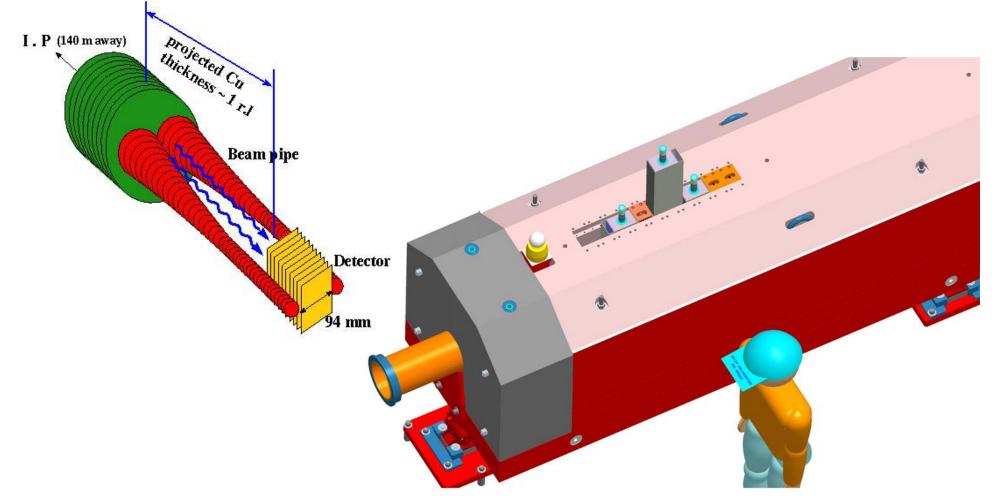
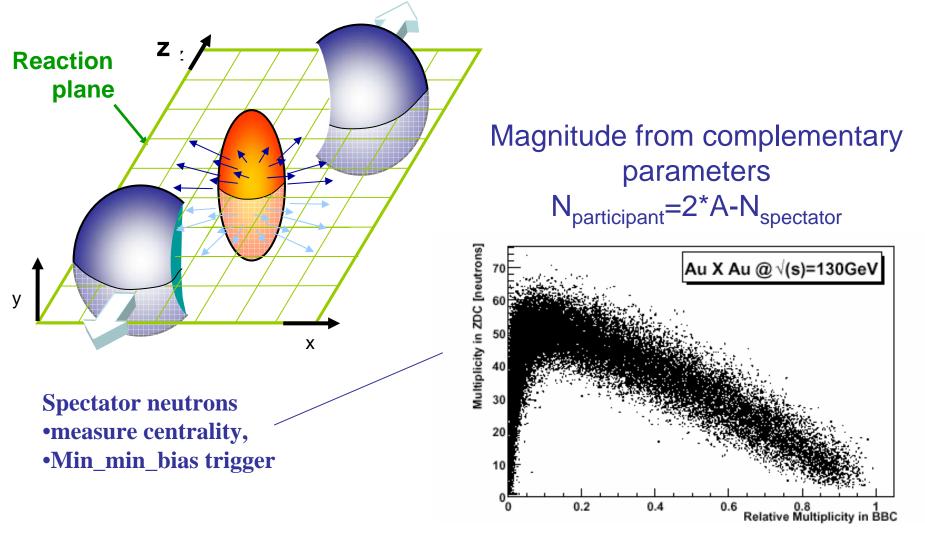
Zero Degree Calorimeters for ATLAS

ZDC Physics Installation scenario ZDC design ATLAS TDAQ integration ZDC performance (simulation, rad damage, testbeam) Planning

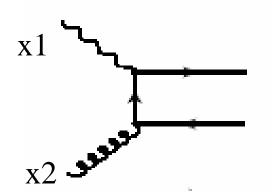


Sebastian White, Brookhaven Lab


LHCC – January 2007

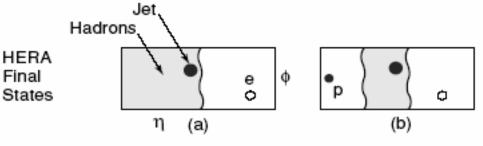
ZDC in ATLAS

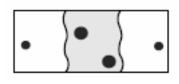
A Zero Degree Calorimeter (ZDC) is a calorimeter that resides at the junction where the two beam pipes of the LHC become one – at 0° from the pp collisions. It is housed in the shielding unit that protects the S.C magnets from radiation, and measures neutral particle production at 0°. It can play many roles.

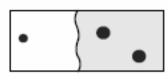


Event characterization using forward detectors >>Direction and magnitude of impact parameter, b

Beam-Beam Counter Mult/1000

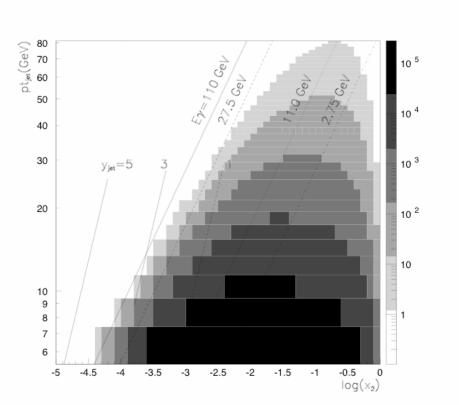

<u>Probing small x structure in the Nucleus with γN->jets,</u> <u>in Ultraperipheral Collisions(UPC)</u>


di-jet photoproduction-> parton distributions,x2 by γ with momentum fraction, x1 $4p_t^2/s=x1*x2$ $<y>\sim -1/2*ln(x1/x2)$


Signature: rapidity gap in γ direction(FCAL veto)

ATLAS coverage to $|\eta| < 5$ units. P_t ~2 Gev "rapidity gap" threshold

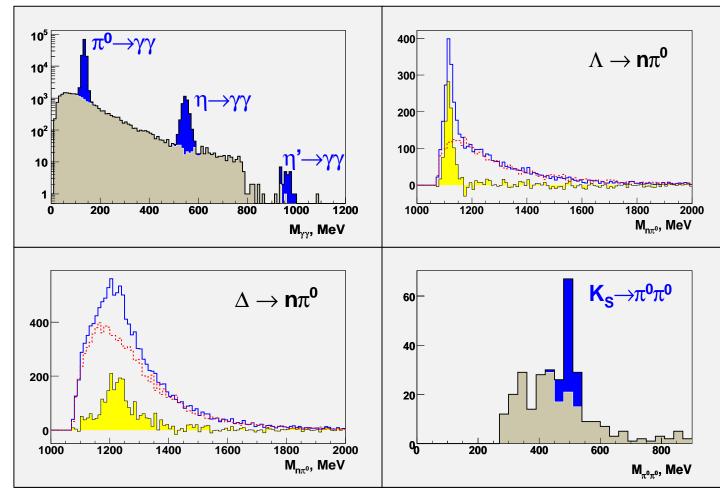
Analogous upc interactions and gap structure



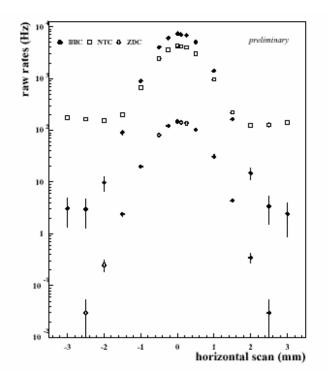
diffractive Non-diffractive

Rates and Kinematics

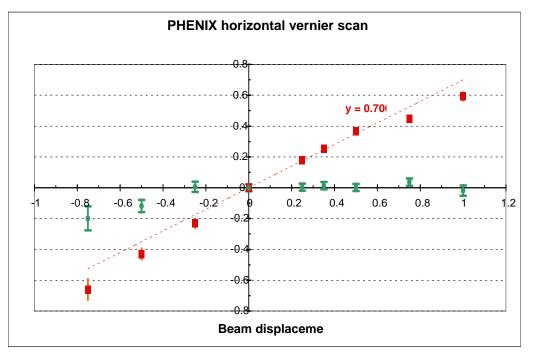
Event yields from a 1 month HI (Pb-Pb) run at nominal Luminosity (4 10^{26} cm⁻²s⁻¹). Counts per bin of $\delta pt=2$ GeV $\delta x2/x2=+/-0.25$


