

System Design and Prototyping for the CMS Level-1 Trigger at the High-Luminosity LHC

Piyush Kumar & Bhawna Gomber (on behalf of the CMS collaboration)

CASEST, School of Physics, University of Hyderabad, Hyderabad, Telangana, India

23rd Real Time Conference

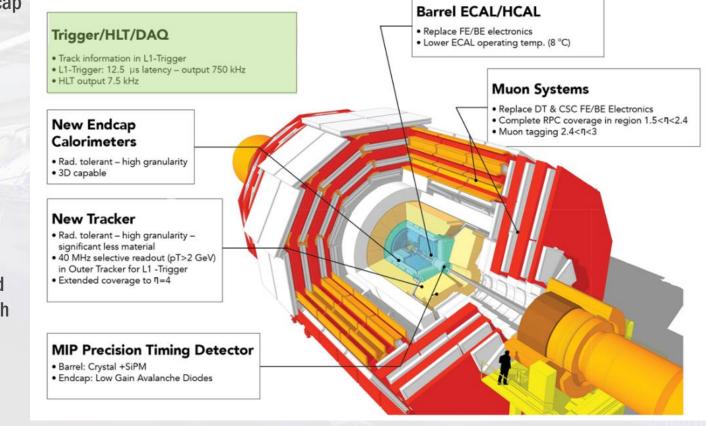
High-Luminosity LHC (HL-LHC)

23rd Real Time Conference

- Luminosity: indicate the performance of an accelerator
 - Proportional to: number of collisions that occur in a given amount of time
 - higher the luminosity: the more data the experiments can gather
- Aim: to deliver a much larger dataset for physics to the LHC experiments
- Pile-up: Number of simultaneous protonproton interactions (~200)
 - With high pile-up, need more advanced selection algorithms at L1 trigger
- This increased datasets will help in the high precision measurements of:
 - Standard model (SM)
 - new territories beyond the SM (BSM)

	Instantaneous Luminosity	S	Pile-up (aver	age)	Integrated luminosity	
Run-2	$2.1 \times 10^{34} \text{ cm}^{-2}$	² S ⁻¹	55		160 fb ⁻¹ (4 years)	
HL-LHC (baseline)	5 x 10 ³⁴ cm ⁻² s	S ⁻¹	140		3000 fb ⁻¹ (10 years)	
HL-LHC (ultimate)	7.5 x 10 ³⁴ cm ⁻²	² S ⁻¹	200		4000 fb ⁻¹ (10 years)	
2021 2022 FMAMJJJASONDJFMAMJJASONDJF	2023 2024 202 FMAMJJASONDJFMAMJJASONDJFMAMJJ Run 3					2029 DIFMAMIJIAS(
2030 2031 FMAMJJASONDJFMAMJJASONDJF		2034 DJFMAMJJASON S4	2035 DJFMAMJJASOND	2036 JFMAMJJASC	Run 5	
Shutdown/Technical stop Protons physics Ions Commissioning with beam Hardware commissioning/magnet tra	aining				Last	updated: January 2
	Fig: H	IL-LHC tim	neline			

NPSS


IEEE

CMS HL-LHC upgrade

- The CMS detector planned upgrade for the HL-LHC era:
 - New pixel and strip tracking detector
 - New high-granularity calorimeter (HGCAL) of the endcap
 - New frontend/backend electronics for the:
 - Barrel calorimeter
 - Electromagnetic calorimeter (ECAL)
 - Hadronic calorimeter (HCAL)
 - Muon system
 - Drift tube (DT)
 - Cathode strip chambers (CSC)
 - 40 MHz Scouting system
 - can be used to scrutinize the collision events and identify potential signatures unreachable through standard trigger selection processes
 - L1 trigger:
 - Inclusion of the tracker information
 - Extensive usage of:
 - large FPGA (Virtex UltraScale+/Kintex UltraScale)
 - high-speed optical links (28 Gbps)

Summary of CMS HL-LHC Upgrades

Fig: CMS detector HL-LHC upgrade

L1 trigger principle

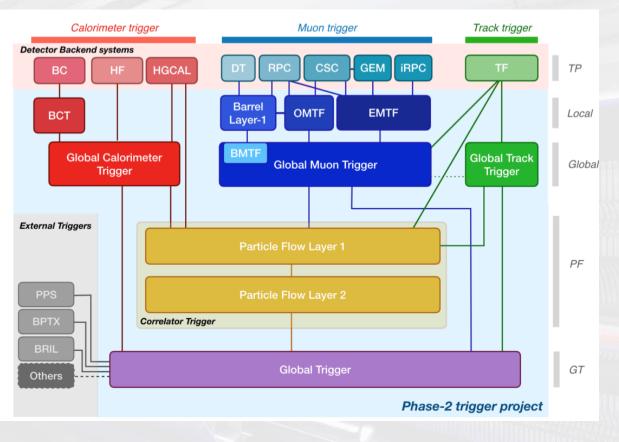
- At design parameters the LHC produces:
 - ~ 10⁹ events/second in CMS detectors.
 - each event is ~ 1 MB.
- 10⁹ events/s x 1 Mbyte/events = 10¹⁵ bytes/s = 1 PB/s (1 Petabyte/second)
- Problem:
 - It is impossible to store and process this large amount of data
- Solution:
 - a drastic rate reduction has to be achieved
 - Level-1: 40 MHz to 750 kHz
 - High level trigger (HLT): 750 kHz to 7.5 kHz
- A trigger is designed to reject the uninteresting events and keep the interesting ones for physics.


