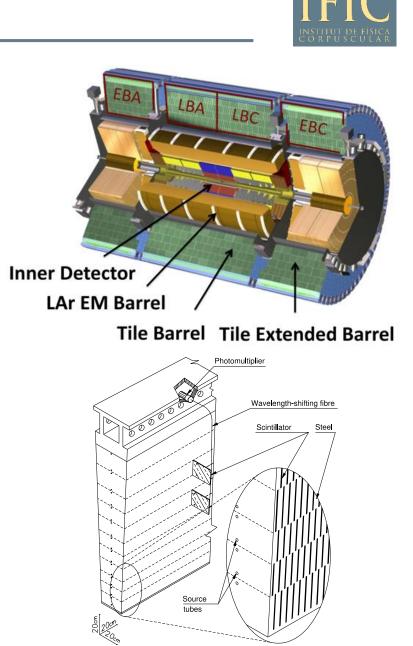


Integration and Commissioning of the ATLAS Tile Demonstrator Module for Run-3

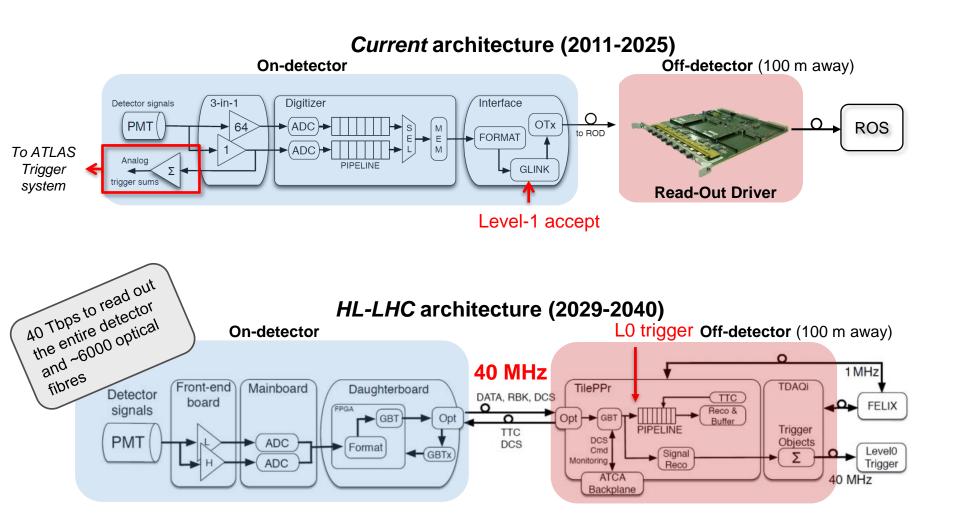
Fernando Carrió Argos Instituto de Física Corpuscular (CSIC-UV) on behalf of the ATLAS Tile Calorimeter System



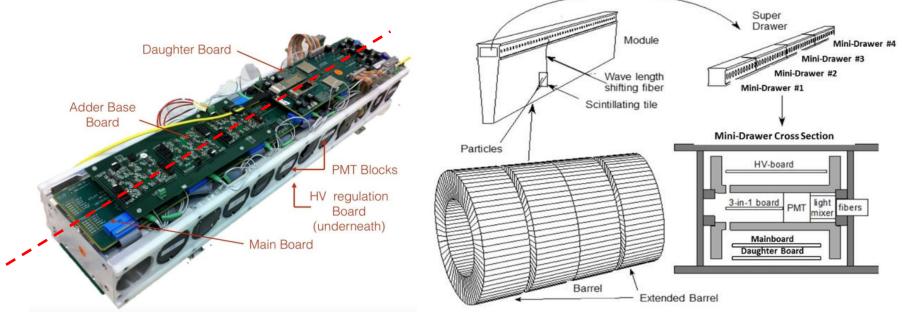
August 5th 2022

Work supported by the Spanish Ministry of Science and the European Regional Development Funds - RTI2018-094270-B-I00

