

High-Speed Data AcQuisition System Development for a new 262k Pixels X-Ray Camera at the SOLEIL Synchrotron

Eh. Ait Mansour, F. Orsini, and A. Dawiec

Synchrotron SOLEIL, Experiences Division, Detectors Group L'Orme des Merisiers, 91190 Saint-Aubin, France

Session DAQ System & Trigger – IV 23rd IEEE Real Time Conference Aug 1 – 5, 2022

CONTENTS

01

• INTRODUCTION About 8 Chips demonstrator

02

CAMERA ARCHITECTURE

Architecture of DAQ design and implementation

03

SYNCHRONIZATION

Architecture & Protocole

04

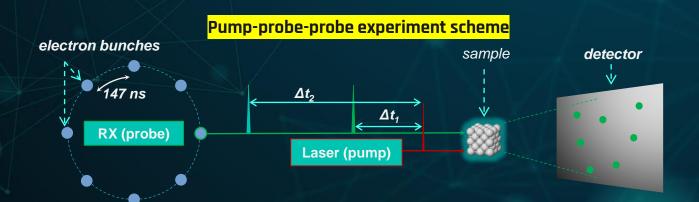
CONCLUSION

And perspectives

23rd IEEE Real Time Conference, Aug 1 - 5, 2022 �IEEE

INTRODUCTION

1.1 Motivation

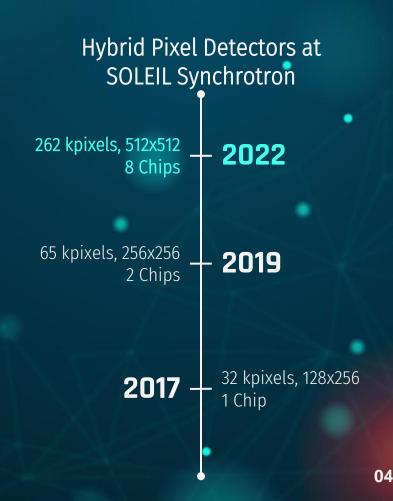

SOLEIL Synchrotron

- 3rd Generation radiation source
- 29 Operational beamline with support groups
- Very large energy spectrum: 0.1 meV 100 keV

We target applications that requires high framerate (thus high data throughput), high photons count rate → diffraction, time resolved measurements (ex. pump-probe-probe).

Challenging detector requirements

- Shutterless single bunch separation \Rightarrow min. counting time \approx 100 ns
- Synchronization with synchrotron bunches \rightarrow gateable
- Energy selection ightarrow 2 thresholds (two images)
- 5 kHz laser repetition rated (pump) → min. 20 kfps (2 images/thresholds and 2 probes)
- Single photon resolution and high dynamic range → photon counting approach
- High beam flux \rightarrow above 10⁹ ph/s/mm²
- min. working energy 7 keV → min. threshold ≈3.5 keV


1.2 Detector characteristics

Ultra Fast X-ray Chip UFXC32k main characteristics

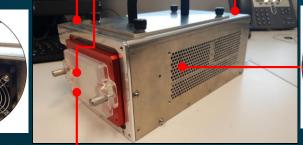
- Energy range up to 15 keV with 320 µm thick Si sensor
- Designed by AGH-USC (Krakow, PL)
- matrix: 128 × 256 pixels (9.6 × 20.1 mm²)
- pixel size: 75 × 75 μm²
- high framerate (> 50 kHz @ 2-bits readout)
- min. counting time <100 ns
- two discriminator, two counters (14 bits)
- high counting linearity (> 10⁶ ph/pix/sec)

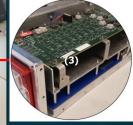
High-speed data transfer of 8 Chips with 50 kHz (2bits acquisition mode) \rightarrow High bandwidth is then required

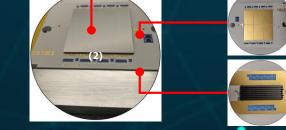
Image depth	Chip Clock DDR (MHz)	Max Image Framerate (kHz)	Bandwidth (Gb/s)
2	225	51.70	25.85
8	225	13.52	27.04
14	225	7.77	27.20

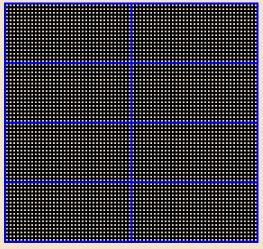
1.3 Detector Architecture

Increased detector size to $4 \times 4 \text{ cm}^2$ (2x4 chips, 513 px × 515 px) DAQ and DET integrated within the same body Increased max framerate: 50 kHz @ 2 bits / 7 kHz @ 14 bits Max data throughput > 24 Gbps (over 4x10 Gb links)



