

Prospects for Diffractive and Forward Physics at the LHC

V. Avati (CERN)

on behalf of the CMS/TOTEM Collaboration

CERN/LHCC 2006-039/G-124 CMS Note-2007/002 TOTEM Note 06-5

1

Author List

M. Albrow", G. Antchev", M. Arneodo", V. Avati", P. Bartalini", V. Berardi", U. Bottigli", M. Bozzo^{**7}, E. Brücken^{**8}, V. Burtovoy^{**9}, A. Buzzo^{**7}, M. Calicchio^{**6}, F. Capurro^{**7}, M.G. Catanesi^{**6}, P. Catastini^{*24}, M.A. Ciocci^{*24}, R. Croft^{*10}, K. Datsko^{**9}, M. Deile^{**3}, J. De Favereau De Jeneret^{**11}, D. De Jesus Damiao^{**12}, E. Robutti^{*7}, A. De Roeck^{**3}, D. D'Enterria^{**3}, E.A. De Wolf^{**13}, K. Eggert^{**3}, R. Engel**14, S. Erhan**15, F. Ferro**7, F. Garcia Fuentes**8, W. Geist**16, M. Grothe**17, **18, **a, J.P. Guillaud^{**19}, J. Heino^{**8}, A. Hees^{**3, **b}, T. Hilden^{**8}, J. Kalliopuska^{**8}, J. Kaspar^{**20}, P. Katsas^{**21}, V. Kim^{**22}, V. Klyukhin^{**3, **23}, V. Kundrat^{**20}, K. Kurvinen^{**8}, A. Kuznetsov^{**9}, S. Lami^{**24}, J. Lamsa^{**8}, G. Latino"24, R. Lauhakangas"8, E. Lippmaa"25, J. Lippmaa"8, Y. Liu"11, "c, A. Loginov"3, "26, "d, M. Lokajicek^{**20}, M. Lo Vetere^{**7}, F. Lucas Rodriguez^{**3}, M. Macri^{**7}, T. Mäki^{**8}, M. Meucci^{**24}, S. Minutoli"7, J. Mnich"27, I. Moussienko"28, M. Murray"29, H. Niewiadomski"3, E. Noschis"8, G. Notarnicola", S. Ochesanu"¹³, K. Österberg"⁸, E. Oliveri²⁴, F. Oljemark⁸, R. Orava⁸, ¹³, M. Oriunno^{*3}, M. Ottela^{**8}, S. Ovyn^{**11}, P. Palazzi^{**3}, A.D. Panagiotou^{**21}, R. Paoletti^{**24}, V. Popov^{**26}, V. Petrov"9, T. Pierzchala"11, K. Piotrzkowski"11, E. Radermacher"3, E. Radicioni"6, G. Rella"6, S. Reucroft^{**28}, L. Ropelewski^{**3}, X. Rouby^{**11}, G. Ruggiero^{**3}, A. Rummel^{**25}, M. Ruspa^{**2}, R. Ryutin^{**9}, H. Saarikko", G. Sanguinetti"²⁴, A. Santoro"¹², A. Santroni", E. Sarkisyan-Grinbaum"^{31, "e}, L. Sary cheva^{**23}, F.P. Schilling^{**3}, P. Schlein^{**15}, A. Scribano Memoria^{**24}, G. Sette^{**7}, W. Snoeys^{**3} G.R. Snow^{**32}, A. Sobol^{**32}, ^{**}f, A. Solano^{**17}, F. Spinella^{**24}, P. Squillacioti^{**24}, J. Swain^{**28}, A. Sznajder^{**12}, M. Tasevsky^{**13, **g}, C.C. Taylor^{**4}, F. Torp^{**33}, A. Trummal^{**25}, N. Turini^{**24}, M. Van Der Donckt^{**11} P. Van Mechelen^{**13}, N. Van Remortel^{**8}, A. Vilela Pereira^{**12}, J. Whitmore^{**33}, D. Zaborov^{**26}

Experimental apparatus

CMS/TOTEM common physics program

Largest coverage in pseudorapidity & proton detection on both sides

Physics menu

Low Luminosity ($\leq 10^{32}$ cm⁻²s⁻¹): low & high β^*

- Measure inclusive SD and DPE cross sections:
 - t, M_x dependence
 - Study of topology e.g. rapidity gap
- Measure semi-hard SD and DPE:
 - Onset of jet activity
- Muller-Navelet dijets
- Forward Drell-Yan
- Validation of Cosmic Ray generators

High Luminosity (> 10^{32} cm⁻²s⁻¹) : low β^*

Measure SD and DPE in presence of hard scales (dijets, vector bosons, heavy quarks): dPDF, GPD

