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➢ Three independent elements:

A. Nuclear Electronics: Readout system and signal features

B. Neural Network: Architectural research, network training...

C. Digital Design: NN accelerator and system-on-chip scheme

➢ Overlay of elements:

AB. ApplicationTraining: NN algorithm research for nuclear signals,

selection and optimization of network architecture

BC. Hardware Mapping:Accelerator hardware implementation of NN

AC. System Prototype: Hardware design in the context of readout system

ABC. JointValidation: Synthesis of the above three

Three Elements of Design Perspectives
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What and to What Extent Neural Nets Can Do (AB)

Estimation of heterogeneous uncertainty 

of nuclear detector signals with 

ensemble of NNs

P. Ai et al 2022 JINST 17 P02032

Computation of the Cramer Rao lower 

bound of timing to find out limits for 

NN and traditional methods

P. Ai et al 2021 JINST 16 P09019
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 We choose Convolutional Neural Networks (CNN) because they 

succeeded in many ML tasks and facilitated parallel computing

 We select four representative building blocks:

 1d convolution layer

 1d deconvolution layer

 fully-connected layer

 nonlinear activation (ReLU)

 Nonlinearity is the key for Inductive Learning (and thus intelligent 

signal processing)         J.C.Ye (2022) Geometry of Deep Learning, Springer

 Without nonlinearity, the weights in the mapping function are the same for 

any input sample. Once learned, they never change.             (transductive)

 With nonlinearity, weights in the mapping function are selectively turned 

off/scaled by nonlinear function.                                         (inductive)

Building Blocks of Network Structure (and Why They Work) (AB)
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 Regression network can be located at the far-end of the 

decoder if an accurate noiseless waveform can be obtained.

 Regression network can also be located at the bottleneck if 

we only have original waveform (and the decoder is optional).

Autoencoder-Based Network Architecture (AB)
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Quantization-Aware Training and Validation (AB)
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➢ A case study of electromagnetic calorimeter 

(ECAL) of NICA-MPD

 64-channel, 12-bit, 62.5M-rate ADC

 Waveform data readout, triggering & timing by 

optical fiber

 power consumption: 250 mW/channel, water

cooling system is needed for heat dissipation

Why Bringing Them to Front-End Electronics (AC)
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Why Bringing Them to Front-End Electronics (AC)

Front-End PCBSiPM

Soldering

Shashlik Calorimeter

Coupling

HighVoltage System

BiasVoltage

Cable

Connection 64-channel

ADC board

Waveform

Sampling

Fiber

Transmission

Event

Reconstruction

➢ A case study of electromagnetic calorimeter 

(ECAL) of NICA-MPD

 64-channel, 12-bit, 62.5M-rate ADC

 Waveform data readout, triggering & timing by 

optical fiber

 power consumption: 250 mW/channel, water

cooling system is needed for heat dissipation

➢ Front-end upgradation with ASIC

pre-amplifier, 200M-rate ADC & NN accelerator
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A Brief Review of PulseDL (BC)
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 The first version of the chip, although a successful practice, has the following limitations:

 A RISC CPU outside the chip (or NN accelerator) is needed to schedule transactions

 Dynamic quantization scheme is adopted and may bring about additional time budget

 The adder tree structure has much space for improvement (especially the temporal adder tree)

 Only manual configuration was done, and deep learning framework had not been supported yet

 The above limitations motivate us to develop PulseDL-II, the new version of the chip

Limitations of PulseDL (BC)
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 Integrate an RISC CPU into the digital design to 

form System-on-Chip (SoC)

 RISC CPU: ARM Cortex-M0

 System Bus: AHB/APB

 The PulseDL-II NN accelerator is mounted on the 

processor AHB bus as a peripheral

 Input/Output peripherals:

 Quad/Normal SPI

 UART (with or without internal buffer)

 JTAG

 GPIO

PulseDL-II: Improvement in System Structure (BC)
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Compared to the last version:

 Adding a new topological 

level: Arithmetic Unit (AU)

 Broadcasting of input feature 

map and kernel

 Optimizing the adder tree 

with partial sum accumulator

 Adding function blocks for 

bias addition and activation

 For quantization compatible 

with TensorFlow or other 

deep learning frameworks, 

rescale and shift are 

supported

PulseDL-II: Improvement in Accelerator Architecture (BC)

B.Jacob et al 2018 CVPR 2704 13



Hardware-Software Codesign (BC)

HDL to design 

hardware 

components

Verilator & VUnit for 

simulation

Python to develop 

NN in TensorFlow 

framework

HDF5 to save design 

database

C to design ARM 

embedded software
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 The designed hardware allows different mapping rules

 For NNs with small/medium size, a weight-stationary

mapping scheme can be adopted

 Weights are stored into PEs before samples come in 

(Preparation Phase)

 Only input data, output data and intermediate feature 

maps are transferred during inference (Inference Phase)

 The embedded software enables following features:

 Layer-wise inference pipelining: weights for different 

layers are mapped to different groups of PEs, and they 

can operate simultaneously

 Event-level parallelism: Each event is assigned a unique 

token, which will be passed in company with feature 

maps along the pipeline

Embedded Software with Weight-Stationary Mapping (BC)
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 Evaluation settings

 Xilinx ZCU104 

Evaluation Board

 100 MHz working 

frequency

 post-synthesis

(PulseDL-II NN accelerator is 

isolated for fair comparison 

with PulseDL):

Evaluation of Performance, Power and Area (BC)

Performance

(time consumption)

1.83x less

Power

(energy consumption)

1.81x less

Area

(resource utilization)

comparable or less

Used NN workload 16



System Validation: Experimental Setup (ABC)
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FEP Card Wrapper

System Validation: Digital Logic for Data Acquisition (ABC)
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 Test waveform:

𝑠 𝑡 = 𝐾
𝑡 − 𝑡0
𝜏

𝑒−
𝑡−𝑡0
𝜏 𝑢(𝑡 − 𝑡0)

𝜏 = 40 𝑛𝑠, 𝐾 = 𝐾1𝐾2

𝑆𝑁𝑅 = 20𝑙𝑜𝑔10
𝐾1

𝜎𝑏𝑎𝑠𝑒
= 47.4 𝑑𝐵

𝐾2~𝑈 0.5, 2.0

 Sample 32 points per event

 Dual-channel synchronous 

waveform input
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System Validation: Experimental Results (ABC)

 Runtime statistics:

 Zynq UltraScale+

t0

K

time energy

traditional

methods

(CFD, integral)

floating-

point

NNs

quantized

NNs

94 ps

(66 ps)

83 ps

(59 ps)

74 ps

(52 ps)

1.36%

0.23%

0.40%

Resources (area):

LUT 2825 + 89540

FF 517   + 75028

BRAM 8.0    + 48.0

URAM 8      + 0

Power:

Dynamic (0.371 + 0.541) W

Static 0.594 W

Performance @ 100 MHz:

Internal inf. 113.8 us

Throughput 8.3k events/sec



 The ability and potential of NNs in signal feature extraction are investigated

 Application-specific NN architectures are designed

 NN accelerator-based front-end electronics is prototyped

 System-on-Chip digital system with NN accelerator is developed

 System Validation on FPGA platform is done

What’s next:

 Evaluate the whole system in real-world nuclear detector dataflows

 Design optimization, ASIC layout, tape-out with advanced technology

Summary
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THANK YOU!

ANY QUESTIONS?
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