(with M. Strikman and R. Vogt)

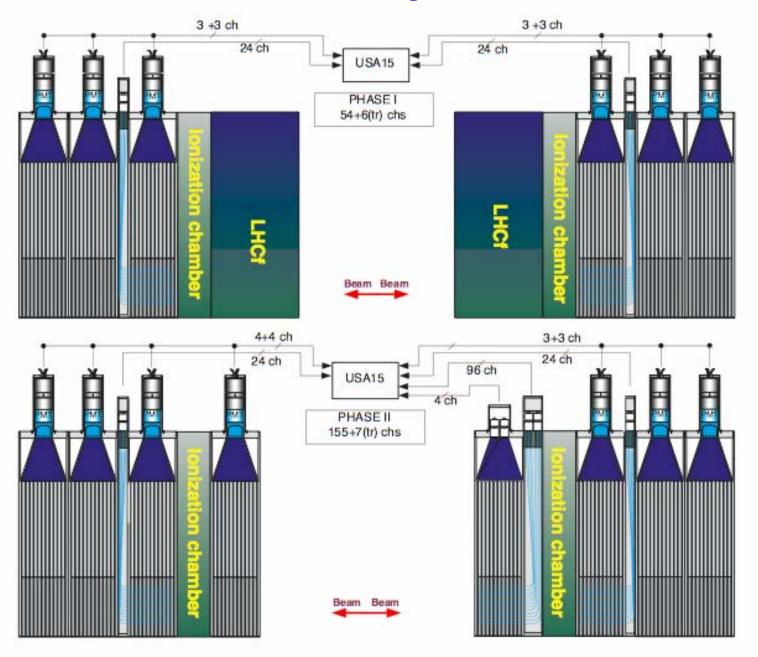
ZDC in pp(Phase II configuration)


In pp, the ZDC can measure forward production cross sections for several types of particles at very high energies. This will be useful for adjusting parameters for simulations and models, and for cosmic ray physics where the energy in one proton's rest frame is $10^{17} \text{ eV} - \text{a}$ very interesting energy for extended air showers.

What happens when a high energy proton hits the upper atmosphere?


The ZDC can find a pi0 in the midst of several neutrons.

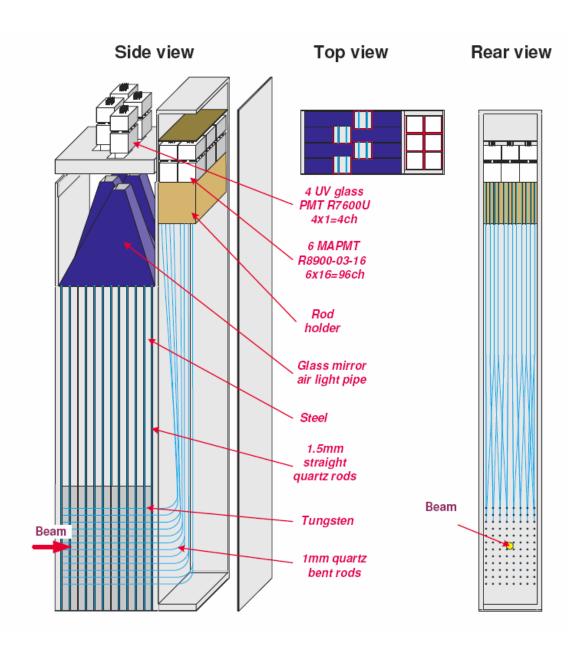
(1M Pythia events analyzed by a ZDC)


RHIC ZDC as an accelerator tool (in pp)

Van derMeer scan (ZDC coincidence rate vs. relative beam position)
ZDC (lower curve) bkg free over 4 orders of magnitude

•ZDC also measures beam displacement (red points) •Useful for crossing angle commissioning

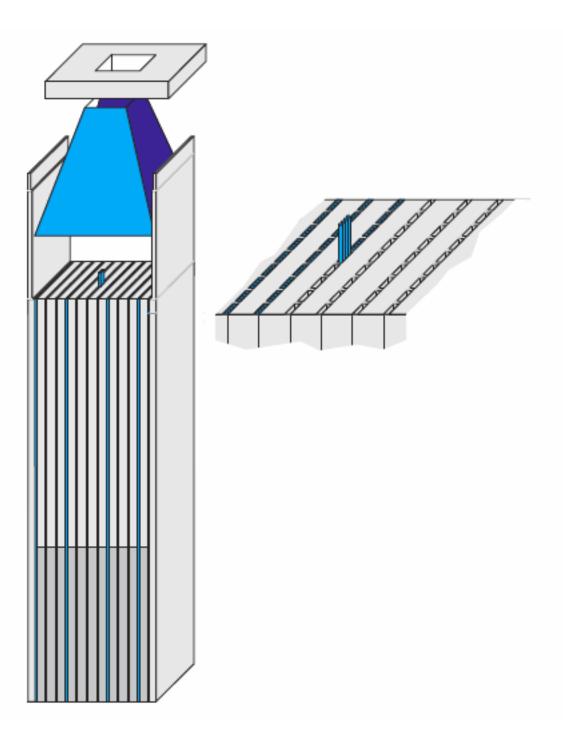
ZDC scenarios and cabling



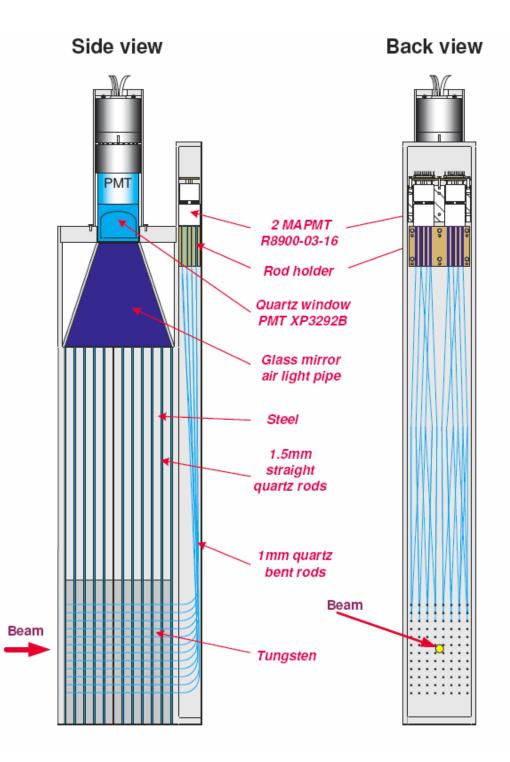
EMCal Module design (1 module only)

Light collected from Strips of 1.5 mm quartz Transverse to beam (main energy and timing)

And 1 mm quartz rods Projective to beam


Latter measure coordinate Of showers.