- i.e. LHC experiments (ATLAS/CMS)
- ► ~100M channels
- ► ~1-2 MB of RAW data per measurement
- ► ~40 MHz measurement rate (every 25 ns @ the LHC)

... and really FAST

Modern large-scale experiments are really BIG

Data volume is a *key issue* in modern large-scale experiments



L1 trigger architecture

- The HL-LHC L1 trigger receives input from the backend electronics of:
 - Calorimeters
 - Muon spectrometers
 - Track finder
- Calorimeter trigger: (creating clusters from the energy deposited by the particle in the calorimeter)
 - Regional calorimeter trigger (RCT)
 - Barrel ECAL and HCAL
 - Global calorimeter trigger
 - RCT, forward hadronic (HF), and HGCAL
- Correlator trigger (CT) receives input from all the trigger sub-system:
 - Aim: identifying and reconstructing all the particles with a particle flow algorithm
- Global trigger:
 - Aim: Issues the final L1 trigger decision

28 July, 2022

- Input rate: 40 MHz
- Increased output rate: 100 kHz => 750 kHz
- Increased latency: $3.8 \ \mu S \Rightarrow 12.5 \ \mu S$

IEEE

L1 trigger architecture

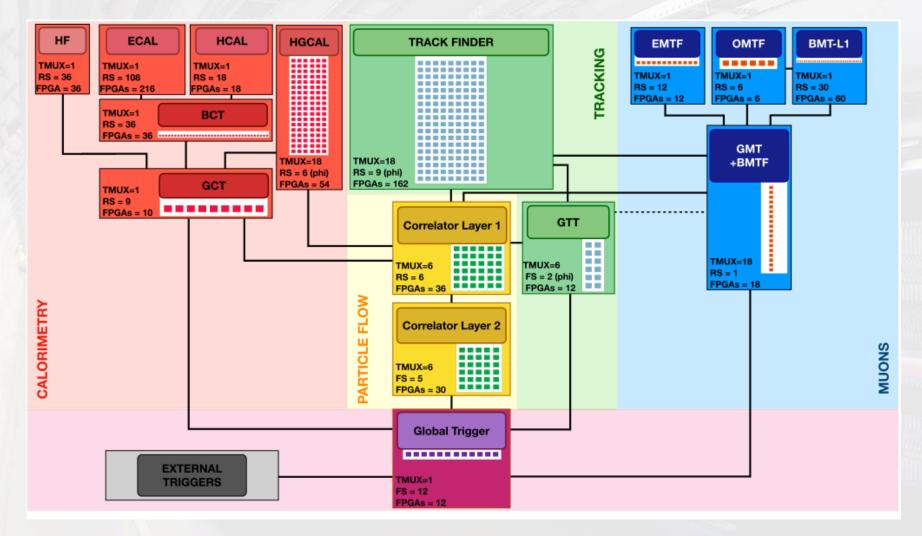
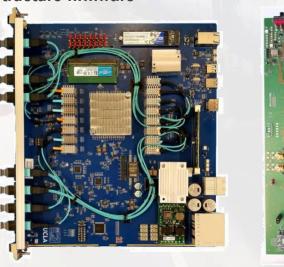


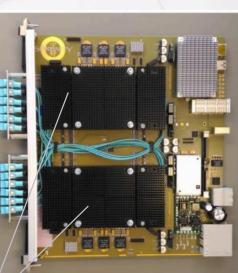
Fig: CMS Phase-2 L1 trigger design. Mentioning the time-multiplexing (TMUX) period, regional (RS) and functional segmentation (FS), and the number of FPGAs for each architecture component.



©ieee NPSS **IEEE**

Technology R&D examples

- ATCA based electronics
 - Generic high I/O (> 100) processing boards
 - One or two Virtex UltraScale+/Kintex UltraScale FPGA from Xilinx
- Wide range of testing and prototypes
 - Extensive link tests @ 28 Gb/s
 - endurance test (< 10⁻¹² BER) of the FPGA quads.
 - Thermal performance test and simulation
 - Heat sink test (in order to keep operating temperature bellow 100^oC)
 - Algorithm firmware
 - Infrastructure firmware



Ocean

BMT-L1

APx

APx 25G quad eye scans25.78125 Gbps

binary sequence

(PRBS31)

(CDR) ON

٠

Using pseudorandom

Clock and data recovery

Heat sink

PSS

IEEE

Serenity

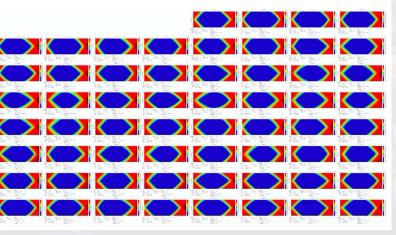
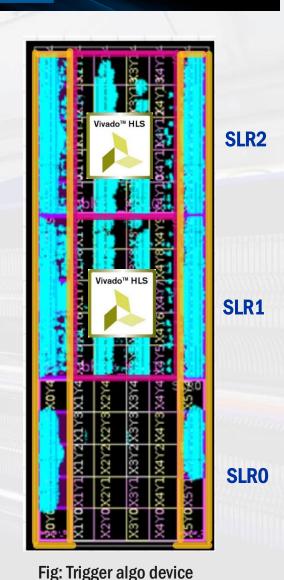


Fig: APxF 25G eye scans, quads 121-135

Trigger Algorithms Development

- The trigger algorithms are implemented by using Xilinx Vivado-HLS (high level synthesis) tool
 - Rapid prototyping •
 - Codes are written in C++ .
 - HLS synthesizes the code to generate the RTL and
 - Provide an early estimate of latency and resource • utilization
 - Increased ease of collaboration and code sharing for algorithm design
- **Downstream:**
 - Integration of the algo with the firmware shell (orange box) that provides
 - MGT link instantiation •
 - Timing and Control Distribution System (TCDS) ٠ connectivity
 - **DAQ** support
 - and an AXI interface to the controlling system
 - Uses HDL wrapper for integration (magenta box) .

