
The DAQ and Online System for the ECCE Proposal at EIC
Martin L. Purschke

1

Long Island, NY RHIC/EIC from space

Manhattan

EPIC

After the ECCE proposal was

chosen to be “Detector 1”, just

last week we voted to call the

experiment “EPIC” -

s/ECCE/EPIC/g

2

The ECCE DAQ

The ECCE DAQ and Timing system is heavily influenced by the corresponding
sPHENIX systems
Some personnel overlap, but also
• Key concepts (Streaming Readout, the use of ASICs, use of a “DAM” (FELIX in

2022)) are very similar. DAM = “Data Aggregation Module"
• Low-jitter clock distribution like sPHENIX’s to a FELIX successor is a key ingredient
• Concept is designed with a distributed calibration/reconstruction paradigm (Grid) in

mind
• It’s scalable, and has well-defined hand-off points where common technologies

(transports, storage, monitoring and other APIs) take over

Conveners during the ECCE propsal: Chris Cuevas (Jlab) and
Martin Purschke (BNL)

Chris continues, and Jo Schambach (ORNL) has taken over from me (I got fired J)
(My real day job is the sPHENIX DAQ manager)

From the Proposal

3

Hadron Beam
Electron Beam

The current sPHENIX
carriage with the outer
HCal and the magnet

From the Proposal

4

Rough Subsystem Count

5

• ~ 20 different detector components combined in the 3 parts
(backward/forward/central barrel)

• Just a quick overview for reference here (backward/forward), read all
about it in the proposal

An idea of the channel count

6

Makes about 21 million channels in round numbers

19,200
19,200

Data statistics

7

To put the red box into context – sPHENIX will write 1.5PB/day,
9PB a week – compare to 6PB/week here, in 2033 or so

DAQ Bird’s eye view

8

Only a few elements shown
FEEs vary a lot, complexity varies a lot, data volume varies a lot
Common denominator is that there is a uniform data structure at the
output of the DAM

Why do we call those “BufferBoxes”?

10/21/2020 9

9

The data rate at a collider is “bursty” – high luminosity at the
begin of a store, then ”burning off” – change of a factor of 2

Also gaps in data flowing with collider dump/fill, access, APEX,
MD

This Buffer boxes allow us to send the average, rather than the
peak rate through the WAN

Buffer Box

Buffer Box

Buffer Box

Buffer Box

Buffer Box

Buffer Box

100+ Gigabit
Crossbar
Switch

2016 (last PHENIX run)
beam intensity over a
week

Average

Streaming readout, here we come!

Past the FEE, the readout is completely oblivious to the readout mode

It doesn’t care how the front-end arrived at the decision to send up the
data.

Triggered or streaming, from the readout perspective they look the same

I have come to regard a particular feature of SRO as the defining property,
even if you ultimately trigger your front-end:

There is no synchronized end to a given event!
While “event” n is streaming, in other places, event n-1 (or -2, -3, -4…) isn’t
finished yet, and data from different crossings are interleaved

And that’s where the speed increase can be significant even for “classic”
systems

10

Offline sorting streaming data into events/crossings

11

It then hands out per-crossing data:

A “streaming data” offline pool holds a number of crossings worth of data
(like 1000) and sorts them by crossing number (beam clock value)

As processed data (oldest crossings) get discarded, new data are inserted
(high-and low-water marks)

But how do you “sort”? With the Timing system!

Timing System

12

Pick a convenient multiple of the beam clock frequency (sPHENIX: 6)

Have a global, never-reverting master BCO counter – 64 bit, transmit BCO LSBs to front-ends (40 bits)

Front-ends embed a number of those bits in their lower-level data structures (Felix - 40, FEE - 20)

The only way to send information to the FEE on a per-crossing basis (like, have the FEE or DAM do
something different in the abort gap)

40 bits BCO

One beam crossing

13

Example: sPHENIX TPC data

Clock values embedded in FEE data

0000000 feee ba5e 0ff1 0001 7229 f7a0 0088 0004
0000020 002f 8782 0004 ffff 0081 0000 0050 0050
…
0001020 d72c 0081 feed 0000 0088 3e2b 0004 feed
0001040 000f 0088 9f7a 0000 0000 0007 ffff 58af
…
0002100 0088 ad79 0004 feed 0017 0088 9f7a 0000
0002120 0000 000f ffff 58af 0081 0008 0000 ffff
…
0004740 0004 feed 0027 0047 0088 9f7a 0000 8782
0004760 0000 0004 001f ffff ffff 58af 0000 0000

FELIX Hdr

FEE structures

Clock values

bx 9f7a0
bx 9f7a0
bx 9f7a0
bx 9f7a0
…

40 bits BCO

In this way you can verify the integrity of the internal
data structures, and sort the data by “time”