ATLAS Tile Calorimeter


- Central hadronic calorimeter of the ATLAS experiment
 - Covering the central region $|\eta|{<}1.7$
- Contributes to the measurement of energies of hadrons, jets, τ -leptons and E_T^{miss}
- Sampling calorimeter made of steel plates and plastic scintillator tiles
 - Wavelength shifting fibers and 2 PhotoMultiplier Tubes (PMTs) per cell
 - Granularity of $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$ in most cells
 - Dynamic range from ~10 MeV to ~2 TeV per calorimeter cell
- Divided in 4 partitions: EBA, LBA, LBC, EBC
 - Each partition has 64 wedges modules
 - One module hosts up to 45 PMTs
 - Electronics is located in extractable "*drawers*" at the outermost part of the module
 - 9852 PMT channels for the complete readout

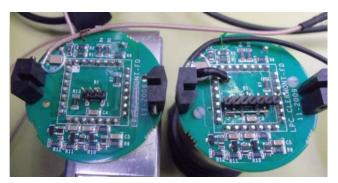
TileCal readout architecture at the HL-LHC


 High Luminosity LHC will achieve instantaneous luminosities a factor 5-7 larger than the LHC nominal value around 2029

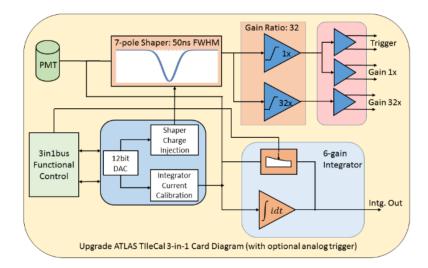
Demonstrator Module

- Hybrid module composed of 4 mini-drawers
 - Using the clock and readout strategy for the HL-LHC
 - But providing analog trigger towers information to the ATLAS trigger system
- Each mini-drawer has 2 independent sections for redundant cell read out
 - 12×PMTs & 12×Front-End Boards (FEBs) → read out 6 TileCal cells
 - 1×MainBoard, 1×DaughterBoard, 1×HV distribution board

On-detector electronics: FEBs and Active Dividers

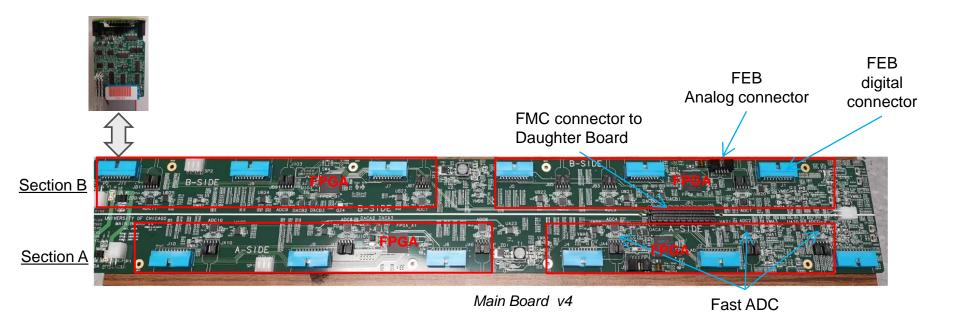

Analog

- Front-End Boards: Upgraded 3-in-1 cards
 - Provides PMT pulse shaping with 2 gain amplifications (1:32 ratio -> Low and High gain)
 - Second copy of Low gain signal for analog trigger signals
 - Built-in Charge Injection System for electronics calibration
 - High-precision integrator readout for luminosity measurements and Cs calibration
- Active Dividers
 - Distribute the HV for PMT dynodes using transistors
 - Expected a maximum PMT anode current of 40 μA
 - Provide an excellent linearity up to 100 μA