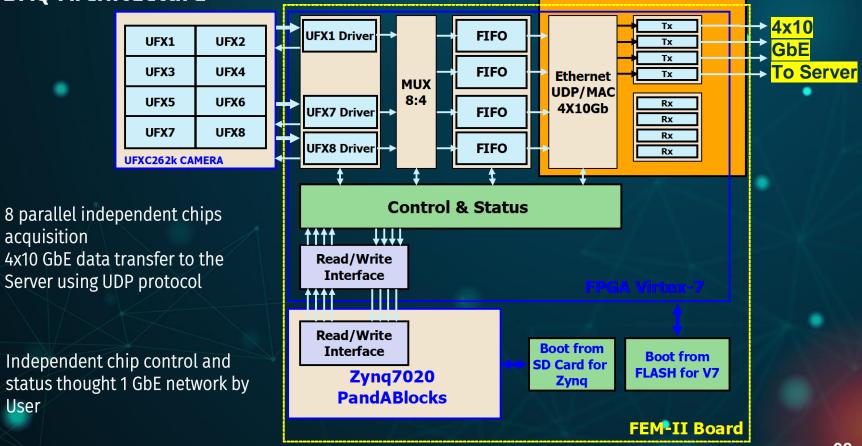



- (1) Camera hybrid modules
- (2) DET board
- (3) DAQ and Power boards
- (4) Camera Communication Interfaces
- (5) Cooling and housing
- (6) Adaptation board



DAQ ARCHITECTURE

1.1 Global Architecture


512x512 Pixels CAMERA

UFX8C

Adaptation Board 4x10 GbE **Power Board** SFP+ Q SFP+ S **DAQ System** Server SFP+ Ρ SFP+ Control Network 1GbE Demonstrator **User Client**

1.2 DAQ Architecture

acquisition

User

<u>]</u> []

23rd IEEE Real Time Conference, Aug 1 - 5, 2022 �IEEE

1.3 Control/Status Interface

Why Panda ?

- SoC Zynq: Solution selected to upgrade the FPGA
- To Reduce development time and cost
- Wide set of configurable logic blocks and event sequencer (Function Generators, Timer/Counter, Pulse Generator, SR Gate blocks, etc.)
- Position Compare Trigger Generation
- Analog and Digital I/O support
- LPC/ FMC connector
- Data Capture and Acquisition
- Fully configurable System and Position Bus concept

PandA HW Platform

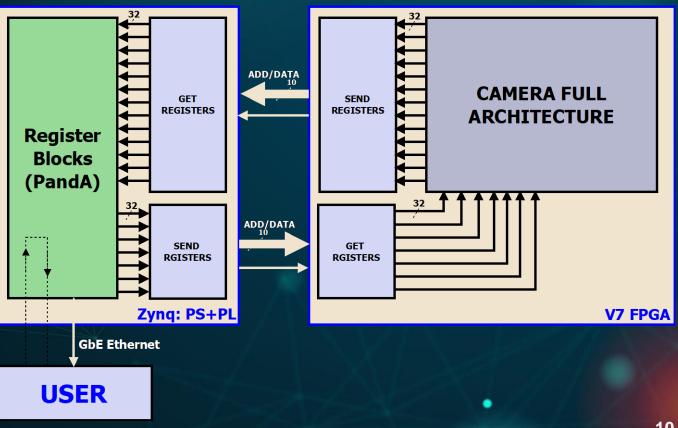
- 4-Channel Encoders Inputs/ outputs
- Multi-Channel TLL and LVDS Inputs/ outputs
- FMC LPC (fixed to 1,8V), on board clock tree
- 3 SFP (IPBus, Timing, DCC or Custom)
- 1 Gigabit Ethernet for Control and DAQ

PandA Platform Collaboration

FPGA – Zynq Logic Design FPGA – Zynq Processor Design Linux Kernel Development Linux Application Development

diamond DIAMOND

Hardware PCB Layout Hardware Schematic Design Mechanical design

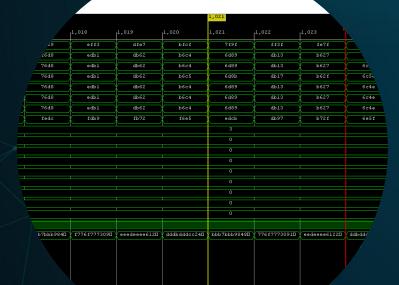

SOLEIL

Panda not supports 10 GbE + FPGA PL (Zynq) HW resources limitations

1.3 Control/Status Interface

128+128 status/control 32-bits registers fully configurable by user using detector dedicated software API