Aim is to write HLS algorithms in a framework agnostic way



*	Summary:					
		Target	Estimated	d Uncert		
	p_clk	4.17	2.917	7	1.25	
	min máx 32 33	Inte min min 2 6	rval P max 6 fu	ipeline Type Inction		
<pre>== Utilization Estimate ====================================</pre>	es					
+Name	BRAM_18K	DSP48E		LUT	URAM	
DSP Expression FIFO Instance Memory Multiplexer Register	- - - - - 0	- - - - -	- 0 - 49827 - - 3360	- 4 - 78752 - 56 32	- - - -	
Total	01	0	53187	78844		
Available SLR	1440	2280	788160			
Utilization SLR (%)						
Available	4320	6840	2364480	1182240	960	
Utilization (%)	0	0	2	6	0	

Performance Estimates

Timing (ns);

Fig: Vivado-HLS performance estimates of trigger algorithm

implementation

Barrel calorimeter segmentation

Fig: Barrel calorimeter segmentation

©ieee NPSS **IEEE**

L1 Trigger Algorithms

Calorimeter Trigger

RCT geometry for the FPGA processing: $17\eta \times 4\phi$ of the barrel (total 36 APx cards)

IEEE

Regional Calorimeter Trigger (RCT) creates electrons/photons energy clusters and towers and sends them to Global Calorimeter Trigger (GCT)

Detector Backend systems

Trigge

Timing (ns)

Summary

ap_clk 4.17

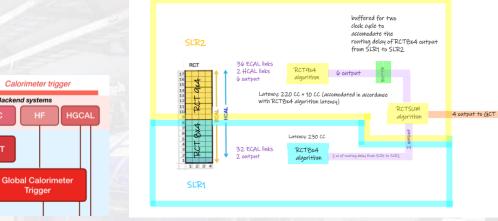
Summary

Latency (clock cycles)

Latency Interval

230 230 6

min max min max Type


Clock Target Estimated Uncertainty

3.491

6function

BCT

- The Xilinx UltraScale+ XCVU9P FPGA supports • 3 super logic regions (SLR).
- For efficient implementation, the algorithm is partitioned SLR wise in 2 SLR (SLR2 and SLR1)
- RCT algorithm is divided in three part
 - RCT8x4: •
 - Implemented in SLR1
 - Processes the 8n x 4 ϕ RCT regions
 - only ECAL.
 - RCT9x4 •
 - implemented in SLR2
 - processes the 9n x 4 ϕ RCT regions
 - **ECAL**
 - 16n x 4 ϕ HCAL data.
 - RCTSUM •
 - implemented in SLR2
 - combines both the algorithm and sends the output to the GCT.

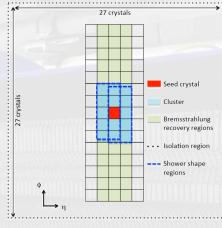
Fig: RCT algorithm organisation and dataflow

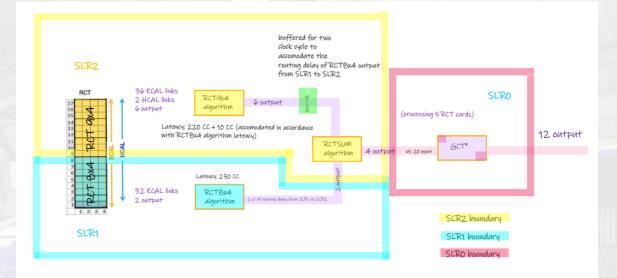
E	-	Summary

1.25

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	-	0	24202	-
FIFO	-	-	-	-	-
Instance	8	0	303544	464948	-
Memory	-	-	-	-	-
Multiplexer	-	-	-	16292	-
Register	30	-	23821	1813	-
Total	38	0	327365	507255	0
Available	4320	6840	2364480	1182240	960
Available SLR	1440	2280	788160	394080	320
Utilization (%)	~0	0	13	42	0
Utilization SLR (%)	2	0	41	128	0

Fig: RCT algorithm HLS results




Fig: e/gamma cluster making in RCT algorithm

The implementation is scalable for the region of $17\eta \times 6\phi$ (can use 3 SLRs). RCT APx board will reduce from 36 to 24

RCT to GCT slice test

- The GCT algorithm (merging the energies between the RCT cards in phi direction) is synthesized in Vivado-HLS
- The RCT (SLR2 and SLR1) and GCT (SLR0) is implemented together in XCVU9P FPGA.
- Tested on a single card:
 - Replicate the 4 RCT output links x5 (20 input) ~ GCT processing 5 RCT cards
- Implementation details
 - XCVU9P-FLGC2104-1-E FPGA
 - Clock: 240 MHz
 - Link bandwidth: 16 Gbps

©ieee NPSS

Fig: RCTTDR and GCT algorithm implementation in three SLR

Performance Estimates

_	rinnig (ns)									
	Summary									
	Clock	Target	Estimated	Uncertainty						
	ap_clk	4.17	2.909	1.25						

Latency (clock cycles)

[Summary							
Latency Interval								
	min	max	min	max	Туре			
	120	120	6	6	function			

Utilization Estimates

Summary

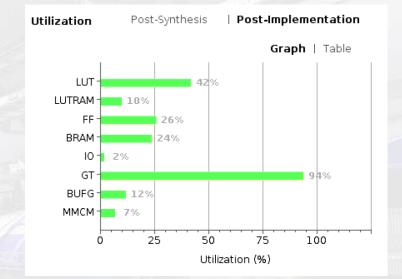

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	-	0	1444	-
FIFO	-	-	-	-	-
Instance	-	-	27703	146555	-
Memory	-	-	-	-	-
Multiplexer	-	-	-	56	-
Register	0	-	82036	36864	-
Total	0	0	109739	184919	0
Available	4320	6840	2364480	1182240	960
Available SLR	1440	2280	788160	394080	320
Utilization (%)	0	0	4	15	0
Utilization SLR (%)	0	0	13	46	0

Fig: GCT algorithm HLS results

RCT to GCT slice test

- The bitstream is generated and the project passes the timing constraints.
- Following are the algorithms device placement:
 - RCT8x4: SLR1
 - RCT9x4: SLR2
 - RCTSUM: SLR2
 - GCT: SLR0
- Post implementation device utilization is within the boundary.
- Bitstream is successfully tested on the APd1 (APx demonstrator board) board
 - Test vector generated via Monte Carlo physics simulations for different physics models.

