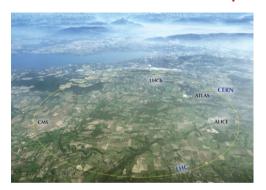
Progress in design and testing of the DAQ and data-flow control for the Phase-2 upgrade of the CMS experiment

Outline


• The CMS experiment at the CERN LHC

The CMS Phase-2 DAQ system and the DAQ and Timing Hub

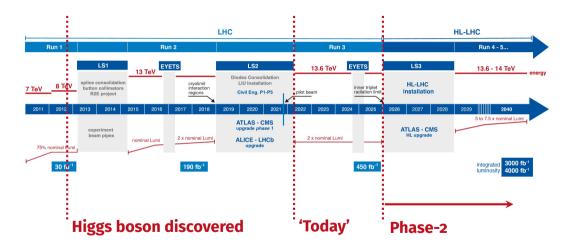
• Design once, use in multiple places?

The CMS experiment at the CERN LHC

CMS is one of the experiments at the CERN LHC



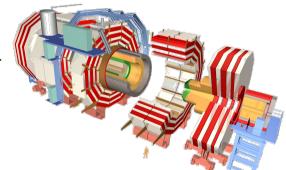
CMS is one of the experiments at the CERN LHC



CMS is one of the experiments at the CERN LHC

The life and times of CMS and the LHC

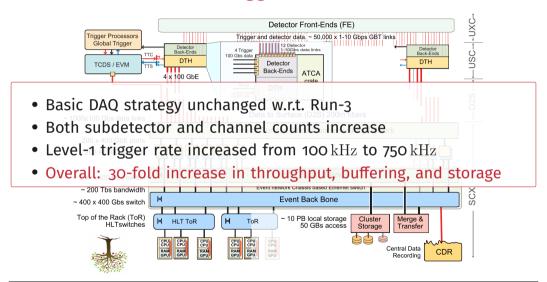
The life and times of CMS and the LHC

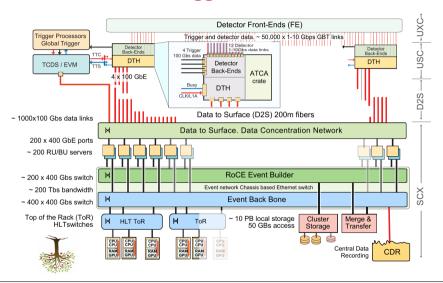

1 Run 2 LH	IC (2018 max.)	HL-LHC (ultimate)	
Beam energy (TeV)	13.6 TeV EYEIS	13.6 - 14 Te	
Bunch charge [protons]	1.15×10^{11}	installation 2.20 × 10 ¹¹	
Number of bunches	2556	2760	
β* [cm]	2x rombal Lum 30	ATLAS - CMS Lupgrade 15	
Emittance [µm]	2.50	2.50	
Bunch length [cm]	8.3	7.6	
Luminosity [cm ⁻² s ⁻¹]	$2.0 imes 10^{34}$	$7.5 imes 10^{34}$	
Events / crossing	55	195	

The Phase-2 upgrade of the CMS experiment Complete overhaul of the CMS detector:

- Full redesign and rebuild of pixel and strip trackers
- Addition of MIP Timing Detector, between tracker and calorimeter

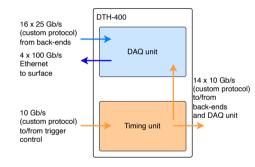
 Replacement of end-cap calorimeters with high-granularity (silicon + scintillator) ones


- Level-1 trigger latency increases from 4.3 µs to 12.4 µs
- Replacement of barrel calorimeter front-end electronics
- All muon systems receive 'minor' upgrades to stay in step with latency and technology

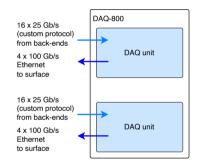

The CMS Phase-2 trigger-DAQ system

and the DAQ and Timing Hub

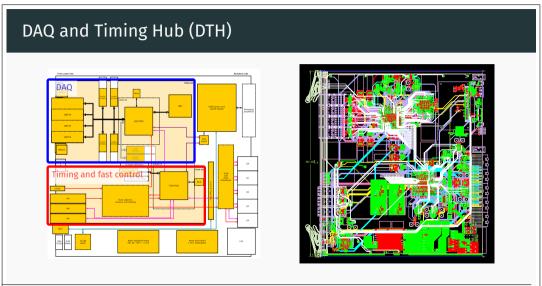
CMS Phase-2 DAQ and trigger control overview



