^2)>P_{\rm succ}(\psi^1,\psi^2)$ then the Q-data box is **not** quantum.
- Violation of the Helstrom bound occurs in non-linear modifications of QM.

5/8

- \bullet Suppose that we have two available inputs $\psi^1,\psi^2.$
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate:

$$P_{\rm succ}(\psi^1,\psi^2) := \tfrac{1}{2} \sum_{i=1}^2 P(a=i \,|\, \psi^i),$$

$$P_{\mathsf{succ}} \leq P_{\mathsf{succ}}^{\mathsf{QM}} := \frac{1}{2} \left(1 + \sqrt{1 - |\langle \psi_1 | \psi_2 \rangle|^2}
ight)$$

- If $P_{\rm succ}(\rho_{\rm out}^1,\rho_{\rm out}^2)>P_{\rm succ}(\psi^1,\psi^2)$ then the Q-data box is **not** quantum.
- Violation of the Helstrom bound occurs in non-linear modifications of QM.

- Suppose that we have two available inputs $\psi^1, \psi^2.$
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate:

$$P_{\text{succ}}(\psi^1, \psi^2) := \frac{1}{2} \sum_{i=1}^2 P(a = i \,|\, \psi^i),$$

ullet In quantum theory $P_{
m succ}$ cannot exceed the **Helstrom bound**

$$P_{\mathsf{succ}} \leq P_{\mathsf{succ}}^{\mathsf{QM}} := \frac{1}{2} \left(1 + \sqrt{1 - |\langle \psi_1 | \psi_2 \rangle|^2} \right)$$

- If $P_{\text{succ}}(\rho_{\text{out}}^1, \rho_{\text{out}}^2) > P_{\text{succ}}(\psi^1, \psi^2)$ then the Q-data box is **not** quantum.
- Violation of the Helstrom bound occurs in non-linear modifications of QM.

5/8

- Suppose that we have two available inputs ψ^1, ψ^2 .
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate:

$$P_{\text{succ}}(\psi^1, \psi^2) := \frac{1}{2} \sum_{i=1}^2 P(a = i \,|\, \psi^i),$$

$$P_{\mathrm{succ}} \leq P_{\mathrm{succ}}^{\mathrm{QM}} := \tfrac{1}{2} \left(1 + \sqrt{1 - |\left\langle \psi_1 | \psi_2 \right\rangle|^2} \right)$$

- If $P_{\text{succ}}(\rho_{\text{out}}^1, \rho_{\text{out}}^2) > P_{\text{succ}}(\psi^1, \psi^2)$ then the Q-data box is **not** quantum.
- Violation of the Helstrom bound occurs in non-linear modifications of QM.

- Suppose that we have two available inputs ψ^1, ψ^2 .
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate:

$$P_{\text{succ}}(\psi^1, \psi^2) := \frac{1}{2} \sum_{i=1}^2 P(a = i \,|\, \psi^i),$$

$$P_{\mathrm{succ}} \leq P_{\mathrm{succ}}^{\mathrm{QM}} \coloneqq \tfrac{1}{2} \left(1 + \sqrt{1 - |\left\langle \psi_1 | \psi_2 \right\rangle|^2} \right)$$

- If $P_{\rm succ}(\rho_{\rm out}^1,\rho_{\rm out}^2)>P_{\rm succ}(\psi^1,\psi^2)$ then the Q-data box is **not** quantum.
- Violation of the Helstrom bound occurs in non-linear modifications of QM.

- Suppose that we have two available inputs ψ^1, ψ^2 .
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate:

$$P_{\text{succ}}(\psi^1, \psi^2) := \frac{1}{2} \sum_{i=1}^2 P(a = i \,|\, \psi^i),$$

$$P_{\mathrm{succ}} \leq P_{\mathrm{succ}}^{\mathrm{QM}} := \tfrac{1}{2} \left(1 + \sqrt{1 - |\left\langle \psi_1 | \psi_2 \right\rangle|^2} \right)$$

- If $P_{
 m succ}(
 ho_{
 m out}^1,
 ho_{
 m out}^2)>P_{
 m succ}(\psi^1,\psi^2)$ then the Q-data box is **not** quantum.
- Violation of the Helstrom bound occurs in non-linear modifications of QM.

- The framework of Q-data boxes is universal and theory-independent.
- It can be applied in any physical context gravity, particle physics . . .
- In particular, one can regard nucleons as Q-data boxes.

