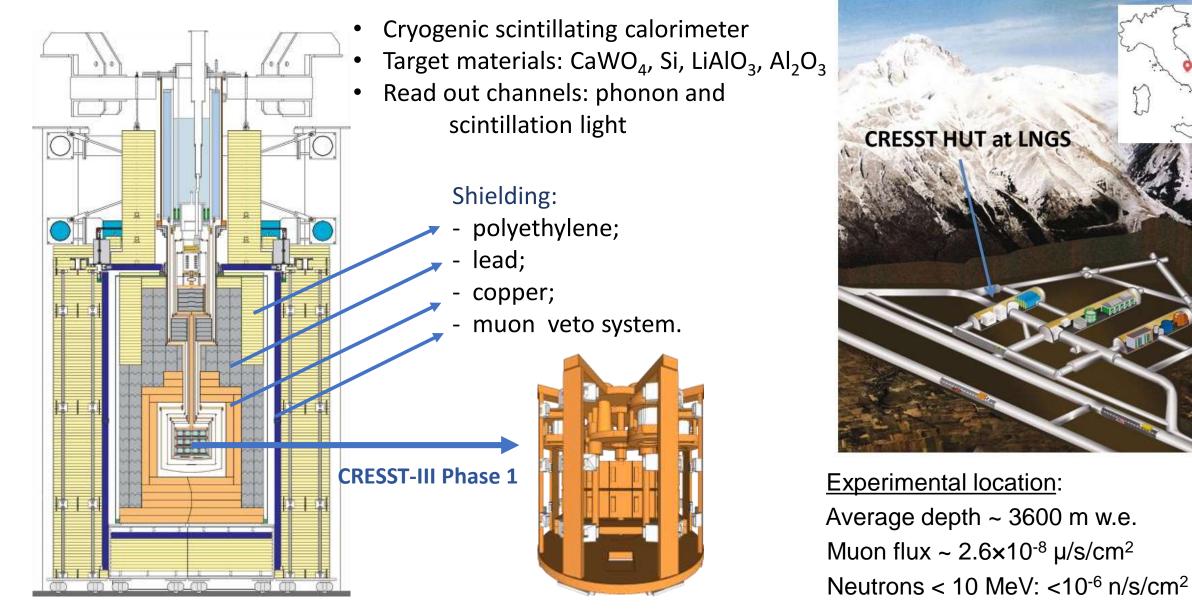
CRESST – direct dark matter experiment

COMENIUS UNIVERSITY BRATISLAVA

HEPHY

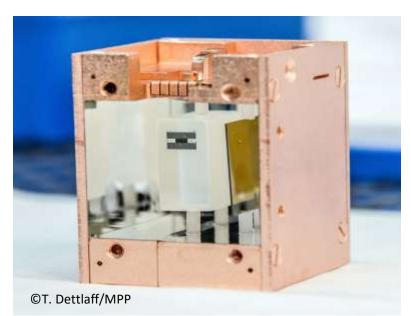
INSTITUT FÜR HOCHENERGIEPHYSIK



Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Valentyna Mokina for the CRESST collaboration HEPHY OEAW