IEEE

Timing	Setup Hold	Pulse Width
Worst Negative Slack (WNS):	0.019 ns	
Total Negative Slack (TNS):	0 ns	
Number of Failing Endpoints:	0	
Total Number of Endpoints:	1434128	
Implemented Timing Report		

Fig: Utilization and timing summary (setup)

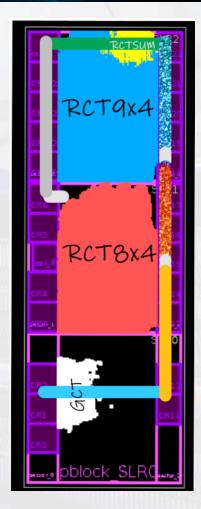


Fig: GCT device implementation

$F_{max} = 1/(4.167-0.019) \sim 241 \text{ MHz}$

Muon trigger

- The function of the muon trigger: ٠
 - Identification of the muon tracks
 - Measure momenta •
- inputs in the form of muon stubs (32-64 bits each) •
- through Inputs (stubs) are relaying various • electronics regions:
 - **Barrel**:
 - Drift tube (DT)
 - **Resistive plate chambers (RPC)**
 - **Endcap:** •
 - very forward extension iRPC •
 - cathode strip chambers (CSC) •
 - gaseous electron multiplier (GEM) •
- Full implementation of the barrel algorithm ٠
 - Tested on small KU040 FPGA
 - Algorithm clock: 160 MHz
 - BMT latency: 2.25 µS

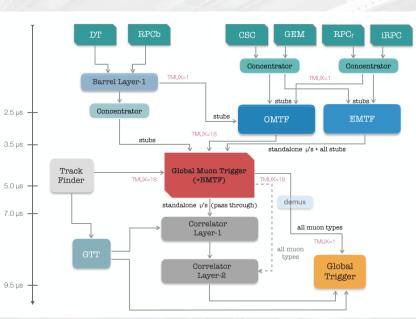


Fig: Muon trigger architecture

DSP	FF	LUTs	BRAM	
10%	17%	37%	46%	

[©]IEEE NPSS

IEEE

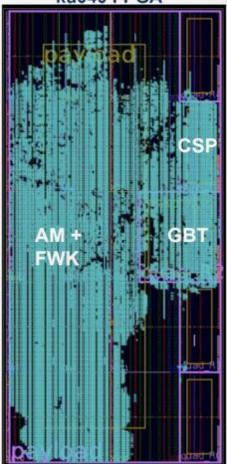


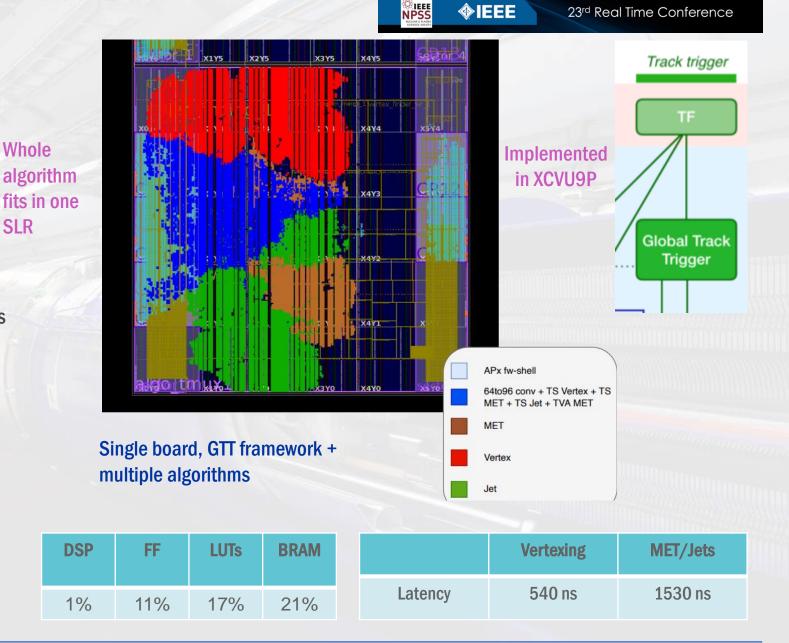
Fig: barrel algorithm implementation

Stubs: position, bend angle, and timing information of the muons

ku040 FPGA

23rd Real Time Conference

Track trigger

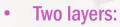

Global track trigger algorithm:

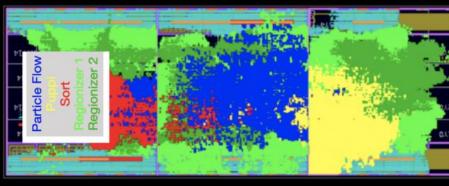
- Aim: •
 - **Reconstruction of the primary vertices** ٠

Whole

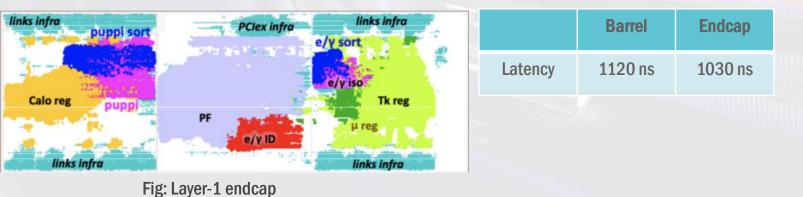
SLR

- Identify track-only objects ٠
- Uses 6 APx and 6 serenity board •
- **Primary Vertex (PV) Finding:** •
 - Origin of tracks constrained to ~1mm ۲
 - Remove pileup to maintain manageable rates ٠
- Track-Vertex Association: •
 - Select tracks consistent with the PV ۲
- **Track-based Jet Finding:**
- Track-based missing transverse energy (MET) .
- Track-based Missing H_T* .