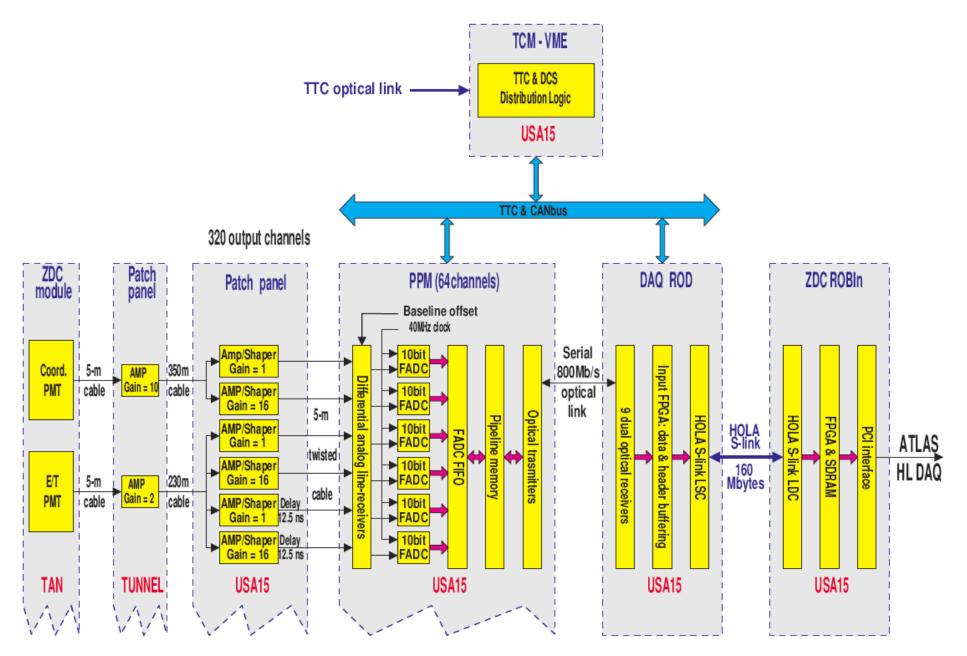
Strip detail and air Lightguide


648 1.5 mm diameter rods

Provides main energy and Timing measurement

Hadronic module with Coordinate readout (1 module per arm)

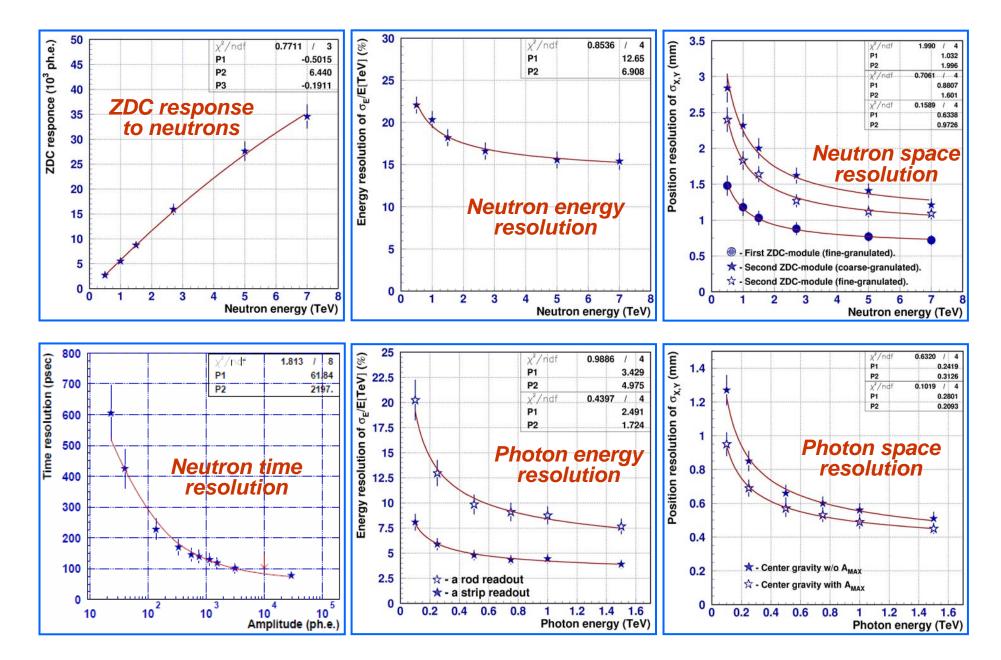
Rods are grouped into 4 per readout pixel


Inserting coord readout fibers

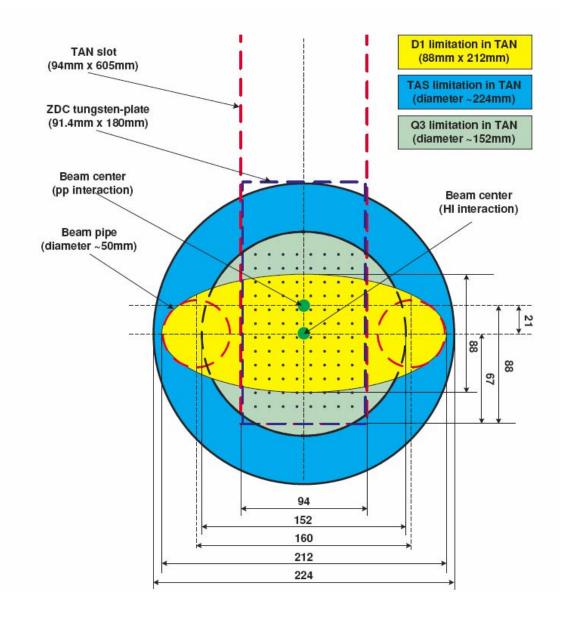
Summary of ZDC module parameters

	Hadronic	Electromagnetic
Number of modules	3 on each arm	1 on each arm
x-y sensing modules	1 on each arm	1 on 1 arm
Energy measuring tubes	3 on each arm	4 on 1 arm, 1 on 1 arm
Tube type	MAPMT: R8900-03-16	Same
	Single channel: XP3292B	Single channel: R7600U
Tot. Int. depth	4.6 λ_{int} on each arm	29X ₀
	(with EM module)	
Module size (mm)	93.8 wide, 738 high, 150 deep	Same
Tungsten plate size (mm)	91.4 wide, 180 high, 10 deep	Same
11 plates/module		
Module weight (kg)	80	Same
Number of strip (1.5 mm) rods	648	Same
Number of pixel (1 mm) rods	96	Same
Number of pixel readout		
channels	24 (in each arm)	96 (one arm only)