CRESST is located at LNGS (Laboratori Nazionali del Gran Sasso) in Italy



The CRESST experiment

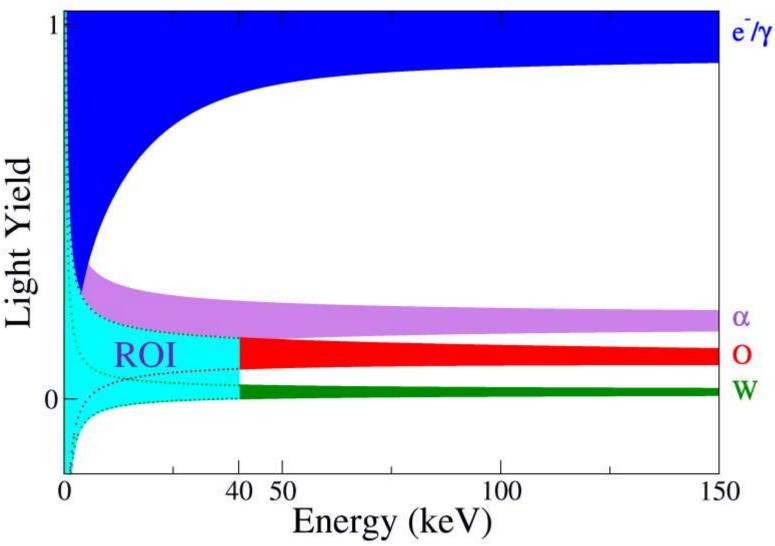
target material: CaWO₄ single crystals

Direct detection of dark matter particles via their scattering off target nuclei

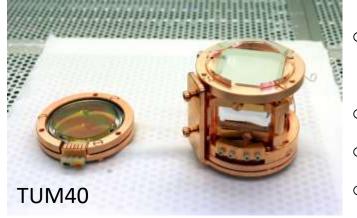
particle interaction
heat (phonon) signal read-out with thermometer
light signal read-out with light detector
reflective and scintillating housing heat bath

heat bath

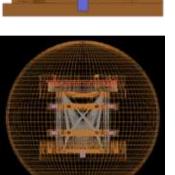
Target crystals operated as cryogenic calorimeters (~15mK)

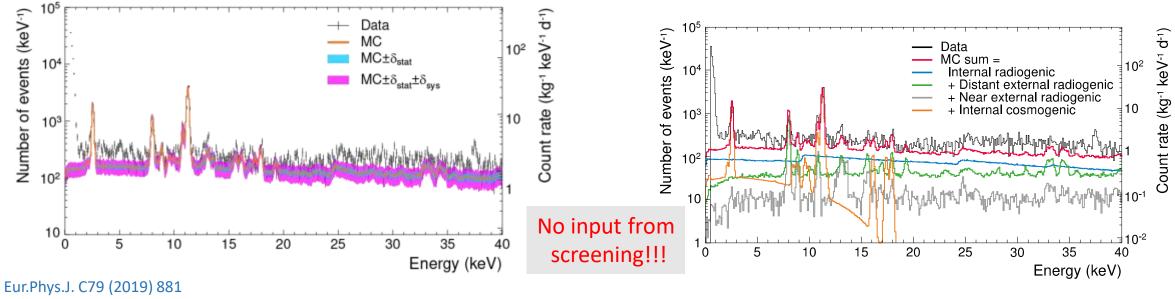

Event discrimination

Light Yield= <u>Light signal</u> Phonon signal

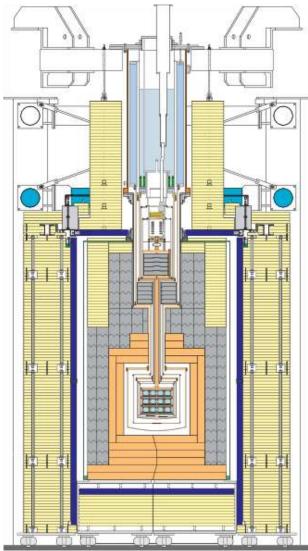

Characteristic of the event type

Excellent discrimination between potential signal events (nuclear recoils) and dominant radioactive background (electron recoils)


ROI: region of interest for dark matter search


One module background simulation

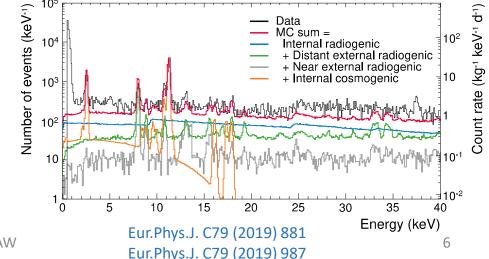
- Geant4 based electromagnetic background model for the CRESST experiment;
- Study of cosmogenic activation of CaWO₄ crystal scintillator;
- Simplified geometry reproduced already up to 68% background in ROI;
- Foundation for more detailed models of the actual CRESST detector modules.