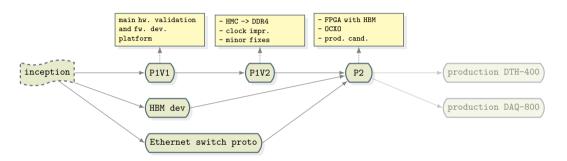
CMS Phase-2 DAQ and trigger control overview


The DTH-400 DAQ and Timing Hub

- The DTH is the portal between the back-end electronics and the central DAQ, timing, and control and monitoring systems
- One DTH per back-end crate
- The DTH is equipped to drive standalone, single-crate data-taking runs for commissioning, calibration, etc.
- \bullet DTH-400 DAQ throughput: 400 $\mathrm{Gbit/s}$

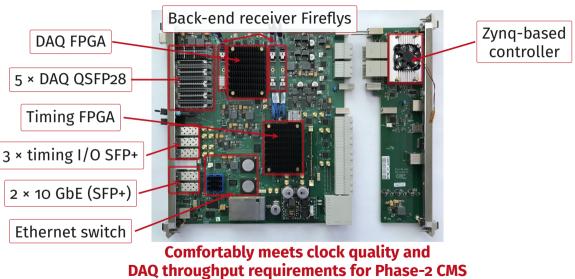


The DAQ-800 node board


- Per crate, one or more DAQ-800 'companion boards' can be added to increase the DAQ throughput
- DAQ-800 DAQ throughput: 800 $\mathrm{Gbit/s}$
- Can accomodate per-crate DAQ needs ranging from 10 Gbit/s (some muon systems) to 2.2 Tbit/s (inner tracker)

Flashback to Real Time 2018

Design and prototyping of DTH-400 & DAQ-800


- The P2 merges all prototyping lines, and switches FPGAs from KU15P to VU35P
- Adopted in-FPGA High-Bandwidth Memory for Ethernet buffering
- The DAQ-800 is a 'creative copy-paste' of the DTH-400

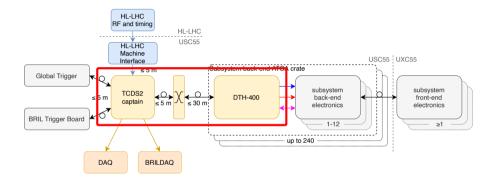
Current state-of-the-art: the DTH-P2

Comfortably meets clock quality and DAQ throughput requirements for Phase-2 CMS

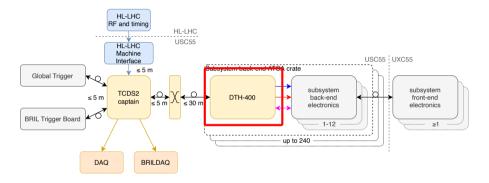
Current state-of-the-art: the DTH-P2

Design once, use in multiple places?

A new kind of optimisation challenge

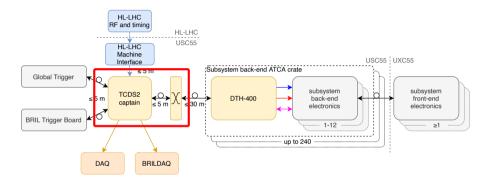

Driven by a wish to

- reduce design effort,
- · reduce maintenance effort, and
- · reduce engineering and prototyping cost,


we were prompted to consider designing the Phase-2 DAQ hardware such that it could also serve for the Trigger and Timing Control and Distribution System (TCDS).

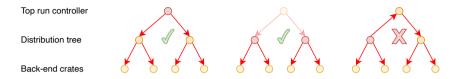
To note: this challenge was posed at the right time, i.e., during the design phase

CMS Phase-2 trigger control architecture

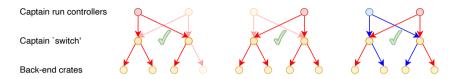

CMS Phase-2 trigger control architecture

The DTHs:

Connect all CMS back-end crates to the central trigger, DAQ, and control systems

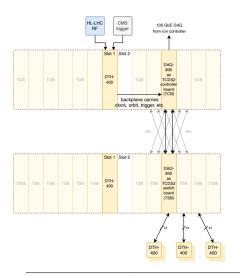

CMS Phase-2 trigger control architecture

The TCDS2 captain:


- Houses several firmware 'run controllers' to drive data-taking runs
- Contains a configurable 'switch' to assign groups of CMS back-ends to these runs

A switch or a tree?

