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1.1 Background

Time of Flight System— Fast Time & Real Time
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Scintillators
* Strong Light Yield
* Slow Time Performance
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MCP-PMT
* Fast!
* Low QE & Expensive

TDC

e Early time
acquisition plugin

e Support CFD & LED

FADC

* Newly Developed
acquisition device

*  Whole waveform
stored for analysis.

LED

* Constant Threshold
leading Edge
Discrimination

CFD

* Constant Fraction
leading edge
Discrimination

Template Fitting
* Reduce time jitter
caused by noise

CNN

* Time correction by
features extracting
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2.1 Different Timing Methods
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2.2 Time of Flight System
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Cherenkov radiation detection
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2.3 Timing of Flight System
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2.4 Time of Flight System
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3.1 CNN structure and Data Preparation
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The structure of timing CNN-based model

Training Dataset

» 6000 paired waveforms (AT = 0 ps)
» Delay the first waveform from -480 ps to 590
ps at 10ps intervals. (AT =-480 :10 :590 ps

108 labels
) The delaying is feasible here

because the shape of the

waveform does not change

L0 with the AT.

CNN Paramaters

LR: 0.0001

EOPCH: 461

Batch Size: 36

Lose Function: MSE
Optimizer: Adam

GPU NVIDIA Quadro T1000
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3.2 CNN timing results
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* For the Global Std Dev, the CNN has 50% improved compared with the optimized CFD.

* The results show that the CNN successfully corrects the side peaks to the middle and furtherly

improve the time resolution.
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3.3 CNN timing among trained labels
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Mean -295.9 -197.7 -98.5 102.8 200.8 298.9
Sigma 29.7 27.4 29.9 28.5 28.8 28.6 29.9

* For the six groups whose labels are among the trained labels, the CNN shows uniform,

precise and accurate time resolution.
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3.4 CNN timing beyond trained labels
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| RealTime | 285 | 185 | 85 | 8 | 185 | 285

Mean -281.2 -183.4 -83.3 87.3 186.6 284.7
Sigma 29.8 29.1 30.0 30.0 28.5 28.5

* For the six groups whose labels are beyond the trained labels, the CNN also shows

uniform, precise and accurate time resolution. (No overfit in the model)
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4 Summary

* The CNN method shows excellent ability in the PMT waveform
feature extraction and make improvements on the time
information correspondingly.

* The fasting timing MCP-PMT is being developed and improvement
in our laboratory. In order to furtherly realized the real-time
timing analysis with the CNN method, more efforts are to be done

in the electronics to write CNN into FPGA.
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