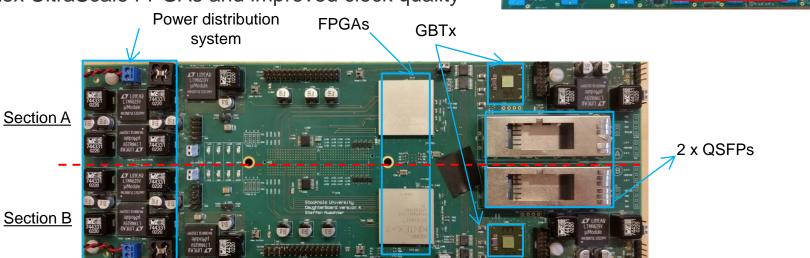


Control &

Upgraded 3- in-1 card



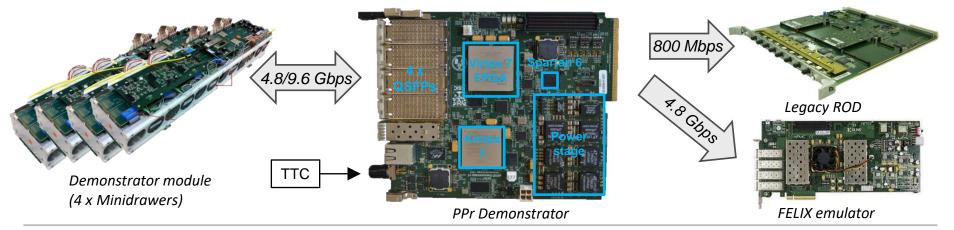
Active dividers


- MainBoard:
 - Digitizes signals coming from 12 FEBs
 - Fast readout: 12-bit dual ADCs @ 40 MSps for 2 gain signals
 - Slow readout : 16-bit SAR ADCs @ 50kSps for integrator readout
 - Provides digital control and configuration of FEBs + high-speed path to the DaughterBoard
 - Divided in two halves for redundancy \rightarrow readout and power distribution