γγ and γp phyics

High Luminosity (> 10^{33} cm⁻²s⁻¹) : low β^*

Discovery physics in central exclusive production
SM or MSSM Higgs, other exotic processes

Contents of the common document

Includes important experimental issues in measuring forward and diffractive physics but not an exhaustive physics study

- Detailed studies of acceptance & resolution of the forward proton detectors
- Trigger
- Background
- Reconstruction of kinematic variables

Several exemplary processes are studied in detail

	Ch 1: Introduction
	Ch 2: Experimental Set-up
	Ch 3: Measurement of Forward Protons
	Ch 4: Machine induced background
	Ch 5: Diffraction at low and medium luminosity
_	Ch 6: Triggering on Diffractive Processes
	at High Luminosity
	Ch 7: Hard diffraction at High Luminosity
	Ch 8: Photon-photon and photon-proton physics
	Ch 9: Low-x QCD physics
	Ch 10: Validation of Hadronic Shower Models used in cosmic ray physics

An important milestone in the collaboration between the two experiments

Diffraction: Physics Motivation

X=anything : dominated by soft physics

- Measure fundamental quantities of soft QCD: SD and DPE inclusive cross sections, their s, t, M_x dependences are fundamental parameters of non-perturbative QCD.
- Contributes to the pile up.

X includes jets, W's, Z's, Higgs (!): hard processes calculable in pQCD

 Give info on proton structure (dPDFs and GPDs), QCD at high parton densities, multi-parton interactions, discovery physics

PP->PX

Running scenario

The accessible physics depends on : luminosity

 β^* (different proton acceptance)

Measurement of Forward Protons: the principle

Detect the proton via:

its momentum loss (low β)

its transverse momentum (high β)

ξ=∆p/p

Measurement of Forward Protons: Acceptance

Measurement of Forward Protons: momentum resolution (low β)

Studies available also for β =1540, 90, all RP stations

Measurement of Forward Protons: momentum resolution

Assumption on Trigger Rates

		L1(kHz)	HLT/tape (Hz)
	CMS	100	100
	TOTEM	~2	~2000
Common	CMS/ <u>TOTEM</u>	~2	100
runs	ns 1 <u>CMS</u> /TOTEM	1	1

٠

Ø

0

•

٥

0

-10

-10

-10

-10

Trigger rates

Diffraction at low luminosity (<10³² cm⁻² s⁻¹) soft diffraction

Single Diffraction

Double Pomeron Exchange

 \mathbb{P}

gap

gap

Inclusive cross sections and their t, M_{χ} dependence

Topology of the events

Measure $\boldsymbol{\xi}$ and $\mbox{ central Mass via:}$

- proton(s)
- rapidity gap relation $\Delta \eta = -\ln \xi$
- calorimeters $\xi = \sum_{i} E_{\tau}^{i} \exp(\mp \eta_{i})/\sqrt{s}$

These processes contribute to the pile-up at high luminosity

15

Diffraction at low luminosity: soft diffraction (DPE)

Number of event collected in a few days $\beta=90m \int Ldt = 0.3 (pb^{-1}):$ 1 < M < 2000 GeV N ~ 6x10⁷ $\beta=2m \int Ldt = 10(pb^{-1}):$ M>300 GeV N ~ 10⁸

Diffraction at low luminosity: DPE Central Mass Resolution

Diffraction at low luminosity: DPE Central Mass Resolution

Diffraction at low luminosity: rapidity gaps

Measure ξ via rapidity gap: $\Delta \eta$ =-ln ξ

Achieved precision: $\sigma(\xi)/\xi \sim 80\%$

Diffraction at low luminosity: semi-hard diffraction

N event collected [acceptance included]

β=90 ∫Ldt = 0.3 (pb⁻¹) SD: pT>20 GeV 6x10⁴ DPE: " 2000

β=2 ∫Ldt = 100 (pb⁻¹) SD: pT>50 GeV 5x10⁵ DPE: " 3x10⁴

Diffraction at low luminosity: semi-hard diffraction

Measure the cross sections and their t, $M_{x_{\tau}}p_{\tau}^{jet}$ dependence

Topology of the events: for example exclusive vs inclusive jet production

In addition to the previous methods, ξ and central mass can be determined from calorimeter information:

 $\xi = \sum_{i} E^{i}_{T} e^{\mp \eta i} / \sqrt{s} \qquad \sigma(\xi) / \xi \sim 40\%$

Summary (Part I)

Important experimental issues have been addressed in the common document:

Detailed studies of acceptance & resolution of the forward proton detectors for all scenarios

Machine induced background (not discussed, see document)

Physics reach:

Already at low luminosity diffractive processes, from low masses up to a few TeV, can be measured

The topology of the events can be studied and correlated with the forward proton

At medium luminosity the onset of jet activity in diffractive events can be investigated

Part II is now presented by M. Grothe