Up to 68±16% of background can be reproduced with simulations

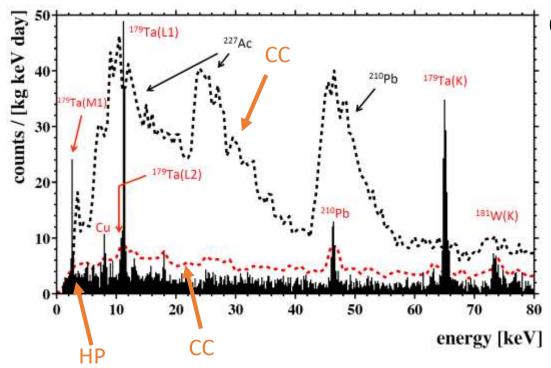
Eur.Phys.J. C79 (2019) 987

Screening campaign


Materials:

- copper -> HPGe O ICP-MS O bulk ²¹⁰Po O NAA O
- crystals (CaWO₄) -> bolometric meas.
- reflective foil -> ICP-MS
- bronze clams -> ICP-MS
- polyethylene -> HPGe 🕗 ICP-MS
- lead -> ICP-MS
- connectors -> HPGe
- brass -> ICP-MS
- pins -> ICP-MS 🕑

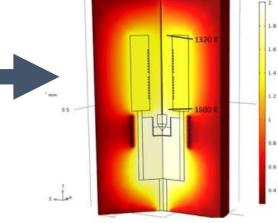
Simulation


CRESST-III detector

CRESST set-up

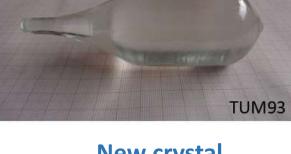
High-purity scintillating CaWO₄ crystals

Commercial crystals (CC) home production (HP)


A factor of 2-10 decrease in the background

Radiochemical Purification of CaCO₃

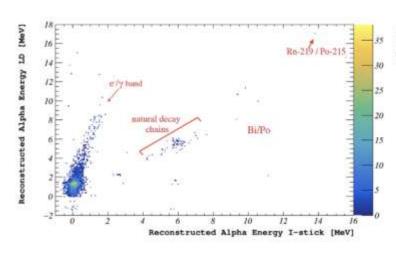
- 1. Transform CaCO₃ powder into aqueous solution of Ca(NO₃)₂
- 2. Mix solution with an extractor (TOPO) dissolved in n-Dodecan
- \rightarrow Impurities move from the Ca(NO₃)₂ solution to the extractor solution
- 3. Extraction of Ca(NO₃)₂ solution
- 4. Remove precipitated CaWO₄
- 5. Washing with alkaline solution and water


High-purity scintillating CaWO₄ crystals

CaWO₄ powder

1.5 kg of purified CaWO₄ powder produced via co-precipitation using (NH₄)₂WO₄ solution (NEW!)

temperature gradients during the growth to study the reduction of internal stresses



New crystal New level of radiopurity

oxygen atmosphere at 1400°C for 20 h

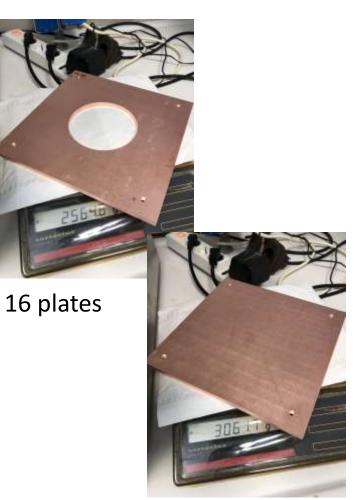
	Activity, (mBq/kg)
Total alpha activity	0.535 ± 0.055
¹⁴⁷ Sm and ¹⁸⁰ W	0.046 ± 0.016
Single alpha lines	0.454 ± 0.051
Bi-Po cascades	0.029 ± 0.013
²¹⁹ Rn - ²¹⁵ Po decay	0.006 (1 event)
Total alpha activity nat.	0.489 ± 0.053
decay chains	

Total α activity (3.08±0.04) mBq/kg for TUM40 [1] and for TUM93 [2] crystal is (0.489±0.05) mBq/kg.