H_T : scalar sum p_T of jets


Correlator trigger Correlator trigger layer-1

- Aim: Collect information from calorimeters/muon systems/tracker, combine them
 - reconstruct the particles and identify them.
- Employs algorithms for:
 - Particle Flow (PF) and Particle per pile-up identification (PUPPI) (barrel + endcap)
 - Jets/Missing transverse energy (MET)/H_T
 - Taus, Isolation, NN MET, electron/photon (egamma)

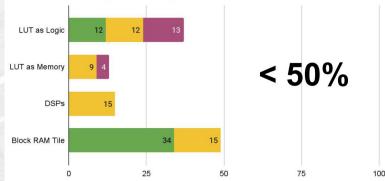


- Correlator Layer-1: Performs full PF+PUPPI create particle-flow candidates
- Correlator Layer-2: use PF candidates to reconstruct physics objects

Fig: Layer-1 barrel

NEEE 23rd Real Time Conference

- Full working PF+PUPPI
- Barrel/endcap implemented using VU9P-2


VU9P	DSP	FF	LUTs	BRAM
Barrel	33%	36%	46%	38%
Endcap	24%	24%	30%	32%

Global trigger

- Final stage of the Level-1 trigger
- Aim: responsible for implementing the trigger menu
- Based on serenity board
 XCVU9P FPGA
- Flexible design:
 - can be adapted for future algorithms
- 480 MHz algorithm clock
- Total latency of the GT Algorithm
 - ~250 ns (10 Bunch-crossing)
 - Budget: 40 BX (1000 ns)

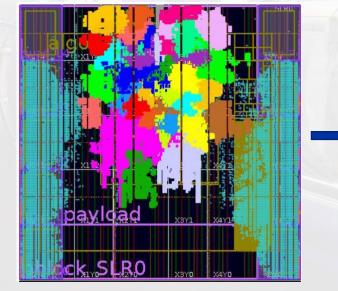
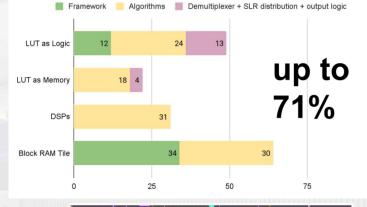



Fig: 39 algorithm placed in 1 SLR (total 117 algorithms for 3 SLR)

Resource distribution in GT algorithm board with 234 Algorithms:

Flexible System **IEEE**

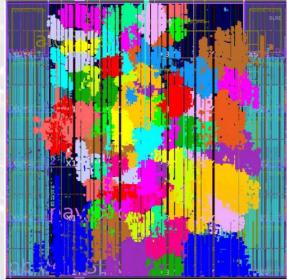
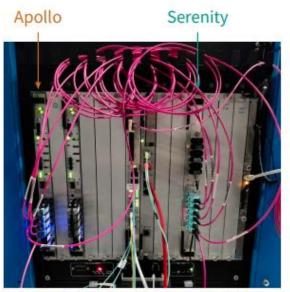


Fig: 78 algorithm placed in 1 SLR (total 238 algorithms for 3 SLR)

23rd Real Time Conference

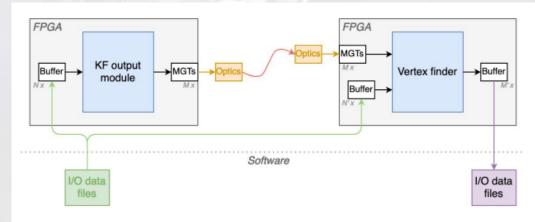
100

23rd Real Time Conference


Slice test

Track finder (backend) => Global track trigger (GTT)

- VU7P Apollo => KU15P Serenity test
 - Apollo algo firmware: Final subcomponent of track finder
 - Serenity algo firmware: Vertexing algorithm
 - Tracks sent over 18 links
- inputs is injected into the buffers on Apollo
 - Generated via CMS software (CMSSW)
- Outputs is captured on the Serenity buffer
 - Compared with expectations: 100% agreement


Correlator layer 1 (Serenity) \rightarrow Layer 2 (Serenity)

- Layer-1 algo input: HGCAL => jets
- Layer-2 algo output: electron/photon (egamma)
- 100% agreement with emulator

IEEE

TIF crate (Apollo connected to Serenity)

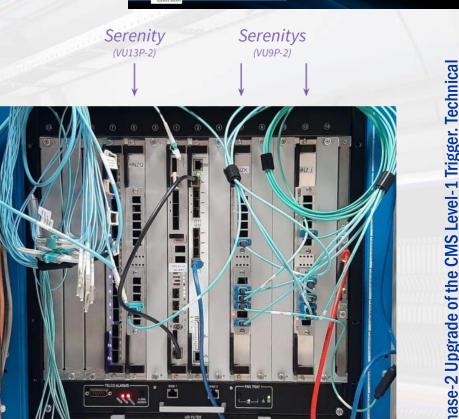


Fig: Track finder and GTT board placement in the TIF crate

Summary

- Key technological choices to leverage the HL-LHC high data-taking environment:
 - High-speed optical links (from ~10 Gbps to ~28 Gbps)
 - Large FPGAs (from Virtex-7 to Xilinx Virtex UltraScale+/ Kintex UltraScale)
 - Modular and scalable algorithm firmware
- Several FPGA boards are being developed and various tests were performed, such as:
 - The links eye scan (@25 Gbps) and
 - endurance test (< 10^{-12} BER) of the FPGA quads.
 - FPGA thermal test to explore various heat sinks options.
- Following trigger algorithms are being prepared and tested successfully on their corresponding prototyped board:
 - RCT and GCT
 - Barrel muon trigger and global muon trigger (GMT)
 - Global track trigger (GTT)
 - Correlator Layer-1 and Layer-2
 - Global track trigger
- The latency and resource utilization is well within the desired limit.
- All the testing/development is going in time with the HL-LHC schedule.