On-detector electronics: DaughterBoard

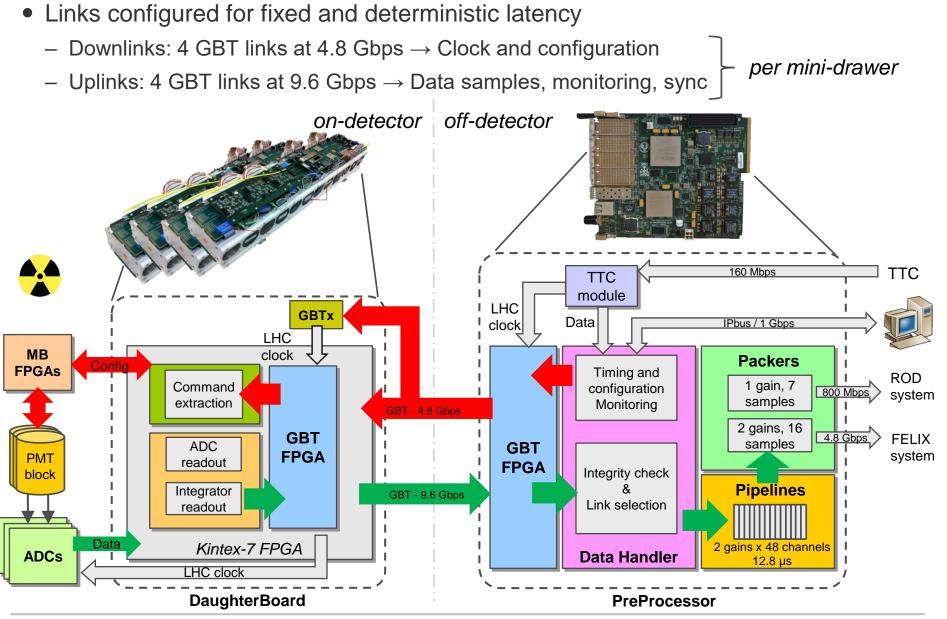
IFIC INSTITUT DE FÍSICA CORPUSCULAR

- High-speed interface with the off-detector electronics
 - Collection of PMT digitized data from Mainboards and transmission to off-detector electronics
 - Clock and command distribution to FEBs
 - Data link redundancy
- DaughterBoard v4 installed in Demonstrator
 - 2 × GBTx chips for LHC clock recovery and distribution
 - 2 × Kintex 7 FPGAs for communication and data processing
 - 2 × QSFP optical modules
- Possible upgrade to DaughterBoard v6 this year
 - Kintex UltraScale FPGAs and improved clock quality


Off-detector electronics: PreProcessor Demonstrator

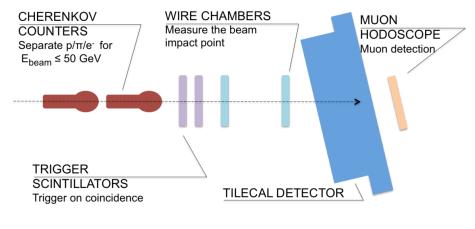
IFIC INSTITUT DE FÍSICA CORPUSCULAR

- Off-detector readout system based on FPGAs and high-speed modules
 - Data acquisition and processing @ 40 MHz
 - Distribution of the LHC clock towards the on-detector electronics
 - Interface with the ATLAS readout system
- Double AMC board equipped with 4 QSFPs, Virtex 7, Kintex 7 and Spartan 6
 - Capable of operating 1 upgraded TileCal module \rightarrow up to 4 Mini-drawers
 - Operated in an ATCA shelf 100 meters away from the detector
- Enables backward compatibility between the Demonstrator and the current ATLAS TDAQ system
 - Communication with the Timing, Trigger and Control (TTC) system
 - Triggered events are transferred to the ReadOut Drivers and FELIX system
- Possible upgrade to final version → Compact Processing Module

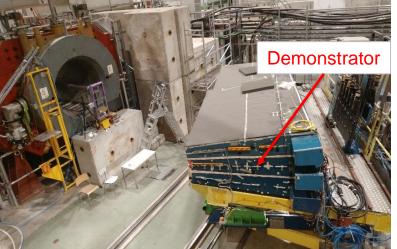

Compact Processing Module

F. Carrió - 23rd Virtual IEEE Real Time Conference - 2022

Firmware implementation

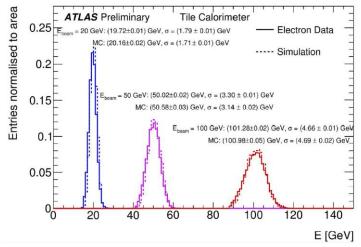

F. Carrió - 23rd Virtual IEEE Real Time Conference - 2022

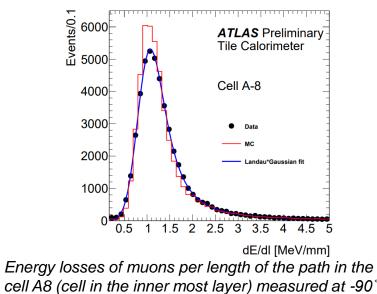
Demonstrator construction and test beams

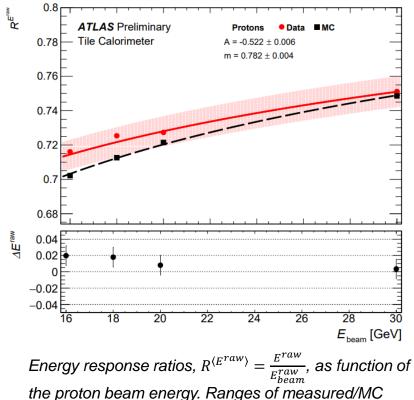

IFIC INSTITUT DE EISIC CORPUSCULA

First Demonstrator

- Demonstrator module was initially built in 2015
 - Latest versions of the upgraded readout electronics & mechanics
- Seven test beam campaigns between 2015 and 2018 at the North Area of the SPS accelerator (CERN)
 - Detector modules equipped with upgraded and legacy electronics for performance comparison
- Beams of hadrons, electrons and muons at different energy ranges and projective angles
 - Study the calorimeter response and S/N performance of the new electronics