Increase by a factor of 6.3±0.7

Valentyna Mokina - HEPHY OEAW

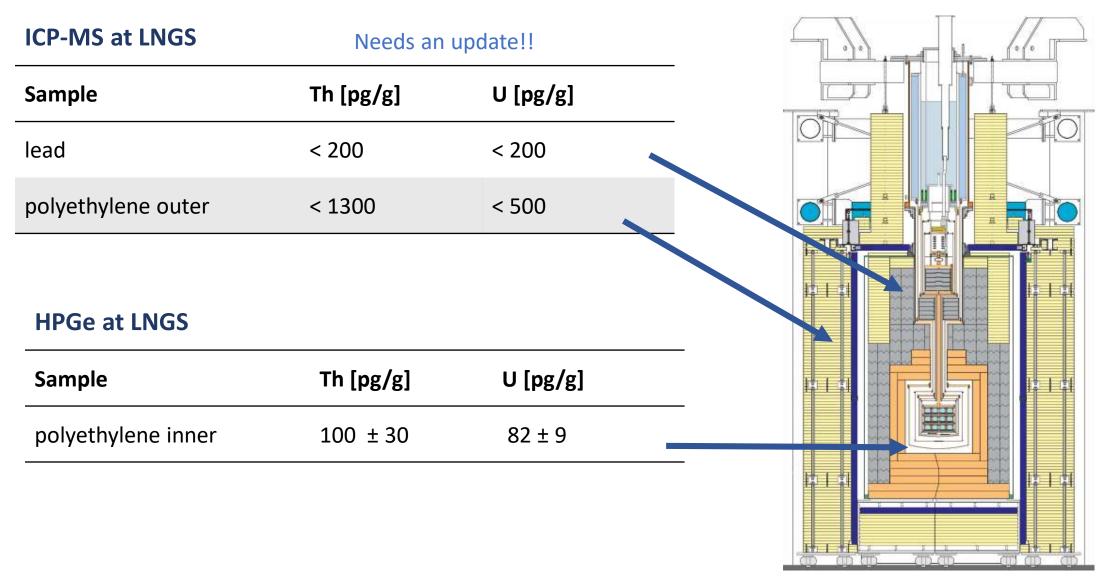
[1] R. Strauss et al., JCAP 2015 06, 030 (2015)
[2] A. Kinast et al., J LTPhys. (2022) <u>10.1007/s10909-022-02743-7</u>


Screening campaign

Sample	Th [pg/g]	U [pg/g]
1. brass screw	70 ± 21	14 ± 4
2. superconducting cable with copper matrix	77 ± 23	84 ± 25
3. bronze clamp	162 ± 49	690 ± 207
4. pins	20 000 ± 6 000	176 000 ± 53 000
5. copper circuit	734 ± 220	283 ± 85

ICP-MS at LNGS

		²³² Th	²³⁵ U	23811 [
	Sample	[µBq/kg]	[µBq/kg]	²³⁸ U [µBq/kg]	
	Copper *	< 2	< 0.43	< 6.2	
	Copper CUORE	< 2	< 0.46	< 65	
* m	nore sensi	tive result			