IEEE

X20 DTH Ethernet switch

Fig: L1 trigger crate installed at CERN that houses three Serenity, X2O, and DTH (DAQ and TCDS hub) board (for multi-board testing)

Report CERN-LHCC2020-004. CMS-TDR-021, CERN, Geneva, Trigger. Technical 'record, Level-1 cern.ch/ CMS cds. 147 2020. URL http: Phase-2 Upgrade he

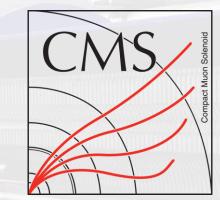
23rd Real Time Conference

18

Thank you

Acknowledgement

• Piyush Kumar and Bhawna Gomber acknowledges the support from IOE, University of Hyderabad through Grant Number UOH-IOE-RC2-21-006



CASEST CENTRE FOR ADVANCED STUDIES IN

ELECTRONICS SCIENCE & TECHNOLOGY

BACKUP...

- The SSI technology integrate multiple Super Logic Region (SLR) components placed on a passive Silicon Interposer (fig 3).
- Each SLR contains the active circuitry common to most Xilinx FPGA (Field programmable gate array) devices. This circuitry includes large numbers of:
 - 6-input LUTs (Look-up tables)
 - Registers
 - I/O components
 - Gigabit Transceivers (GT)
 - Block memory
 - DSP blocks
 - Other blocks
- The device we are using for our synthesis and implementation is based on Xilinx SSI technology and support three SLRs.
 - Xilinx Virtex UltraScale+ xcvu9p flgc2104-
 - 1-e FPGA

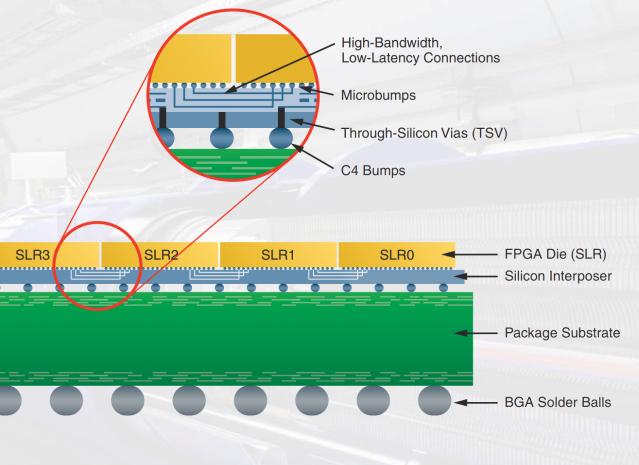


Fig 3: Xilinx FPGA Enabled by SSI Technology*

*: UG872 Large FPGA Methodology Guide

Barrel Calorimeter Segmentation (New)

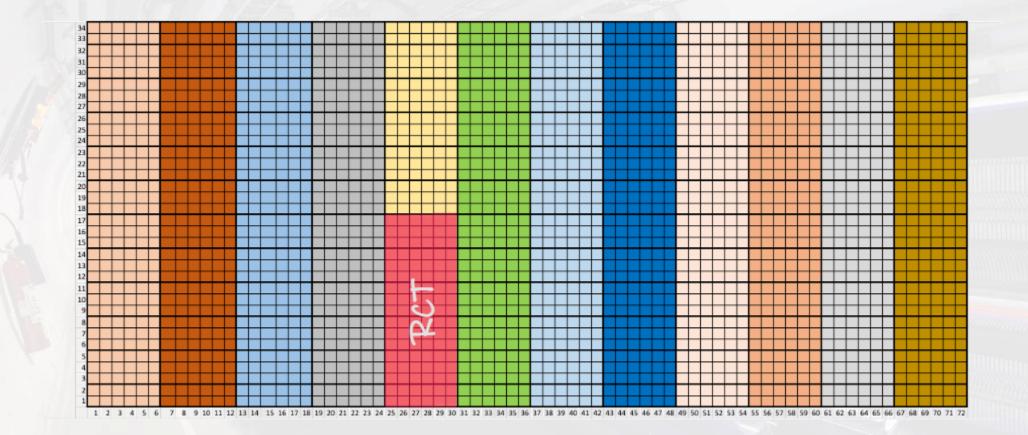


Fig 2: Barrel calorimeter segmentation (new)

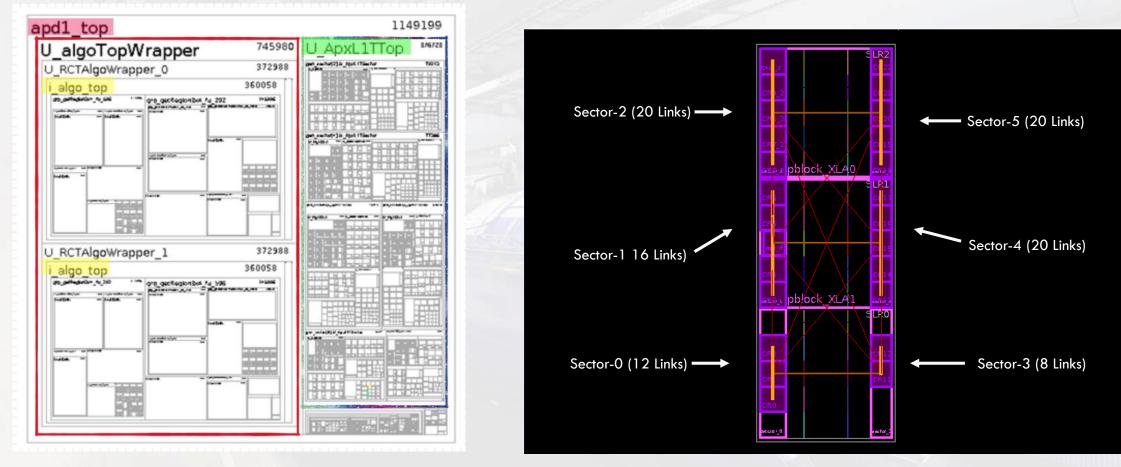
LHC BC Clock [MHz]	40.08	
Word Bit Size	66	
Line Rate [Gbps]	16.0000	
Max Theoretical Words/Bx	6.04851	