BLOCK-DIAGRAM OF ZDC ROS

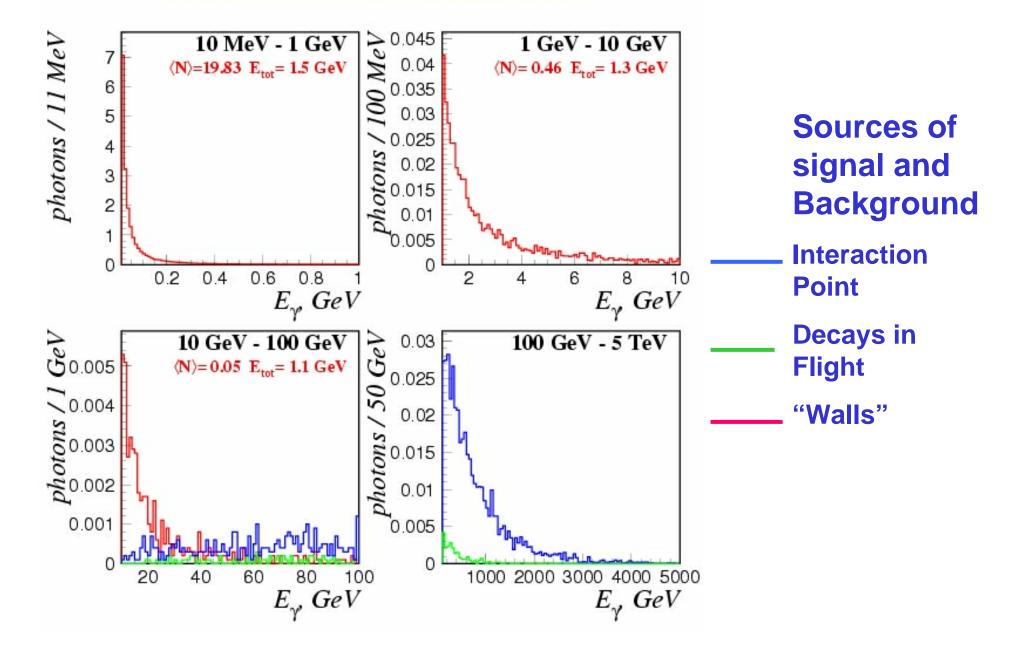

L1 Calo boards

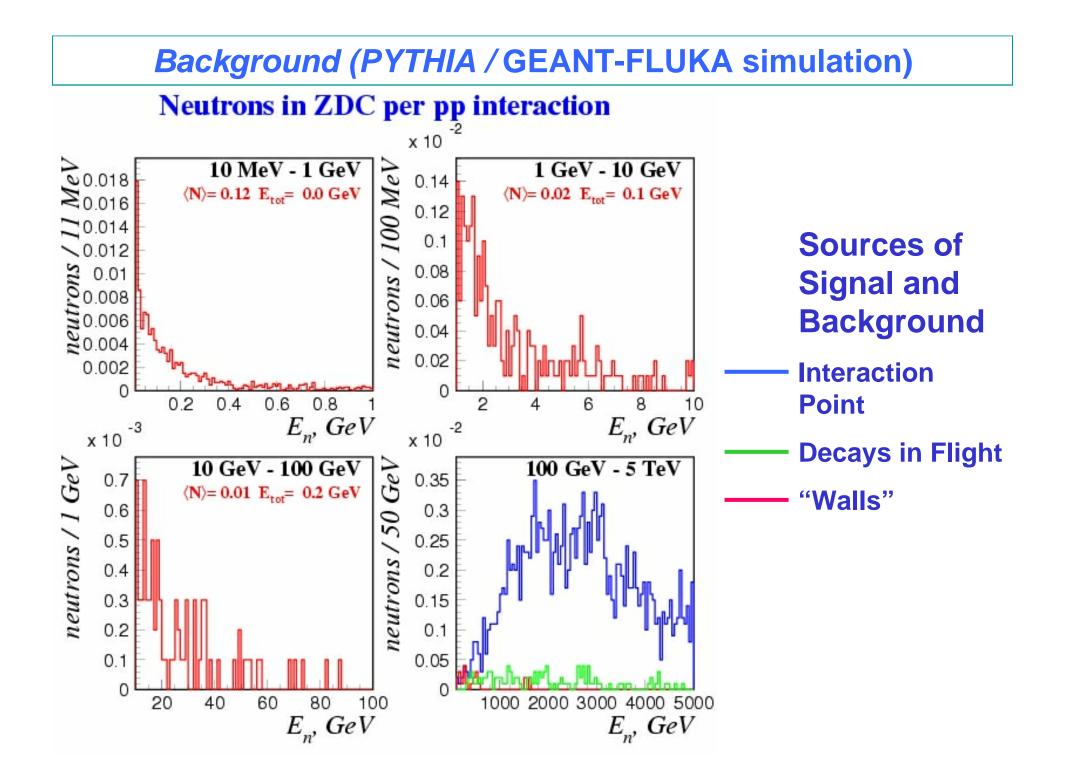
- We require 5 PreProcessor modules
- Current production is for 180 modules of which 120 modules needed for L1calo system (KarlHeinz Meier, Heidelberg)
- Project would be charged for cost of materials (~10k euro/module)
- 1 ROD sufficient


ZDC L1 trigger

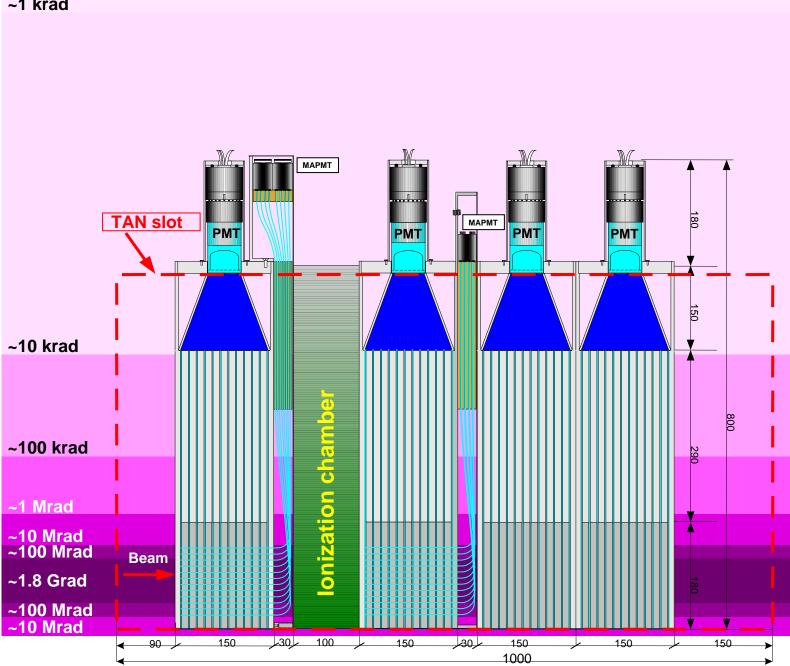
- The ZDC trigger will be used primarily as a 2-arm coincidence (each arm above a preset threshold) in Heavy ion runs
- Trigger bits assigned in Central trigger Processor board ctp_cal
- Ctp_cal is designed to accept calib triggers as well as trigger from small systems like the ZDC

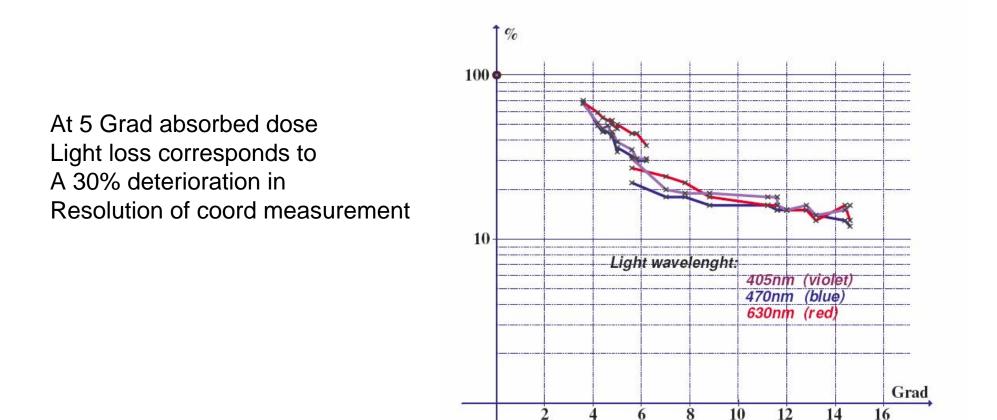
ZDC time, space and energy resolution (Average over active area)