18 plates

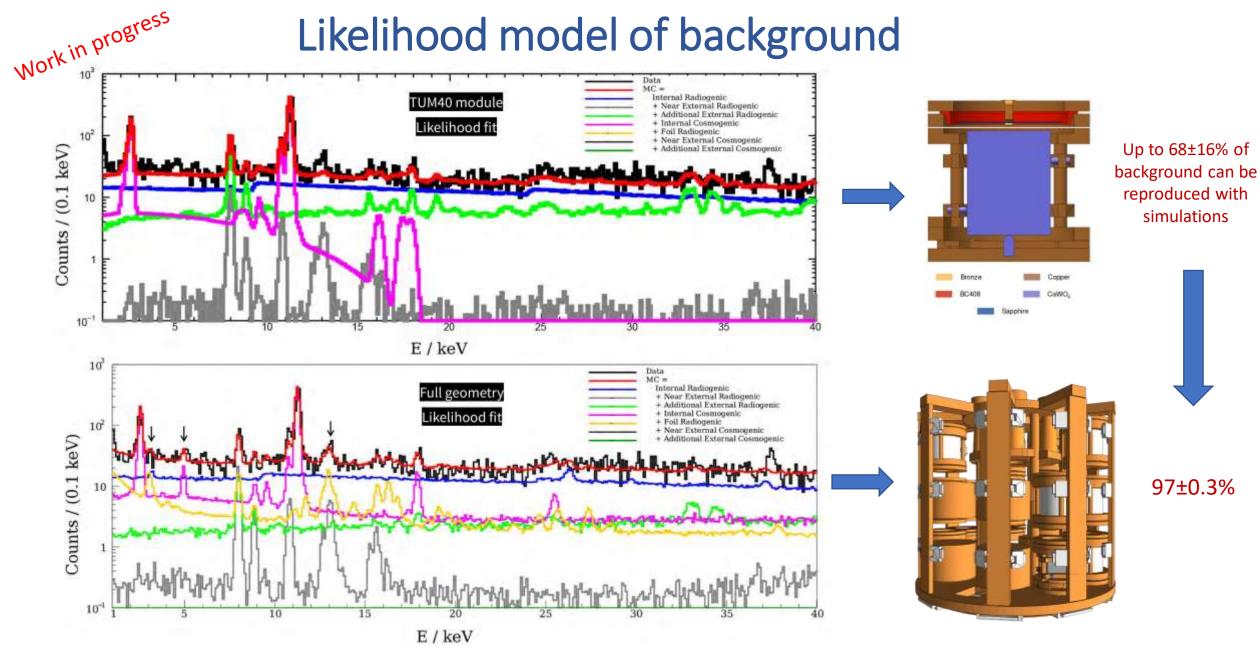
Chain	Nuclide	Activity, (mBq/kg)
³² Th	²²⁸ Ra	<0.024
	²²⁸ Th	<0.021
³⁵ U		<0.05
³⁸ U	²³⁴ Th	<3.5
	^{234m} Pa	<0.76
	²²⁶ Ra	<0.02
	⁴⁰ K	<0.19
	¹³⁷ Cs	<0.0056
	⁴⁶ Sc(83.8d)	0.029 ± 0.006
	⁴⁸ V(15.97d)	<0.04
	⁵⁴ Mn(312d)	0.051 ± 0.009
	⁵⁹ Fe(44.5d)	0.042 ± 0.011
	⁵⁶ Co(77.2d)	0.054 ± 0.008
	⁵⁷ Co(272d)	< 0.14
	⁵⁸ Co(70.9d)	0.5 ± 0.05
	⁶⁰ Co(5.28y)	0.046 ± 0.006

HPGe at LNGS

ICP-MS and HPGE measurements of shielding materials

From one module to full setup simulation

DAWN visualization of the Carousel with detectors as implemented in Geant4


CRESST-II phase 1 730kg result Eur.Phys.J. 272(2012)1971	CRESST-II phase 2 TUM40, Lise Eur.Phys.J. C74(2014)3184, C76(2016)25	CRESST-III phase 1 Detector A Phys.Rev. D100(2019)102002	CRESST-III phase 1 Run 2

- Adaption of the e.m. background model to the actual CRESST detector modules;
- Contamination levels from material assays conducted within;
- Simulation of neutron background;

CRESST set-up

- Study of cosmogenic activation of CaWO₄ crystal scintillator;
- Surface contaminations studies.

Simulating a homogeneous contamination in all parts made of Cu inside the Carousel.

Publication in preparation

Conclusions

- CRESST operates a new generation of TUM-grown crystals with improved radiopurity due to chemical purification of their raw materials;
- The screening campaign is ongoing to understand the activity concentration of different isotopes in materials used in the experiment;
- The results of these studies are used as an input for simulation of the background of the CRESST experiment (development of sub-keV Monte Carlo model).
- Likelihood model of the background is developed and allows to reproduce up to 97%.

Waiting for dark matter