		TM1		TM6			TM18		
Bx Frame Length (TM interval)	1	1	1	6	6	6	18	18	18
Words/Frame	4	5	6	24	30	36	72	90	108
Equiv. Words/Bx	4.00	5.00	6.00	4.00	5.00	6.00	4.00	5.00	6.00
Equiv. Bits/Bx	256	320	384	256	320	384	256	320	384
Data Rate [Gbps]	10.58	13.23	15.87	10.58	13.23	15.87	10.58	13.23	15.87
Filler Rate [Gbps]	5.42	2.77	0.13	5.42	2.77	0.13	5.42	2.77	0.13
Average Filler Words/Bx	2.05	1.05	0.05	2.05	1.05	0.05	2.05	1.05	0.05
Average Filler Words/Orbit	7300.89	3736.89	172.89	7300.89	3736.89	172.89	7300.89	3736.89	172.89
Average Filler Words/Frame	2.05	1.05	0.05	12.29	6.29	0.29	36.87	18.87	0.87
Payload Bits/Frame	256	320	384	1536	1920	2304	4608	5760	6912
Algo Clock @ 64b i/f[MHz]	160.32	200.4	240.48	160.32	200.4	240.48	160.32	200.4	240.48

40.08
66
25.78125
9.74613

		TM1			TM6		TM18			
Bx Frame Length (TM interval)	1	1	1	6	6	6	18	18	18	
Words/Frame	7	8	9	42	48	54	126	144	162	
Equiv. Words/Bx	7.00	8.00	9.00	7.00	8.00	9.00	7.00	8.00	9.00	
Equiv. Bits/Bx	448	512	576	448	512	576	448	512	576	
Data Rate [Gbps]	18.52	21.16	23.81	18.52	21.16	23.81	18.52	21.16	23.81	
Filler Rate [Gbps]	7.26	4.62	1.97	7.26	4.62	1.97	7.26	4.62	1.97	
Average Filler Words/Bx	2.75	1.75	0.75	2.75	1.75	0.75	2.75	1.75	0.75	
Average Filler Words/Orbit	9787.22	6223.22	2659.22	9787.22	6223.22	2659.22	9787.22	6223.22	2659.22	
Average Filler Words/Frame	2.75	1.75	0.75	16.48	10.48	4.48	49.43	31.43	13.43	
Payload Bits/Frame	448	512	576	2688	3072	3456	8064	9216	10368	
Algo Clock @ 64b i/f [MHz]	280.56	320.64	360.72	280.56	320.64	360.72	280.56	320.64	360.72	

Project hierarchy and floor planning



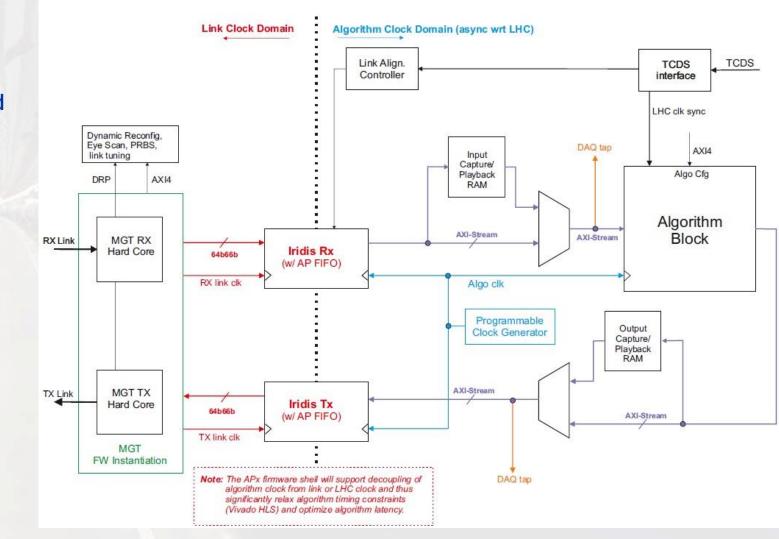

Fig 22: Project hierarchy in Vivado

Fig 23: Project floor planning

APx Firmware shell

Iridis – 64b66bbased optimized signaling method and firmware cores for CMS Trigger applications