Event / Streaming Data Structures

14

Each Front-End Card generally contributes what we call a “Packet”
to the overall event structures
A Packet ID uniquely identifies the detector component / front-end
card where it comes from
A hitformat field identifies the format of the data, und ultimately
selects the decoding algorithm
You interact with a standard set of APIs to access the data
We can change/improve the binary format and assign a new
hitformat for a packet at any time
Insulation of offline software from changes in the online system
API delivers the data independent of internal encoding

Very rough number: 1200 packets collectively

In case of a triggered DAQ, such an event structure and the
packets therein would correspond to the data from one crossing

P

P

P

P

P

P

P

P

P
…

“Event”

PCFELIXDCMDCMDCMFEE

PCFELIXDCMDCMDCMFEE

Rack RoomPCFELIXDCMDCMDCMFEE

Rack RoomPCFELIXDCMDCMDCMFEE

Rack RoomPCFELIXDCMDCMDCMFEE

Rack RoomPCFELIXDCMDCMDCMFEE

Rack RoomPCFELIXDCMDCMDCMFEE

Rack RoomPCFELIXDCMDCMDCMFEE

Rack RoomPCFELIXDCMDCMDCMFEE

…

Streaming Readout and Packets

15

For streaming data, the “Packet” paradigm changes its meaning a bit
It becomes like a packet in the Voice-Over-IP sense - VoIP is chopping an audio waveform into
conveniently-sized chunks to transfer through a network

Packet Packet Packet Packet Packet

We are chopping the streaming detector data into conveniently-sized packets for storage
Here: Streaming sPHENIX TPC data (entire sPHENIX tracking system streams!)

$ dlist rcdaq-00002343-0000.evt -i
-- Event 2 Run: 2343 length: 5242872 type: 2 (Streaming Data) 1550500750

Packet 3001 5242864 -1 (sPHENIX Packet) 99 (IDTPCFEEV2)
$

15

16

Example: Full EPIC Outer HCal, Real Events

That’s one of the detectors that will survive into Detector 1
For us it’s subsystem #8, makes 32 Packets with IDs 8001 - 8032

$ dlist oHCal-00000100-0000.evt
Packet 8001 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8002 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8003 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8004 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8005 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8006 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8007 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8008 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8009 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8010 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8011 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8012 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8013 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8014 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8015 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8016 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8017 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8018 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8019 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8020 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8021 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8022 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8023 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8024 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8025 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8026 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8027 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8028 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8029 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8030 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8031 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)
Packet 8032 1000 -1 (sPHENIX Packet) 92 (IDDIGITIZERV1)

P

P

“Event”

…

P

P

P

P

P

P

P2

…

Hitformat

17

oHCal Data

As a quick exercise, I took our oHCal events and made an Event Display

• Final packet access API

• What we are doing here (with cosmics)
will look (structure-wise) exactly like our
data next year

• People can work with the data for
calibration procedures, verify channel
mappings, interface F4A with the real
data structure, and on on and on

• Tons of test beam data exist that have
already been analyzed but can answer
additional questions

• (and yes, one can make Event
Displays…)

Fly through the EPIC Detector!

18

We had the opportunity to fly a drone through the current installation with the outer Hcal and the magnet
Those 2 will be part of EPIC
Take a flight through the detector! Go to

https://www.phenix.bnl.gov/~purschke/Drone/cut01.mp4

https://www.phenix.bnl.gov/~purschke/Drone/cut01.mp4

Summary

19

Solid proposal that revolves around the concept of a Data Aggregation Module (DAM) and the existing
and rock-solid RCDAQ system
Today: DAM==FELIX (that cannot be built any longer)
Several projects to bring the “next FELIX” into the next decade under way or on the horizon
A modest amount of new ASICs for the front-ends (didn’t have time to talk about that)
Envisioned data rates/volumes manageable even by today’s standards
(off the cuff: that usually leads to great new ideas what to do with that bandwidth!)
Lots of support and existing test beam data available for R&D-level DAQs (old eRDxes, 1,6,23,…) and
new eRD108, eRD110, …

Backup

20

Data Reduction/Compression

21

Every detector obviously wants to minimize the data volume without losing physics information
Lossy: zero-suppression (threshold), clustering w/ threshold, etc
Zero-suppression is a must to avoid clogging up the front-end pipes.
However:
We can apply loss-less compression as a catch-all to offset compromises in threshold settings
Also, the early data are not as ”dense-packed” – development/learning curve requiring actual data
Set thresholds as low as the front-end bandwidth allows, let late(r)-stage compression do the rest
For 2 decades we have always applied late-stage, distributed compression to our raw data
(PHENIX/sPHENIX)
Distributed: happens at the EBDC stage
Rock solid, and even saves significant time at the reconstruction stage
(reading less data vastly over-compensates the small penalty for the decompression step)
Conceptually similar to compressed root files, but different/much faster compression algorithm