Aperture limitations from upstream components of the machine

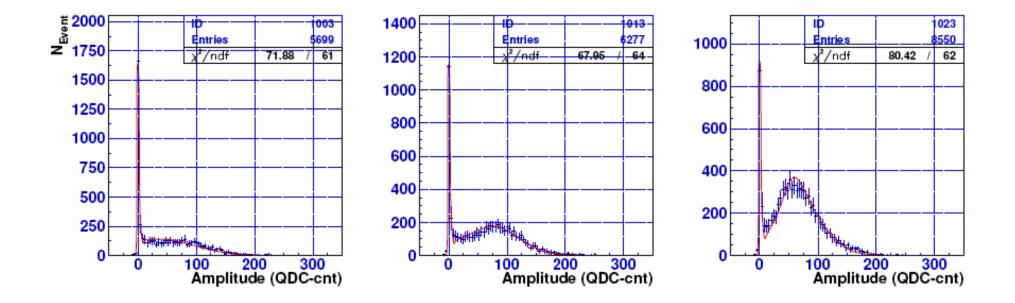
Background (PYTHIA / GEANT-FLUKA simulation)


Photons in ZDC per pp interaction

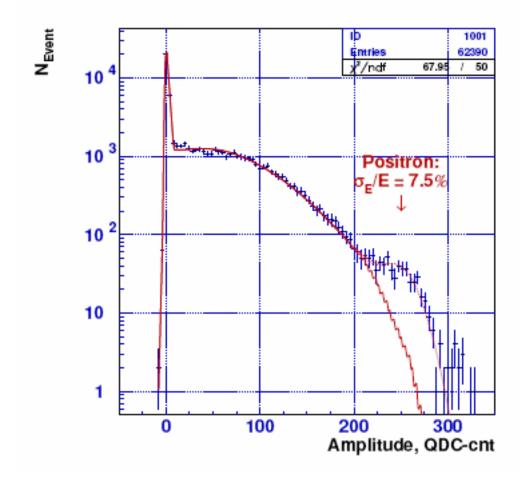


Absorbed dose (rad/yr) in TAN at luminosity 10³³ cm⁻²sec⁻¹

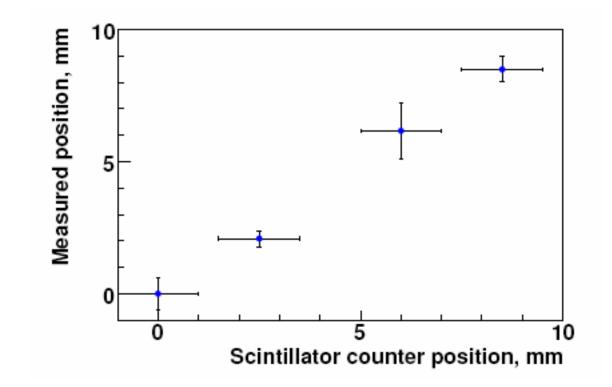
We exposed quartz rods at the BNL linac Isotope Producer facility



Test beam exposure in SPS North area parasitic with RP (Oct. '06)


Single module exposed to 230 GeV proton beam

Spectra with 0, 10 and 20 cm steel blocks inserted in the beam


Comparison to simulation (note same energy scale used in all Simulations)

Beam tuned to enrich positron component Peak used to confirm light yield and agreement With simulations

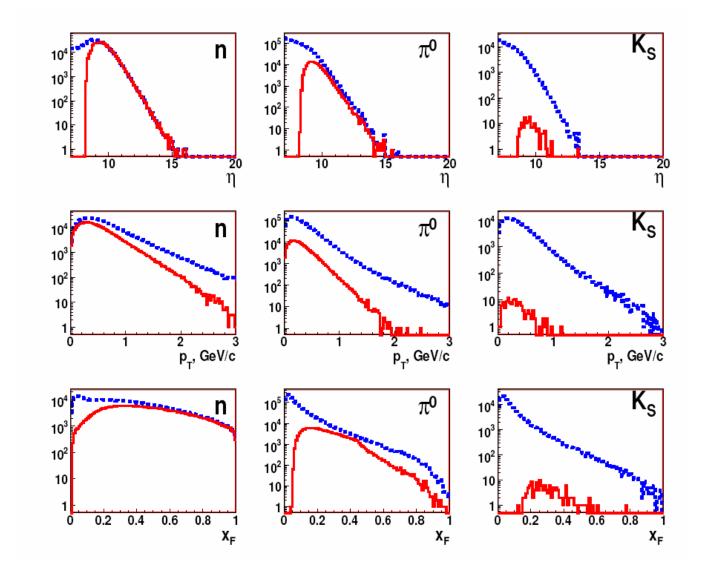
Tested correlation between coordinate measurement and Position of 2 mm high beam scintillation counters

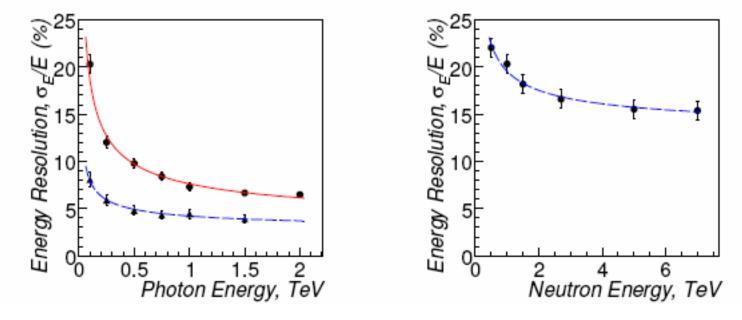
Summary of cables to USA15

cable use	cable type	no. of cables	length(m)
fast trigger signals	C-50-6-1 50 Ω	4	230
fast signals to WFD's	C-50-3-1 50 Ω	6	230
coordinate readout	C-50-3-1 50 Ω	24	350
extra coordinate readout (1 side)	C-50-3-1 50 Ω	24	350
test signal	C-50-3-1 50 Ω	2	350
PMT HV cable	RG 59 equiv	6	350
extra HV (1-side)	RG 59 equiv	7	350
low voltage	power cable	2	350
EM coordinate readout (1 side)	C-50-3-1 50 Ω	96	350

Risetime of fast signals τ_r = 5 nsec Attenuation 50%

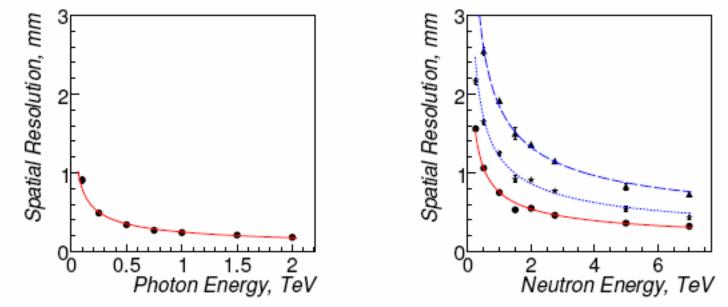
What we are planning

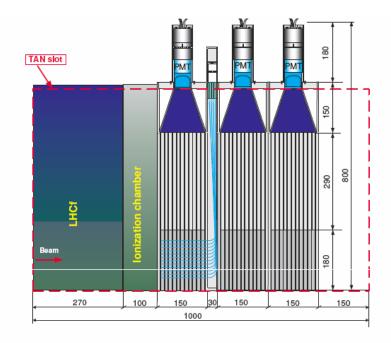

- Install full (8 module) ZDC phased with the LHCf run plan
- Integrate ZDC into ATLAS DAQ and provide a level1 trigger
- Will remove ZDC for highest Luminosity pp runs
- Provide a critical role in Heavy Ion program
- Important measurements of forward particle production in pp collisions over full acceptance permitted by TAN constraints
- Funding from US Nuclear Physics program