APx test

Link 11

MGT X1V36/TX MGT X1V36/RX 25,776 Gbps 1,333E14

MOT X1V38/TX MOT X1V38/EX 25.781 Gbos 1.333E14

MGT_X1Y39/TX MGT_X1Y39/RX 25.781 Gbps 1.333E14

NOX 25.781 Gbps 1.333E14

% Unk 12 % Unk 13

% Link 14 % Link 15

Name	TX	RX	Status	Bits	Errors	BER	BERT Reset	TX Reset	RX Reset	RX Pola	TX Pattern		RX P
% Link 0		MGT_X1Y0/RX		1.535E14		6.513E-15	Reset	Reset	Reset	- R	PRBS 31-b#	v	
S Link 1		MGT_X1Y1/RX		1.535E14		6.514E-15	Reset	Reset	Reset	1	PRBS 31-bit		PRB!
% Link 2		MGT_X1V2/RX		1.535E14		6.515E-15	Reset	Reset	Reset	. Ø	PRBS 31-bit	v	
S Link 3		MGT_X1Y3/RX		1.534E14		6.517E-15	Reset	Reset	Reset		PRBS 31-bit		PRB!
S Link 4		X MGT_X1Y40/RX		1.632E14		6.126E-15	Reset	Reset	Reset		PRBS 31-bit		PRB!
% Link 5		X MGT_X1V41/RX		1.632E14		6.127E-15	Reset	Reset	Reset		PABS 31-bit		PRB!
% Link 6		X MGT_X1V42/RX		1.632E14		6.129E-15	Reset	Reset	Reset		PRBS 31-bit		PRB!
Nunk 7		X MGT_X1Y43/RX		1.63E14		6.133E-15	Reset	Reset	Reset		PRBS 31-bit	Ŷ	PRB1
% Link 8	MGT_X1Y44/T	X MGT_X1Y44/RX	25.784 Gbps	1.621E14		6.169E-15	Reset	Reset	Reset		PRBS 31-bit	¥	
No. Link 9	MGT_X1Y45/T	X MGT_X1Y45/RX	25.781 Gbps	1.612E14		6.203E-15	Reset	Reset	Reset		PRBS 31-bit	÷	PRB1
% Link 10	MGT_X1 ¥46/T	X MGT_X1Y46/RX	25.781 Gbps	1.603E14		6.238E-15	Reset	Reset	Reset		PRBS 31-br	v	
% Link 11	MGT_X1Y47/73	X MGT_X1Y47/RX	25.781 Gbps	1.595E14	OEO	6.271E-15	Reset	Reset	Reset		PRBS 31-bit	v	PRB!
% Link 12	MGT_X1Y48/T	X MGT_X1Y48/RX	25.781 Gbps	1.584E14	0E0	6.313E-15	Reset	Reset	Reset		PRBS 31-bit	1	PRB!
% Link 13	MGT_X1 ¥49/T	X MGT_X1Y49/RX	25.785 Gbps	1.571E14	OEO	6.364E-15	Reset	Reset	Reset		PRBS 31-bit	¥	PRBS
% Link 14	MGT_X1 150/T	X MGT_X1Y50/RX	25.781 Gbps	1.561E14	OEO	6.405E-15	Reset	Reset	Reset	0	PRBS 31-bit	v	PRB!
S Link 15	MGT XLYS1/T	X MGT X1V51/RX	25.781 Gbps	1.553E14	OEO	6.44E-15	Reset	Reset	Reset		PRBS 31-bit	4	PRB1
cl Console Message Q	s Serial VO	Links x 5	erial UO Scan	s								7.	. 🗆 🛛
iame	TX	RX	Status	Bits	Errors	BER	BERT Reset	TX Reset	RX Reset	RX Pola	TX Pattern		RX Patte
Ungrouped Links (0)													
S Link Group 0 (12)							Reset	Reset	Reset		PRBS 31-bit	v	PR85 31
S Link 4	MGT_X1Y28/TD	X MGT_X1Y28/RX	25.781 Gbps	1.333E14	0E0	7.504E	Reset	Reset	Reset		PRBS 31-bit	~	PR85 31
	MGT_X1Y29/T	X MGT_X1V29/RX	25.775 Gbps	1.333E14	0E0	7.504E	Reset	Reset	Reset		PRBS 31-bit	v	PR85 31
Unk 5		X MGT X1Y30/RX	25.776 Gbps	1.333E14	OEO	7.504E	Reset	Reset	Reset		PR8S 31-bit	v	PRBS 31
S Link 6													
		X MGT_X1Y31/RX	25.781 Gbps	1.333614	0E0	7.504E	Reset	Reset	Reset		PRBS 31-bit	~	PR85 31
N Link 6	MGT_X1Y31/D			1.333E14 1.333E14		7.504E	Reset	Reset	Reset		PRBS 31-bit PRBS 31-bit		PRBS 31 PRBS 31
🕤 Link 6 🕤 Link 7	MGT_X1Y31/D MGT_X1Y32/D	X MGT_X1Y31/RX	25.781 Gbps		0E0							v	

0E0 7.504E

- Using both Firefly 25X12 Alpha module sets
- 515.625 MHz refclk frequency (zero rem.)
- All 124 paths tested to ≥ 1E14 bits of PRBS31 data with zero errors
- Some tweaking of fiber connections necessary for 25X12 modules

THERMAL PERFORMANCE (APX)

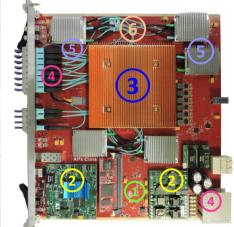
- •At 16 W/cm a 12.5cm heatsink provides 200W of cooling potential assuming no significant ducting of air within the card
- •APxF has 3.4 W/C heat sink performance so 200W load will increase temperature by 59 degrees (25C to 84C) with cooling at full power
- •Observations:
- •200W FPGA power limit feasible at full fan power

PRBS 31-bit

PRBS 31-bit

PRBS 31-bit

PRRS 31-bit


PRBS 3 PRBS 3

PR85

PRBS

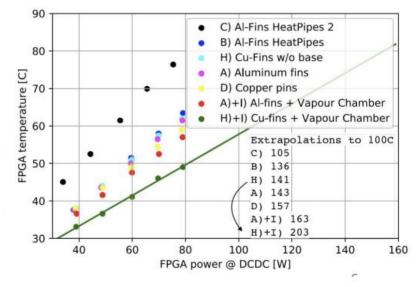
- •Care required when balancing design tradeoffs e.g. heat sink dimensions vs MGT route length
- •Lower die temperature -> capacity to reduce fan speed

Designing to maximize slot airflow utilization

- 1. Low restriction airflow path to FPGA heat sink
- 2. Low-profile, low load flyover zone
- VU13P FPGA Heat Sink 12.5×12.5 cm, 16% fill fin pattern Measured 3.4 W/°C (0.29 °C/W) at full 450 Watt fan power (lidded A2577 package)
- 4. Significant airflow obstructions
- 5. Optical module heat sinks located for pressure balance
- 6. FPGA exhaust heat zone

U13P Lidless Package Option

- Xilinx Data for A2577 Θ_{JC} (die to case): FLGA (lidded): 0.05 °C/W FSGA (lidless): 0.01 °C/W
- At 200W, up to ΔT ≈ 8 °C savings versus the lidded package
- Comments:
 - Lidless interface a more exacting design—APx has a lidless heat sink design on file
 - Would optimize other thermal design aspects first (board layout, heat sink geometries)
 - When a device is operating near the thermal limit, small °C improvements → a large % increase in thermal margin



Serenity tests

THERMAL PERFORMANCE (SERENITY)

- •Explored using heat pipes and vapour chambers to allow "small" heatsinks
- Vapour chambers allow 200W dissipation with expected fan speed 10 of 15 with 90mm x 90 mm heatsink (i.e. compact)

See large variation depending on heatsink

•Want to keep FPGA temperature at 100 degrees or lower