- ① QCD (and QFT in general) perfectly describes all available data
- 2 High energy experiments involve many particles and high temperatures

- The framework of Q-data boxes is universal and theory-independent.
- It can be applied in any physical context gravity, particle physics . . .
- In particular, one can regard nucleons as Q-data boxes.

- QCD (and QFT in general) perfectly describes all available data
- 2 High energy experiments involve many particles and high temperatures

- The framework of Q-data boxes is *universal* and theory-independent.
- It can be applied in any physical context gravity, particle physics . . .
- In particular, one can regard **nucleons as Q-data boxes**.

- QCD (and QFT in general) perfectly describes all available data
- 2 High energy experiments involve many particles and high temperatures

- The framework of Q-data boxes is universal and theory-independent.
- It can be applied in any physical context gravity, particle physics . . .
- In particular, one can regard **nucleons as Q-data boxes**.

- ① QCD (and QFT in general) perfectly describes all available data
- 2 High energy experiments involve many particles and high temperatures

- The framework of Q-data boxes is universal and theory-independent.
- It can be applied in any physical context gravity, particle physics . . .
- In particular, one can regard **nucleons as Q-data boxes**.

- QCD (and QFT in general) perfectly describes all available data
- 2 High energy experiments involve many particles and high temperatures

- The framework of Q-data boxes is *universal* and theory-independent.
- It can be applied in any physical context gravity, particle physics . . .
- In particular, one can regard **nucleons as Q-data boxes**.

- QCD (and QFT in general) perfectly describes all available data
- 2 High energy experiments involve many particles and high temperatures

Main idea:

- ① Prepare a 'quantum-programmed' particle carrying $\psi_{\rm in}$, e.g. electron's spin or photon's polarization.
- Scatter it on a nucleonic target.
- Perform projective measurements on the outgoing projectiles.
- 4 Reconstruct the output state ρ_{out} .

- Need to prepare the quantum state of GeV particles --- polarized beams
- Abundance of projectiles in high-energy collisions --- elastic scattering
- Need to measure spin/polarization of individual projectiles → ???

Main idea:

- ① Prepare a 'quantum-programmed' particle carrying $\psi_{\rm in}$, e.g. electron's spin or photon's polarization.
- 2 Scatter it on a nucleonic target.
- Perform projective measurements on the outgoing projectiles.
- 4 Reconstruct the output state ρ_{out} .

- Need to prepare the quantum state of GeV particles --- polarized beams
- Abundance of projectiles in high-energy collisions \leadsto elastic scattering
- Need to measure spin/polarization of individual projectiles → ???

Main idea:

- ① Prepare a 'quantum-programmed' particle carrying $\psi_{\rm in}$, e.g. electron's spin or photon's polarization.
- Scatter it on a nucleonic target.
- Perform projective measurements on the outgoing projectiles.
- **1** Reconstruct the output state ρ_{out} .

- Need to prepare the quantum state of GeV particles --> polarized beams
- Abundance of projectiles in high-energy collisions --- elastic scattering
- Need to measure spin/polarization of individual projectiles → ???

Main idea:

- Prepare a 'quantum-programmed' particle carrying $\psi_{\rm in}$, e.g. electron's spin or photon's polarization.
- 2 Scatter it on a nucleonic target.
- Perform projective measurements on the outgoing projectiles.
- 4 Reconstruct the output state ρ_{out} .

ψ_{in} $\phi_{\mathrm{out}}^{p_1}$

- Need to prepare the quantum state of GeV particles --> polarized beams
- Abundance of projectiles in high-energy collisions --- elastic scattering
- Need to measure spin/polarization of individual projectiles → ???

Main idea:

- Prepare a 'quantum-programmed' particle carrying $\psi_{\rm in}$, e.g. electron's spin or photon's polarization.
- 2 Scatter it on a nucleonic target.
- Perform projective measurements on the outgoing projectiles.
- **4** Reconstruct the output state ρ_{out} .

- Need to prepare the quantum state of GeV particles --- polarized beams
- Abundance of projectiles in high-energy collisions → elastic scattering
- Need to measure spin/polarization of individual projectiles → ???