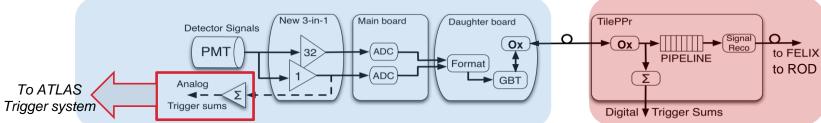

Beam line elements


Test beam setup at SPS

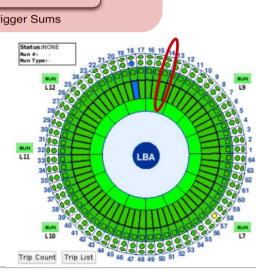


• Data to Monte Carlo response with hadrons, electrons and muons

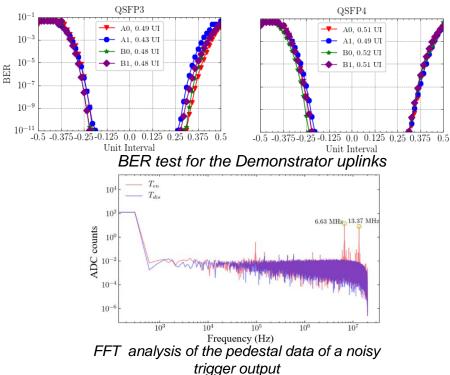
Calibration for detector response to beams of single electrons better than 2%


variations are within 2.5%

Insertion in the ATLAS experiment

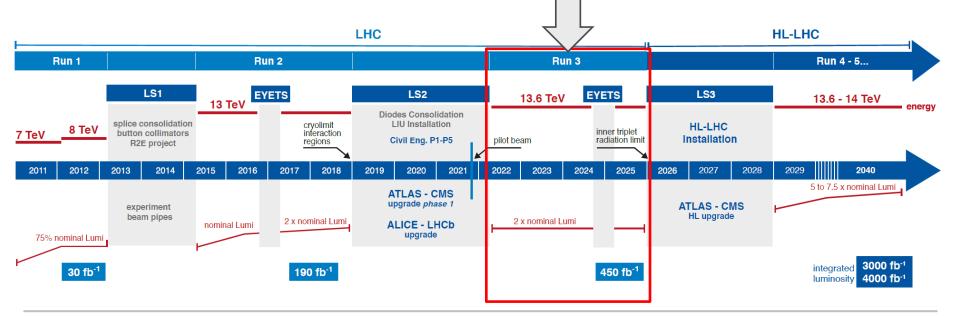

- Demonstrator module inserted in ATLAS July 2019
 - Exercised during the LHC Long Shutdown 2 (2019-2021)
- Operating with backward compatibility with the current ATLAS DAQ system
 - Clock and configuration commands from legacy TTC
 - Triggered event data transmitted to ATLAS DAQ
 - Provides analog cell sums to the ATLAS trigger system

Insertion of the Demonstrator in LBA



- Fully integrated with the TDAQ and Detector Control System (DCS) softwares
 - Front-end electronics configuration
 - Physics, calibration and laser runs
 - Event builder, offline reconstruction, data quality monitoring
 - HV and LV control and monitoring through the DCS software

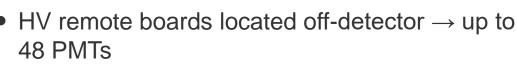
 Evaluation of the signal quality between the Demonstrator and the PreProcessor using embedded FPGA resources

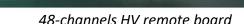

- Comissioning of the analog trigger towers
 - Detection of noisy trigger outputs during installation
- Date: 2022-07-05 17:02:31 CES

