Prospects for Diffractive and Forward Physics at the LHC

V. Avati
(CERN)

on behalf of the CMS/TOTEM Collaboration

Author List

Experimental apparatus

T1: $3.1 < \eta < 4.7$
T2: $5.3 < \eta < 6.5 = \text{Castor}$
CMS/TOTEM common physics program

Largest coverage in pseudorapidity & proton detection on both sides
Physics menu

Low Luminosity ($\leq 10^{32} \text{ cm}^{-2}\text{s}^{-1}$): low & high β^*

- Measure inclusive SD and DPE cross sections:
 - t, M_x dependence
 - Study of topology e.g. rapidity gap
- Measure semi-hard SD and DPE:
 - Onset of jet activity
- Muller-Navelet dijets
- Forward Drell-Yan
- Validation of Cosmic Ray generators

High Luminosity ($> 10^{32} \text{ cm}^{-2}\text{s}^{-1}$) : low β^*

- Measure SD and DPE in presence of hard scales (dijets, vector bosons, heavy quarks): dPDF, GPD
- $\gamma\gamma$ and γp physics

High Luminosity ($> 10^{33} \text{ cm}^{-2}\text{s}^{-1}$) : low β^*

- Discovery physics in central exclusive production
 - SM or MSSM Higgs, other exotic processes
Contents of the common document

Includes important experimental issues in measuring forward and diffractive physics but not an exhaustive physics study

- Detailed studies of acceptance & resolution of the forward proton detectors
- Trigger
- Background
- Reconstruction of kinematic variables

Several exemplary processes are studied in detail

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 1:</td>
<td>Introduction</td>
</tr>
<tr>
<td>Ch 2:</td>
<td>Experimental Set-up</td>
</tr>
<tr>
<td>Ch 3:</td>
<td>Measurement of Forward Protons</td>
</tr>
<tr>
<td>Ch 4:</td>
<td>Machine induced background</td>
</tr>
<tr>
<td>Ch 5:</td>
<td>Diffraction at low and medium luminosity</td>
</tr>
<tr>
<td>Ch 6:</td>
<td>Triggering on Diffractive Processes at High Luminosity</td>
</tr>
<tr>
<td>Ch 7:</td>
<td>Hard diffraction at High Luminosity</td>
</tr>
<tr>
<td>Ch 8:</td>
<td>Photon-photon and photon-proton physics</td>
</tr>
<tr>
<td>Ch 9:</td>
<td>Low-x QCD physics</td>
</tr>
<tr>
<td>Ch 10:</td>
<td>Validation of Hadronic Shower Models used in cosmic ray physics</td>
</tr>
</tbody>
</table>

An important milestone in the collaboration between the two experiments
X=anything : dominated by soft physics

- Measure fundamental quantities of soft QCD: SD and DPE inclusive cross sections, their s, t, M_x dependences are fundamental parameters of non-perturbative QCD.

- Contributes to the pile up.

X includes jets, W’s, Z’s, Higgs (!): hard processes calculable in pQCD

- Give info on proton structure (dPDFs and GPDs), QCD at high parton densities, multi-parton interactions, discovery physics
Running scenario

- Soft diffraction: $pp \rightarrow pX$
- (Semi)-hard diffraction: $pp \rightarrow pjjX$
- Hard diffraction/exclusive processes: $pp \rightarrow pjj(X)$

Cross section vs. Luminosity

<table>
<thead>
<tr>
<th>σ (mb)</th>
<th>μb</th>
<th>nb</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L (cm^{-2} s^{-1})$</td>
<td>10^{28}</td>
<td>10^{30}</td>
</tr>
<tr>
<td>$\beta (m)$</td>
<td>1540</td>
<td>90</td>
</tr>
</tbody>
</table>

TOTEM runs vs. Standard runs

The accessible physics depends on: luminosity

β^* (different proton acceptance)
Measurement of Forward Protons: the principle

Diffractive protons: hit distribution @ RP220

low $\beta = 0.5 - 2 \text{ m}$

y $\sim \Theta_y^{\text{scatt}} \sim |t_y|^{1/2}$

x $\sim \xi = \Delta p/p$

high $\beta = 90 \text{ m}$

Detect the proton via:

its momentum loss (low β)

its transverse momentum (high β)
Measurement of Forward Protons: Acceptance (@220m)

\[\xi = \Delta p/p \]

- \(t(GeV^2) \)
 - \(\beta = 1540 \)
 - \(\beta = 90 \)

\(\xi = \Delta p/p \)

- \(\beta = 1540 \)
- \(\beta = 90 \)
- low \(\beta \)
Measurement of Forward Protons: Acceptance

\[\xi = \Delta p/p \]

\[\beta = 1540 \]

\[\beta = 90 \]

\[\beta = 0.5 \]

\[\xi = \Delta p/p \]
Measurement of Forward Protons: momentum resolution (low β)

Individual contribution to the resolution:

- Detector resolution (10μm)
- Beam position res. (50μm)
- Vertex smear. (10μm)
- relative beam energy spread (10^{-4})

$\sigma(\xi)/\xi$ total

Studies available also for $\beta=1540, 90, \text{all RP stations}$
Measurement of Forward Protons: momentum resolution

\[\frac{\Delta \xi}{\xi} \]

