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Three Elements of Design Perspectives

> Three independent elements:

A. Nuclear Electronics: Readout system and signal features

Nuclear

B. Neural Network:Architectural research, network training... Electronics

C. Digital Design: NN accelerator and system-on-chip scheme
Application
Training

> Overlay of elements:

o . _— : , Validation
AB. Application Training: NN algorithm research for nuclear signals,

selection and optimization of network architecture

Digital
Design

Hardware

BC. Hardware Mapping:Accelerator hardware implementation of NN Mapping

AC. System Prototype: Hardware design in the context of readout system

ABC. JointValidation: Synthesis of the above three
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What and to What Extent Neural Nets Can Do (
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I combine results
network output

Estimation of heterogeneous uncertainty
of nuclear detector signals with
ensemble of NNs

P.Ai et al 2022 JINST 17 P02032
Computation of the Cramer Rao lower

bound of timing to find out limits for
NN and traditional methods

P.Ai et al 2021 JINST 16 P09019
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Building Blocks of Network Structure (and Why They Work) (

input feature map Ci output feature map
Ci Co

= We choose Convolutional Neural Networks (CNN) because they

: : succeeded in many ML tasks and facilitated parallel computing
one-dimensional

convolution ®  We select four representative building blocks:

" |d convolution layer
conv kernels

input feature map i ® | d deconvolution layer
Ci
' = fully-connected layer

one-dimensional .

Li |
* deconvolution

nonlinear activation (ReLU)

= Nonlinearity is the key for Inductive Learning (and thus intelligent

signal processing) J.C.Ye (2022) Geometry of Deep Learning, Springer
deconv kernels bias vector
Rt i m  Without nonlinearity, the weights in the mapping function are the same for
[ H any input sample. Once learned, they never change. (transductive)
| o fully-connected
i) matrix * |l Fo matrix = With nonlinearity, weights in the mapping function are selectively turned
multiplication off/scaled by nonlinear function. (inductive)
Fo bias vector

weight matrix



Autoencoder-Based Network Architecture (

encoder decoder
bypass
regression
network
decoder
encoder )
(optional)

bypass

m  Regression network can be located at the far-end of the
decoder if an accurate noiseless waveform can be obtained.

m  Regression network can also be located at the bottleneck if
we only have original waveform (and the decoder is optional).
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Quantization-Aware Training and Validation (
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Why Bringing Them to Front-End Electronics (

> A case study of electromagnetic calorimeter
(ECAL) of NICA-MPD Waveform
Sampling

®  64-channel, |12-bit, 62.5M-rate ADC

®  Waveform data readout, triggering & timing by

optical fiber Fiber

| %\ Event
5 0, econstruction

®  power consumption: 250 mW/channel, water
cooling system is needed for heat dissipation

Transmission

Cable ==
Connection 64-channel
ADC board
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Shashlik Calorimeter SiPM Front-End PCB High Voltage System 8



Why Bringing Them to Front-End Electronics (

> A case study of electromagnetic calorimeter
(ECAL) of NICA-MPD

®  64-channel, |12-bit, 62.5M-rate ADC

®  Waveform data readout, triggering & timing by
optical fiber

®  power consumption: 250 mW/channel, water
cooling system is needed for heat dissipation

» Front-end upgradation with ASIC
pre-amplifier, 200M-rate ADC & NN accelerator
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A Brief Review of PulseDL (
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Limitations of PulseDL (

m  The first version of the chip, although a successful practice, has the following limitations:
= A RISC CPU outside the chip (or NN accelerator) is needed to schedule transactions
®  Dynamic quantization scheme is adopted and may bring about additional time budget
®  The adder tree structure has much space for improvement (especially the temporal adder tree)

®  Only manual configuration was done, and deep learning framework had not been supported yet

®  The above limitations motivate us to develop PulseDL-Il, the new version of the chip



PulseDL-Il: Improvement in System Structure (

AAK . . . . .
Cortex-MO —_— = |ntegrate an RISC CPU into the digital design to
GPIO :
SoC | High-speed |< b |status form System-on-Chip (SoC)
Cortex MO — 7y ﬁ)_ = R|SC CPU:ARM Cortex-M0
i —
Core Double-Port Quad-SPI
2| wuter || [ A Master (T2 Qfﬁ;ﬁiﬁfﬁﬁ? = System Bus:AHB/APB
&=)| Program E=| = ITAG | Programming &
Rsé};;igs : : hietiory — Monitoring )
®m  The PulseDL-Il NN accelerator is mounted on the
N UART/SPI —> Alternative AHB b . h I
&) System ey | AHB Master Programming processor us as a peripnera
i Bl ... Dual-Port
Auxiliar
~ AHB BAHB RAM
PulseDL-// P2 "\ .
Neural | dob—s o = |nput/Output peripherals:
Network <='>
A Elaish — (ith dog ‘ ®  Quad/Normal SPI
NN Pulsie  AHB-APB . : .
< > . N = UART (with or without internal buffer)
b | UART2 [ > g nte
' Interconnect b ¥ | Termination
Physical Feat = JTAG
ProceSSor <=> UART3 ,: :, & {SIC? eature
AHBBus )  APBBus]| (buffered) . = GPIO



PulseDL-II: Improvement in Accelerator Architecture (
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Hardware-Software Codesign (
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Embedded Software with Weight-Stationary Mapping (

®  The designed hardware allows different mapping rules

= For NNs with small/medium size, a weight-stationary
mapping scheme can be adopted

®  Weights are stored into PEs before samples come in
(Preparation Phase)

= Only input data, output data and intermediate feature
maps are transferred during inference (Inference Phase)

®  The embedded software enables following features:

® Layer-wise inference pipelining: weights for different
layers are mapped to different groups of PEs, and they
can operate simultaneously

®  Event-level parallelism: Each event is assigned a unique
token, which will be passed in company with feature
maps along the pipeline
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Evaluation of Performance, Power and Area (

Time consumption by layers and version
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System Validation: Experimental Setup (
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System Validation: Digital Logic for Data Acquisition (
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System Validation: Experimental Results (

m  Test waveform:

traditional

methods
(CFD, integral)

%)
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®  Dual-channel synchronous NNs
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m  Runtime statistics:

m  Zynq UltraScale+

LUT 2825 + 89540
FF 517 + 75028
BRAM 80 +48.0

URAM 8 +0

(0.371 + 0.541) W

Static 0.594 W
Performance @ 100 MHz:

13.8 us

8.3k events/sec

Dynamic

Internal inf.

Throughput
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Summary

®  The ability and potential of NNs in signal feature extraction are investigated
= Application-specific NN architectures are designed

= NN accelerator-based front-end electronics is prototyped

m  System-on-Chip digital system with NN accelerator is developed

= System Validation on FPGA platform is done

What’s next:
m  Evaluate the whole system in real-world nuclear detector dataflows

m  Design optimization, ASIC layout, tape-out with advanced technology
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