Schedule

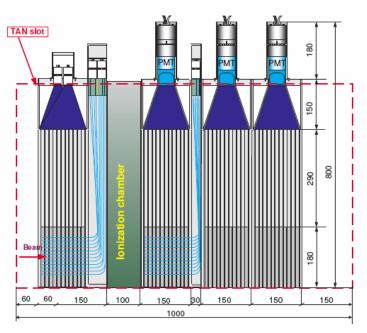
- 1st module completed and tested in beam-no design changes planned
- Construction of mechanical modules can begin 2/07 expect completion in 6/07
- Remaining cables installed this spring
- Main schedule uncertainty is window for installation of cables and modules
- Operation possible at end of '07 in conjunction with LCHf detector

Extra slides


Simulation of kinematic acceptance

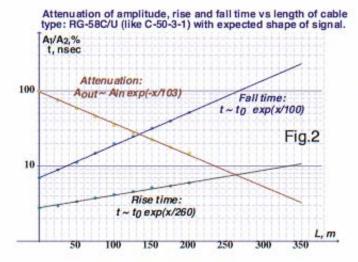


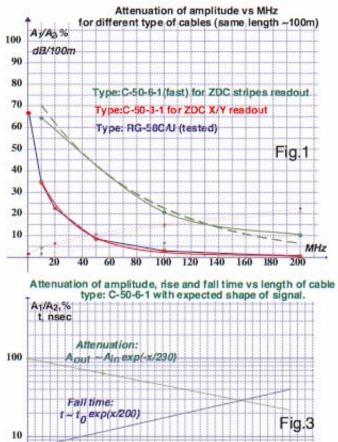
Energy resolution for Photons and neutrons (GEANT simulation)


Coordinate resolution for photons and neutrons

Phasing with LHCf run

Phase I


Phase II


For transport the signals from ZDC modules to USA15 room we are using two type of coaxial cables:

- 1. the fast C-50-6-1 cable for stripe readout and
- 2. the cheap C-50-3-1 cable for X/Y readout.

I used the coaxial cable (type RG 58C/U) what have close to C-50-3-1 characteristics (see Fig.1) for measurement the attenuation and shapes of signals from PMT versus the length of cable (see Fig2).

I show the expected values for fast C-50-6-1 cable in Fig.3 (I'm sure about the attenuation curve, but about fall and rise time need additional research).

L, m

350

Rise time:

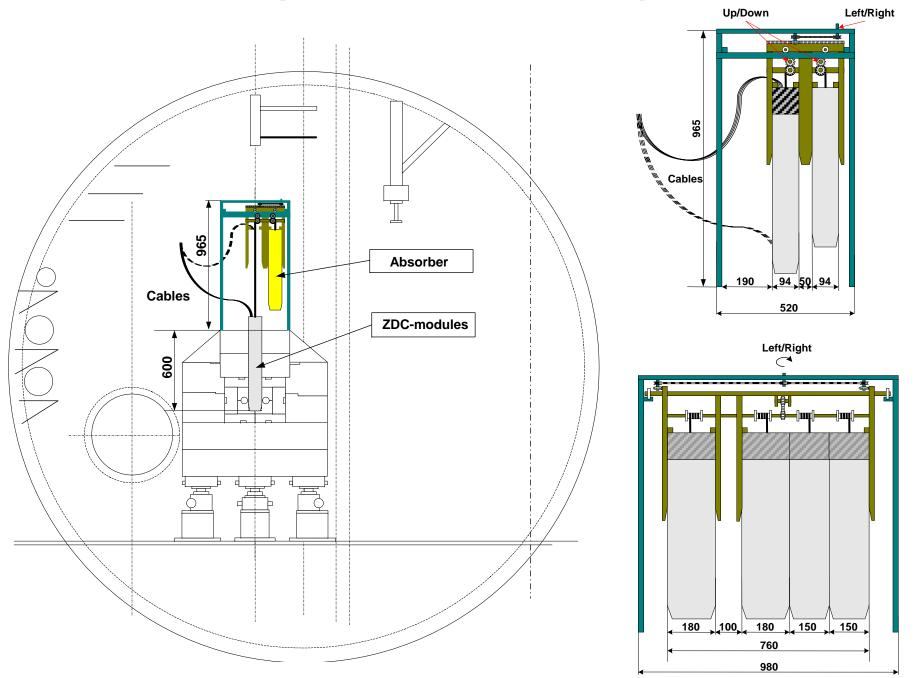
50

t~10 exp(x/520)

100

150

200

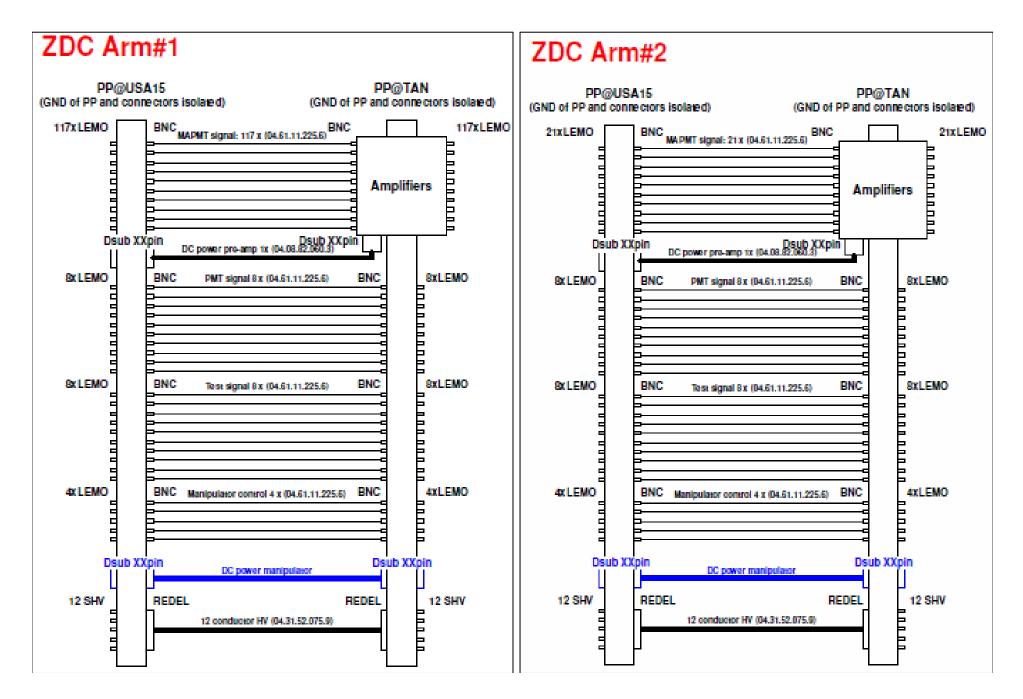

250

300

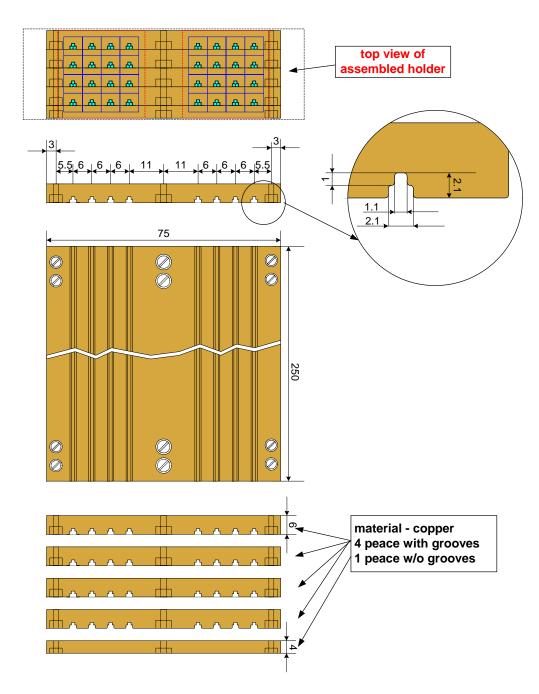
ZDC Project file (p.1) including Phase II eqpt and labor costs