- \(\beta = 90, \) RP220
- low \(\beta, \) RP220
- low \(\beta, \) RP420
Assumption on Trigger Rates

<table>
<thead>
<tr>
<th></th>
<th>L1(kHz)</th>
<th>HLT/tape (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>TOTEM</td>
<td>~2</td>
<td>~2000</td>
</tr>
<tr>
<td>CMS/TOTEM</td>
<td>~2</td>
<td>100</td>
</tr>
<tr>
<td>CMS/TOTEM</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Trigger rates

\[\sigma \]

\[L = 10^{30} \quad L = 10^{32} \]

\[\beta = 90 \text{ m} \quad \beta = 2 \text{ m} \]

| \begin{array}{|c|c|c|}
| \hline
| 1 \text{ p} & 14 \text{ mb} & 6000 \quad 140 \times 10^3 \\
| T1/T2 & & \\
| \hline
| 2 \text{ p} & 1 \text{ mb} & 200 \quad 3.5 \times 10^3 \\
| T1/T2 & & \\
| \hline
| 1 \mu b & 0.2 & \\
| (p_T^{\text{jet}} > 20 \text{ GeV}) & & \\
| 30 \text{ nb} & 0.01 & 0.5 \\
| (p_T^{\text{jet}} > 50 \text{ GeV}) & & \\
| \hline
| 60 \text{ nb} & 10^{-3} & \\
| (p_T^{\text{jet}} > 20 \text{ GeV}) & & \\
| 1.5 \text{ nb} & 0.03 & \\
| (p_T^{\text{jet}} > 50 \text{ GeV}) & & \\
| \hline
\end{array} \]

Estimated Rates (Hz) [acceptance corrected]
Diffraction at low luminosity ($<10^{32}$ cm$^{-2}$ s$^{-1}$)

soft diffraction

Inclusive cross sections and their t, M_x dependence

Topology of the events

Measure ξ and central Mass via:

- proton(s)
- rapidity gap relation $\Delta \eta = -\ln \xi$
- calorimeters
 $$\xi = \sum_i E_i^T \exp(\mp \eta_i) / \sqrt{s}$$

Wide range t, ξ acceptance with special optics

These processes contribute to the pile-up at high luminosity
Diffraction at low luminosity: soft diffraction (DPE)

Differential Mass distribution, acceptance corrected

Number of event collected in a few days

\[\beta = 90 \text{m} \quad \int L dt = 0.3 (\text{pb}^{-1}) : \]

\[1 < M < 2000 \text{ GeV} \quad N \sim 6 \times 10^7 \]

\[\beta = 2 \text{m} \quad \int L dt = 10 (\text{pb}^{-1}) : \]

\[M > 300 \text{ GeV} \quad N \sim 10^8 \]
Diffraction at low luminosity: DPE Central Mass Resolution

\[\beta = 90 \text{m} \quad \text{RP220} \]

\[\sigma(M) \text{[GeV]} = (\xi_1 \xi_2 s)^{1/2} \]
Diffraction at low luminosity: DPE Central Mass Resolution

$\beta = 90 \text{m} \quad $ RP220

$$\xi_{\text{lower}} / \xi_{\text{higher}}$$

- $0.01-0.1$
- $0.1-0.5$
- $0.5-1.0$

$\sigma(M)[\text{GeV}]$ vs $M[\text{GeV}]$

$\sigma(M) = (\xi_1 \xi_2 s)^{1/2}$
Diffraction at low luminosity: rapidity gaps

Measure ξ via rapidity gap: $\Delta \eta = -\ln \xi$

Achieved precision: $\sigma(\xi)/\xi \sim 80\%$
Diffraction at low luminosity: semi-hard diffraction

\[\int \frac{d\sigma}{dp_T} \]

\(\beta = 90 \quad \int L dt = 0.3 \text{ (pb}^{-1}) \)

SD: \(p_T > 20 \text{ GeV} \quad 6 \times 10^4 \)

DPE: \(" \quad 2000 \)

\(\beta = 2 \quad \int L dt = 100 \text{ (pb}^{-1}) \)

SD: \(p_T > 50 \text{ GeV} \quad 5 \times 10^5 \)

DPE: \(" \quad 3 \times 10^4 \)
Diffraction at low luminosity: semi-hard diffraction

Measure the cross sections and their t, M_X, p_T^{jet} dependence

Topology of the events: for example exclusive vs inclusive jet production

In addition to the previous methods, ξ and central mass can be determined from calorimeter information:

$$\xi = \sum_i E_T^i e^{\eta_i}/\sqrt{s} \quad \sigma(\xi)/\xi \sim 40\%$$
Summary (Part I)

Important experimental issues have been addressed in the common document:

Detailed studies of acceptance & resolution of the forward proton detectors for all scenarios

Machine induced background (not discussed, see document)

Physics reach:

Already at low luminosity diffractive processes, from low masses up to a few TeV, can be measured

The topology of the events can be studied and correlated with the forward proton

At medium luminosity the onset of jet activity in diffractive events can be investigated

Part II is now presented by M. Grothe