Event display of a collision event at 13.6 TeV recorded in ATLAS on 5th July 2022

- Recorded multiple runs with cosmics rays, LHC splash events, laser and CIS
 - Recorded first events at 13.6 TeV this July!
- Demonstrator shows a good and stable performance

- New conditions imposed by HL-LHC requires a redesign of the TileCal on-detector and off-detector electronics with a new clock and data readout strategy
- Construction of a "hybrid" upgraded module and off-detector prototypes
 - Extensively exercised during seven test beam campaigns (2015-2018)
- Demonstrator module inserted and commissioned in ATLAS between 2019-2022
 - Implements the clock and readout architecture for the HL-LHC
 - Backward compatibility with the current ATLAS TDAQ and DCS systems
 - Ready for taking data in the ATLAS experiment for Run-3 (2022-2025)!




THANKS FOR YOUR ATTENTION

Low and High Voltage system

- Three stage system with redundancy
 - 200V from off-detector
 - 8 redundant bricks per mini-drawer (LVPS) to power 4 mini-drawers with 10V
 - Point-of-Load regulators at the Mainboards and DaughterBoards
- Fully control and monitoring from the ATLAS DCS system

- Provide individual control, monitoring and regulation per PMT
- Easy access and avoid radiation issues
- HV distribution board per mini-drawer in the ondetector \rightarrow up to 12 PMTs
- 100 meter long HV cables \rightarrow 48 pairs of wires
- F. Carrió 23rd Virtual IFFF Real Time Conference 2022

HV distribution board

Bricks

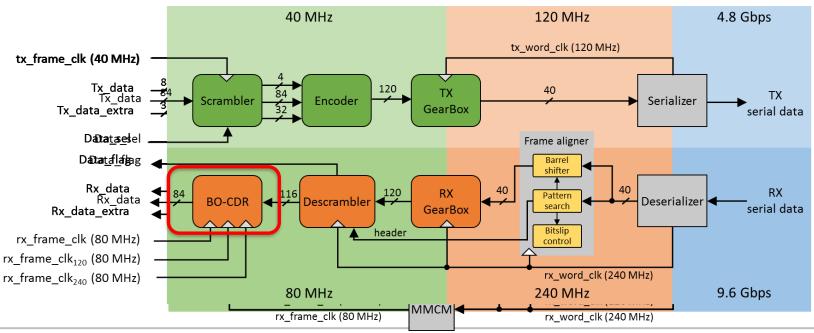
Low Voltage Power Supply

- Data protocol between the DaughterBoards and the TilePPr
- Developed by CERN for data communcation in radiation environments
 GBTx, LpGBT, GBT-SCA chips
- Main features
 - 120 bit words @40 MHz \rightarrow **4.8 Gbps**
 - Forward Error Correction capabilities
 - Reed Solomon encoding → up to 16 consecutive error bits
- Two possible implementations in FPGA:
 - Standard: easy implementation, but no fixed and determinitisc latency
 - <u>Latency Optimized (LO)</u>: fixed and deterministic latency at the cost of a complex implementation
 119

4 bits	4 bits	80 bits	32 bits
Header	Slow Control	Data	FEC

Frame	Wide-Bus
3.2 Gbps	4.48 Gbps

Tile GBT implementation


- Implementation of 16 LO GBT links in the TilePPr
 - Downlink: GBT code with minor modifications

not enough bandwidth \rightarrow 5.76 Gbps only for the PMT samples!

Uplink: not enough clock resources

time stamp the data \rightarrow RX and TX clocks are not in phase

- Two important modifications on the original GBT code
 - Data rate increased by factor two: from 4.8 Gbps to 9.6 Gbps
 - $BO-CDR \rightarrow$ optimization of clocking resources and data retiming

F. Carrió - 23rd Virtual IEEE Real Time Conference - 2022