- Simultaneous runs with different subdetectors are necessary for commissioning, calibration, etc.
- Only the top-level run controller can reach all end-points
- Each sub-level run controllers can reach a *fixed* subset of end-points
- Ad hoc changes in subsets require recabling


A switch or a tree?

- Each top-level run controller can reach all end-points, in any arbitrary combination
- Subset assignment is now 'just configuration'
- This achieves full flexibility for many simultaneous data-taking runs

So a switch it is, then!

Using the DAQ-800 to implement the TCDS

- Two layers of DAQ-800: one with run controllers, one as 'distributed switch'
- Use the 'back-end data' Fireflys to mesh-interconnect the controller boards and the switch boards
- Use the 'DAQ QSFPs' to connect the switch to the DTHs
- Number of run controllers scales with the number of controller boards
- The number of end-points scales with the number of switch boards

The determining scale factor appears to be the FPGA resources required to implement each N × M (sub)switch

Using the DAQ-800 to implement the TCDS

The good (which is beyond question)

Removes the need for a separate design, production, spares, etc.

The 'bad' (which complicates life)

The needs of a DAQ system are largely orthogonal to those of a timing/control system

- The DAQ functionality hinges on the High-Bandwidth Memory, a control system benefits more from logic resources
- The DAQ profits from high-density optics, e.g., CWDM QSFP28s, and the architecture of a timing distribution system is all single point-to-point links

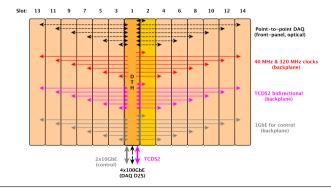
Reusing back-end or trigger boards has similar trade-offs

The ugly (which makes it possible)

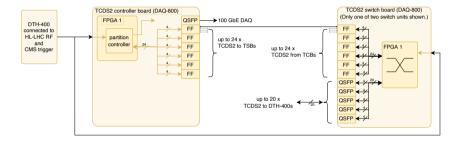
- Optics connectivity can be addressed with break-out fibres
- Firmware can be written with narrow(er) counters, latching and using the HBM to buffer, and the software can gather and post-process

Closing words

- The CMS central DAQ hardware, both the DTH-400 and DAQ-800, is well on its way towards Phase-2
- The DTH-400 prototypes meet clock quality and DAQ throughput requirements
- First studies look promising for the re-use of the DAQ hardware for the implementation of the trigger control system
 - Greatly reduces the engineering effort, as well as the engineering and development cost
 - Does require some small un-DAQ-like additions
 - Will involve some level of compromise on the TCDS side. Studies should show how much.


Phase-2 CMS DAQ in numbers

Bottom line: high rate and enormous throughput


CMS detector	Phase-1	Phase-2	
Peak average pileup	60	140	200
L1 accept rate (max.)	100 $ m kHz$	500 kHz	750 kHz
Event size at HLT input	$2.0\mathrm{MB}$	7.8 MB	9.9 ${ m MB}$
Event network throughput	1.6 $\mathrm{Tbit/s}$	31 $\mathrm{Tbit/s}$	$60\mathrm{Tbit/s}$
Event network buffer (60 ${ m s}$)	12.0 TB	$234\mathrm{TB}$	445 TB
HLT accept rate	1.0 $ m kHz$	5.0 $ m kHz$	7.5 kHz
HLT compute power	0.8 MHS06	17 MHS06	37 MHS06
Storage throughput	$2\mathrm{GB/s}$	$31\mathrm{GB/s}$	$61\mathrm{GB/s}$
Storage capacity needed (1 d)	0.2 PB	2.0 PB	3.9 PB

CMS Phase-2 DAQ and Timing Hub (DTH)

- ATCA baseboard handling power, IPMC, etc., including on-board controller
- Managed Ethernet switch to all node slots and both shelf managers
- Timing and control unit handling clock recovery, cleaning, and distribution
- DAQ unit converting from custom back-end links to commercial Ethernet

Using the DAQ-800 to implement the TCDS