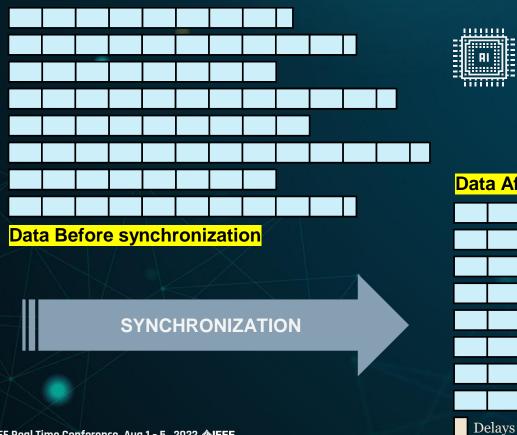
Independent read/write interface between Virtex-7 FPGA and Zynq SoC



1.4 Data packet & Transfert

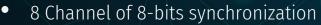
Quad-channel UDP 10GbE, 64-bits,156.25 MHz 128 words/frame (1024+8 bytes) Specific protocol designed to descramble raw image

data

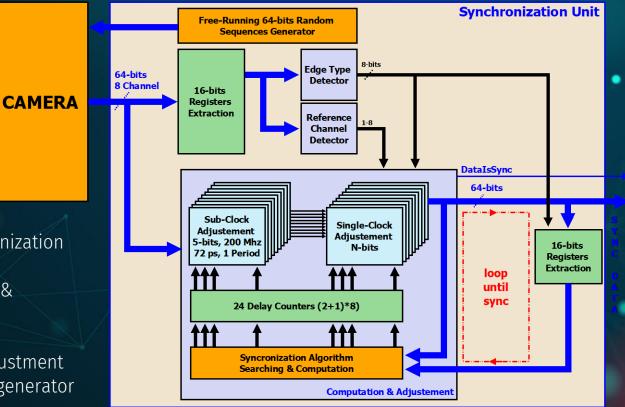

8 64 UDP1 UDP2 64 Camera SynC /128UDP3 UDP4 Image count ACQ Mode Counter H/L Chip ID Frame Count x00 (1-2)(4) (5) (6-7) (8) (3) DATA 1 **DATA 2 DATA N**

SYNCHRONIZATION PROTOCOLE

3.1 Synchronization Problem


8 Chips data synchronization 8-bits per chips Asynchronized data → False image descrambling and recovering

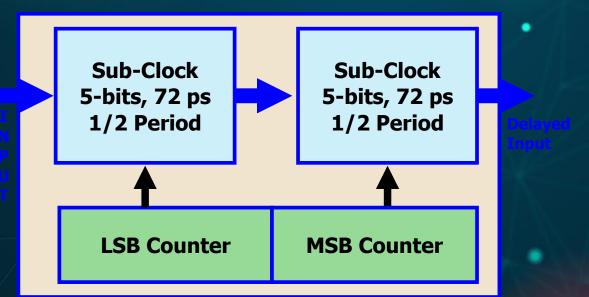
Data


Data After synchronization

۲

3.2 Synchronization Architecture

- Sync at camera start-up
- Parallel delay computation & adjustment algorithm
- 72 picosecond resolution
- Sub-cycle & single time adjustment
- 128-bits random sequence generator
- Algorithm convergence


3.3 Delay adjustement bloc

LSB Counter 72 ps resolution, 5-bits Initialisation each 32 cycles Incrementation each (128+ random number) clock cycles

MSB Counter 5 ns resolution (1 Clock cycle) Incrementation when LSB Counter overflow

04

CONCLUSION AND PERSPECTIVES

CONCLUSIONS & PERSPECTIVES

with Zynq has been implemented and tested

Camera data acquisition drivers was done

Camera control/status

Transfer through UDP ports is on-going: Frame length adjustment is under verification

software for image reconstruction is in progress

3. DAQ System

4. IMAGE RECOVERING

Full hardware camera and cooling system were tested with success Sub-ns Synchronization algorithm has been implemented and tested with success using Virtex-7 FPGA

2. SYNCHRONIZATION

1. HARDWARE

THANKS:

Do you have any questions ?