	WBS	Task Name	Duration	Start	Finish	Pred'sor	Cost	Contingency Cost	Base Cost + Contingency	
								Cost	Contingency Cost	2006 2007 D J F M A M J J A S O N D J F M A M J J A S O N D
1	1	Project Summary	372 days	Fri 1/6/06	Mon 7/2/07		\$381,066.88	\$64,847.29	\$445,914.17	
		Project Start	0 days	Fri 1/8/06	Fri 1/8/06		\$0.00	\$0.00	\$9440,014.17	1/6
	1.2	ZDC Prototype	232.25 days	Fri 1/6/06	Mon 12/11/06		\$44,211.04	\$7,429.12	\$51,640.16	♦ 1 ^{1/6}
	1.2.1	Prototype Design	52 days	Fri 1/6/06	Thu 3/23/06		\$44,211.04	\$1,423.12	\$0.00	
	1.2.1.1	Conceptual Design	49 days	Fri 1/6/06	Mon 3/20/06		\$0.00	\$0.00	\$0.00	
	1.2.1.1	Development (simulation, sketching, material	48 days	Fri 1/6/06	Fri 3/17/06	2	\$0.00	\$0.00	\$0.00	
	1.2.1.1.2	Final Design Review	1 day	Fri 3/17/06	Mon 3/20/06	6	\$0.00	\$0.00	\$0.00	
	1.2.1.2	Technical Design	3 days	Mon 3/20/06	Thu 3/23/06	0	\$0.00	\$0.00	\$0.00	
	1.2.1.2	Development (technical drawings)		Mon 3/20/06 Mon 3/20/06	Wed 3/22/06	7	\$0.00	\$0.00	\$0.00	
	1.2.1.2.1	Final Design Review	2 days 1 day	Wed 3/22/06	Thu 3/23/06	, 9	\$0.00	\$0.00	\$0.00	
	1.2.1.2.2	Prototype Production		Thu 3/23/06	Thu 3/23/06	8	\$42,443.04	\$7,075.52	\$49,518.56	
	1.2.2	Module production	121.25 days	Thu 3/23/06 Thu 5/18/06	Wed 8/30/06		\$42,443.04	\$7,075.52	\$49,518.56	
	1.2.2.1	Fabrication/Procurement	71.25 days	Thu 5/18/06	Tue 8/29/06	1050.10	\$18,764.00	\$3,752.80	\$22,016.80	
	1.2.2.1.1		70 days		Wed 8/30/06	10FS+40 c	\$17,924.00	\$3,584.80 \$168.00	\$21,508.80	Purchase Mid Value[17,924]
		Delivery/Test	1.25 days	Tue 8/29/06		13				Physics Mechanical Technician,Purchase Low Value[200]
	1.2.2.2	Quartz-optic production (for strips)	34.05 days	Thu 6/1/06	Fri 7/21/06	1050-10	\$2,838.60	\$340.63	\$3,179.23	
	1.2.2.2.1	Fabrication/Procurement	30 days	Thu 6/1/06	Mon 7/17/06		\$441.00	\$52.92	\$493.92	Purchase Low Value[441]
	1.2.2.2.2	Delivery/Test	4.05 days	Mon 7/17/06	Fri 7/21/06	16	\$2,397.60	\$287.71	\$2,685.31	Purchase Low Value[324], Physics Mechanical Technician
	1.2.2.3	Quartz-optic production (for rods)	31.2 days	Thu 6/1/06	Tue 7/18/06	4050.00	\$1,223.04	\$146.76	\$1,369.80	
	1.2.2.3.1	Fabrication/Procurement	30 days	Thu 6/1/06	Mon 7/17/06		\$560.64	\$67.28	\$627.92	Physics Mechanical Technician[2%],Purchase Low Value[192]
	1.2.2.3.2	Delivery/Test	1.2 days	Mon 7/17/06	Tue 7/18/06	19	\$862.40	\$79.49	\$741.89	Physics Mechanical Technician, Purchase Low Value[48]
	1.2.2.4	Guide-optic production (for a strip's readout)	30.13 days	Thu 6/1/06	Mon 7/17/06		\$1,091.00	\$218.20	\$1,309.20	
	1.2.2.4.1	Fabrication/Procurement	30 days	Thu 6/1/06	Mon 7/17/06		\$977.00	\$195.40	\$1,172.40	Purchase Low Value[625], Physics Mechanical Technician[2%]
	1.2.2.4.2	Delivery/Test	0.13 days	Mon 7/17/06	Mon 7/17/06	22	\$114.00	\$22.80	\$136.80	Purchase Low Value[50], Physics Mechanical Technician
	1.2.2.5	Module instrumentation (strip's photodetectors	45 days	Thu 6/1/06	Mon 8/7/06		\$2,544.00	\$332.64	\$2,876.64	
	1.2.2.5.1	Fabrication/Procurement of PMT-XP3292B	39 days	Thu 6/1/06	Fri 7/28/06		\$1,950.00	\$234.00	\$2,184.00	Purchase Low Value[1,950]
	1.2.2.5.2	Fabrication/Procurement of a PMT Base (VD2	5 days	Fri 7/28/06	Fri 8/4/06	25	\$252.00	\$30.24	\$282.24	Purchase Low Value[252]
	1.2.2.5.3	Delivery/Test (PMT&Base)	0.38 days	Fri 8/4/06	Mon 8/7/06	26	\$342.00	\$68.40	\$410.40	Physics Mechanical Technician,Purchase Low Value[150]
	1.2.2.6	Module instrumentation (rod's photodetectors)	90 days	Thu 3/23/06	Tue 8/1/06		\$15,014.40	\$2,090.88	\$17,105.28	
	1.2.2.6.1	Fabrication/Procurement of PMT-R7600-06-N	20 days	Thu 3/23/06	Thu 4/20/06	10	\$9,000.00	\$1,080.00	\$10,080.00	_Purchase Low Value[9,000]
	1.2.2.6.2	Fabrication/Procurement of a PMT base (???	39 days	Thu 4/20/06	Thu 6/15/06	29	\$2,400.00	\$288.00	\$2,688.00	Purchase Low Value[2,400]
	1.2.2.6.3	Delivery/Test (PMT&Base)	0.75 days	Thu 6/15/06	Thu 6/22/06	30	\$504.00	\$100.80	\$604.80	Physics Mechanical Technician, Purchase Low Value[120]
	1.2.2.6.4	Fabrication/Procurement (Preamp& Analog-s	11 days	Thu 6/22/06	Tue 7/11/06	31	\$2,400.00	\$480.00	\$2,880.00	Purchase Low Value[2,400]
	1.2.2.6.5	Delivery/Test (Preamp& Analog-sum)	1.2 days	Tue 7/11/06	Tue 8/1/06	32	\$710.40	\$142.08	\$852.48	Physics Mechanical Technician, Purchase Low Value[96]
	1.2.2.7	Module Assembling & Lab. Test	10 days	Wed 8/30/06	Thu 9/14/06		\$968.00	\$193.60	\$1,161.60	
	1.2.2.7.1	Assembling	7 days	Wed 8/30/06	Mon 9/11/06	14	\$840.00	\$168.00	\$1,008.00	Physics Mechanical Technician[18%],Purchase Low Value[200]
	1.2.2.7.2	Optical Test	3 days	Mon 9/11/06	Thu 9/14/06	35	\$128.00	\$25.60	\$153.60	Physics Mechanical Technician[8%]
	1.2.3	Beam Test & Study	59 days	Thu 9/14/06	Mon 12/11/06		\$1,768.00	\$353.60	\$2,121.60	
	1.2.3.1	Shipping	1.5 days	Thu 9/14/06	Thu 10/5/06	36	\$1,768.00	\$353.60	\$2,121.60	Physics Mechanical Technician,Purchase Low Value[1,000]
	1.2.3.2	Beam test	19 days	Thu 10/12/06	Wed 11/8/06	38FS+5 da	\$0.00	\$0.00	\$0.00	
40	1.2.3.3	Data analysis	20 days	Wed 11/8/06	Mon 12/11/06	39	\$0.00	\$0.00	\$0.00	
41	1.3	ZDC detector	96.5 days	Mon 12/11/06	Tue 5/1/07		\$158,725.64	\$28,697.75	\$187,423.39	
42	1.3.1	ZDC Design	11 days	Mon 12/11/06	Wed 12/27/06		\$0.00	\$0.00	\$0.00	i i i i i i i i i i i i i i i i i i i
43	1.3.1.1	Conceptual Design	4 days	Mon 12/11/06	Fri 12/15/06		\$0.00	\$0.00	\$0.00	l l l l l l l l l l l l l l l l l l l
44	1.3.1.1.1	Development (simulation, sketching, material	3 days	Mon 12/11/06	Thu 12/14/06	40	\$0.00	\$0.00	\$0.00	
45	1.3.1.1.2	Final Design Review	1 day	Thu 12/14/06	Fri 12/15/06	44	\$0.00	\$0.00	\$0.00	
46	1.3.1.2	Technical Design	7 days	Fri 12/15/06	Wed 12/27/06		\$0.00	\$0.00	\$0.00	
47	1.3.1.2.1	Development (technical drawings)	3 days	Fri 12/15/06	Wed 12/20/06	45	\$0.00	\$0.00	\$0.00	
48	1.3.1.2.2	Final Design Review	4 days	Wed 12/20/06	Wed 12/27/06	47	\$0.00	\$0.00	\$0.00	
49	1.3.2	ZDC Production	92.5 days	Fri 12/15/06	Tue 5/1/07		\$158,725.64	\$28,697.75	\$187,423.39	
50	1.3.2.1	Module production	73.75 days	Wed 12/27/06	Fri 4/13/07		\$101,808.00	\$20,361.60	\$122,169.60	
	ZDC June 12 2	2008 Task F	Progress		Summar	y I	 -	External Tasl	cs	Deadline 🕂
	n 6/12/06	Split	lilestone	♦	Project S	Summary I		External Mile	stone 🔶	