Main idea:

- Prepare a 'quantum-programmed' particle carrying $\psi_{\rm in}$, e.g. electron's spin or photon's polarization.
- 2 Scatter it on a nucleonic target.
- Perform projective measurements on the outgoing projectiles.
- **4** Reconstruct the output state ρ_{out} .

- Need to prepare the quantum state of GeV particles --> polarized beams
- Abundance of projectiles in high-energy collisions --- elastic scattering
- Need to measure spin/polarization of individual projectiles → ???

Main idea:

- Prepare a 'quantum-programmed' particle carrying $\psi_{\rm in}$, e.g. electron's spin or photon's polarization.
- 2 Scatter it on a nucleonic target.
- Perform projective measurements on the outgoing projectiles.
- **4** Reconstruct the output state ρ_{out} .

- Need to prepare the quantum state of GeV particles → polarized beams
- Abundance of projectiles in high-energy collisions --- elastic scattering
- Need to measure spin/polarization of individual projectiles → ???

Main idea:

- ① Prepare a 'quantum-programmed' particle carrying $\psi_{\rm in}$, e.g. electron's spin or photon's polarization.
- 2 Scatter it on a nucleonic target.
- Perform projective measurements on the outgoing projectiles.
- **4** Reconstruct the output state ρ_{out} .

- Need to prepare the quantum state of GeV particles → polarized beams
- Abundance of projectiles in high-energy collisions → elastic scattering
- Need to measure spin/polarization of individual projectiles → ???

Main idea:

- ① Prepare a 'quantum-programmed' particle carrying $\psi_{\rm in}$, e.g. electron's spin or photon's polarization.
- 2 Scatter it on a nucleonic target.
- Perform projective measurements on the outgoing projectiles.
- **9** Reconstruct the output state ρ_{out} .

- Need to prepare the quantum state of GeV particles → polarized beams
- Abundance of projectiles in high-energy collisions --- elastic scattering
- Need to measure spin/polarization of individual projectiles --> ???

Main idea:

- ① Prepare a 'quantum-programmed' particle carrying $\psi_{\rm in}$, e.g. electron's spin or photon's polarization.
- 2 Scatter it on a nucleonic target.
- Perform projective measurements on the outgoing projectiles.
- **4** Reconstruct the output state ρ_{out} .

- Need to prepare the quantum state of GeV particles → polarized beams
- Abundance of projectiles in high-energy collisions → elastic scattering
- Need to measure spin/polarization of individual projectiles → ???

Main idea:

- ① Prepare a 'quantum-programmed' particle carrying $\psi_{\rm in}$, e.g. electron's spin or photon's polarization.
- 2 Scatter it on a nucleonic target.
- Perform projective measurements on the outgoing projectiles.
- **4** Reconstruct the output state ρ_{out} .

- Need to prepare the quantum state of GeV particles → polarized beams
- Abundance of projectiles in high-energy collisions → elastic scattering
- Need to measure spin/polarization of individual projectiles → ???

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

- Quantum mechanics can be probed from an 'outside' perspective.
- Implementation in accelerator experiments is a win-win scenario:
 - New foundational tests of quantum theory (linearity, correlations, CPTP, . . .).
 - Quantum information processing at unprecedented scales

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

- Quantum mechanics can be probed from an 'outside' perspective.
- Implementation in accelerator experiments is a win-win scenario:
 - New foundational tests of quantum theory (linearity, correlations, CPTP, . . .).
 - Quantum information processing at unprecedented scales!

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

- Quantum mechanics can be probed from an 'outside' perspective.
- Implementation in accelerator experiments is a win-win scenario:
 - New foundational tests of quantum theory (linearity, correlations, CPTP, . . .).
 - Quantum information processing at unprecedented scales!

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

- Quantum mechanics can be probed from an 'outside' perspective.
- Implementation in accelerator experiments is a win-win scenario:
 - New foundational tests of quantum theory (linearity, correlations, CPTP, . . .).
 - Quantum information processing at unprecedented scales!

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

- Quantum mechanics can be probed from an 'outside' perspective.
- Implementation in accelerator experiments is a win-win scenario:
 - New foundational tests of quantum theory (linearity, correlations, CPTP, . . .).
 - Quantum information processing at unprecedented scales!

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

- Quantum mechanics can be probed from an 'outside' perspective.
- Implementation in accelerator experiments is a win-win scenario:
 - New foundational tests of quantum theory (linearity, correlations, CPTP, ...).
 - Quantum information processing at unprecedented scales!