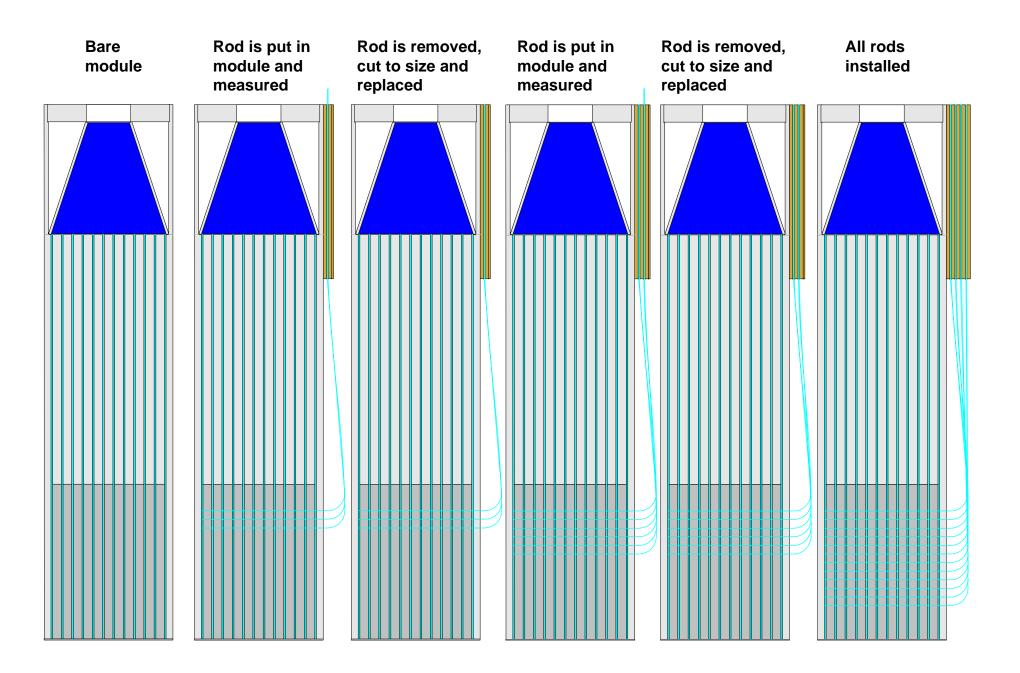
Concept for remote module replacement


Background

MARS15:Radiation in TAN, LHCf & ZDC – N.Mokhov TAN Integration – CERN, Mar.10, 2006


SOURCE TERM AT	TAN at	-5.5 < x, 1	y < 5.5 cm
----------------	--------	-------------	------------

	FROM	IP	NON	-IP	TOTAL		
	<n></n>	<e> (GeV)</e>	<n></n>	<e> (GeV)</e>	<n></n>	<e> (GeV)</e>	
р	7.8106E-06	1.3928E+03	7.3854E-02	1.5650E+02	7.3862E-02	1.5663E+02	
n	1.8278E-01	2.9556E+03	3.0651E-01	1.0426E+02	4.8929E-01	1.1694E+03	
π+	3.9053E-05	1.4448E+03	1.8044E-01	2.6252E+01	1.8048E-01	2.6559E+01	
π-	1.2583E-03	2.5358E+03	2.0158E-01	3.3929E+01	2.0284E-01	4.9450E+01	
K+	3.9053E-05	1.5920E+03	1.3593E-02	1.8641E+01	1.3632E-02	2.3149E+01	
K-	1.8779E-04	2.6675E+03	1.1495E-02	1.4602E+01	1.1683E-02	5.7245E+01	
μ +	0.0000E+00	0.0000E+00	3.3441E-04	6.3382E+00	3.3441E-04	6.3382E+00	
μ-	0.0000E+00	0.0000E+00	7.6302E-04	9.9281E+00	7.6302E-04	9.9281E+00	
γ	6.4190E+00	7.9219E+01	8.9348E+01	1.9997E-01	9.5767E+01	5.4964E+00	
e+	2.3936E-01	3.3844E-01	5.9039E+00	1.5220E-01	6.1432E+00	1.5946E-01	
e-	9.6830E-02	1.2591E+00	5.7887E+00	1.6300E-01	5.8856E+00	1.8103E-01	
pbar	1.4059E-04	2.8715E+03	5.1247E-03	9.8705E+01	5.2652E-03	1.7274E+02	
Kº,	3.6506E-02	1.2308E+03	1.2349E-02	2.6881E+01	4.8855E-02	9.2650E+02	
K°s	4.8158E-03	2.2434E+03	2.1740E-04	4.7451E+01	5.0332E-03	2.1485E+03	
Λ	2.2313E-02	3.5788E+03	0.0000E+00	0.0000E+00	2.2313E-02	3.5788E+03	
Abar	6.3297E-04	1.8356E+03	0.0000E+00	0.0000E+00	6.3297E-04	1.8356E+03	
Wk Y	15640E-05	52-3074E+03	0.0000E+00	10.0000E+00	1.5640E-05	1648074E+03	
nbar	1.2447E-02	1.1503E+03	6.2474E-03	1.7173E+02	1.8694E-02	8.2330E+02	


ZDC cable detail

X-Y rod holder

Assembling module: installing X-Y rods