22

Buffer
Boxes (7)

LZO
algorithm

New buffer with the compressed
one as payload, header says so

Add new
buffer hdr

buffer buffer buffer buffer buffer buffer

LZO
Unpack

Original uncompressed buffer restored

This is what a file then looks like

On readback:

This is what a raw data file would normally look like (a buffer typically holds 10-500 events, e.g. 64MB)

All this is handled completely in the I/O layer, the higher-level routines just receive a buffer as before.

After all data reduction techniques (zero-suppression, bit-packing, etc) are applied, you
typically find that your raw data are still compressible to a significant amount
Our compressed raw data format supports a late-stage data compression:

Data Compression

Compressed data

23

The current ECCE test bench/test beam/etc data that we take are super-compressible
no or super-low occupancy, not zero-suppressed, etc
compression down to ~5% of the original, not typical for the “real” running

Expect a 40% value (compression by 60%) in the early going, going up to low 70%s
(One can think of this as a metric for the actual “information content per bit”)
Late-generation PHENIX raw data (2016, last run):

$ prdfcheck /data/phnxrc/1008/junk/hcal_lzo_00000100_0000.evt | more
buffer at record 0 length = 201799 25 marker = ffffbbfe LZO Marker Or.length: 4194208 4.81137%
buffer at record 25 length = 201304 25 marker = ffffbbfe LZO Marker Or.length: 4194264 4.79951%
buffer at record 50 length = 201424 25 marker = ffffbbfe LZO Marker Or.length: 4194264 4.80237%

$ prdfcheck EVENTDATA_P00-0000443135-0001.PRDFF | more
buffer at record 0 length = 3285885 402 marker = ffffbbfe LZO Marker Or.length: 4357160 75.4135%
buffer at record 422 length = 3064576 375 marker = ffffbbfe LZO Marker Or.length: 4349976 70.4504%
buffer at record 797 length = 3204863 392 marker = ffffbbfe LZO Marker Or.length: 4250952 75.3917%

Compression speed

24

“dpipe” is a swiss-army-knife utility to work with raw data. Take a file, uncompress, re-compress,
manipulate, etc etc. The file here contains 77524 events.

So 37µs per event and 3.5GBytes/s compression rate per thread

BTW – I keep a gzip-compression format around as a benchmark – this shows just how much faster LZO
is compared to gzip, for only a 10% additional improvement

$ time dpipe -sf -df -l EVENTDATA_P00-0000443135-0001.PRDFF EVENTDATA_P00_LZO-0000443135-0001.PRDFF

real 0m2.866s
user 0m2.354s
sys 0m0.507s

$ time dpipe -sf -df –z EVENTDATA_P00-0000443135-0001.PRDFF EVENTDATA_P00_gz_-0000443135-0001.PRDFF

real 6m58.935s
user 6m55.183s
sys 0m3.659s

$ ls -l /mnt/ramdisk/*
-rwxr--r-- 1 phnxrc phnxrc 10739654656 May 9 08:15 /mnt/ramdisk/EVENTDATA_P00_LZO-0000443135-0001.PRDFF
-rwxr--r-- 1 phnxrc phnxrc 9161973760 May 9 08:22 /mnt/ramdisk/EVENTDATA_P00_gz_-0000443135-0001.PRDFF

$ bc -lq
2.866 / 77524 * 10^6
36.96919663588050000000

77524 / 2.866
27049.54640614096301465457

Asks for LZO-
compression

Asks for gzip-
compression

How do you deal with that?

You could throttle your event rate with busies to not let that happen:

25

“Events”

Or, if you insist on “event boundaries” in your data, you could buffer those event
fragments in DAQ memory, assemble them, then write out

Remember that you can often not “ask” a device to give you its data when it’s
convenient for you, you need to be ready to catch them as they come (e.g. network)
You have brought the event builder back, have to do it online, have to do it right the
first time…

26

Why has the sPHENIX DAQ been important for the EIC and
ECCE R&D?
sPHENIX is one of the experiments paving the way for streaming readout in
our community
sPHENIX’s RCDAQ system has been a pillar of EIC-themed data taking for
R&D, test beams etc since 2013 – eRD1, eRD6, LDRDs, …

Estimated 25 active RCDAQ installations in the EIC orbit + ~30 elsewhere
Usual entry by ease-of-use for standard devices (DRS, SRS, CAEN, …) and
support for fully automated measurement campaigns

Minidrift TPC (2013)

FLYSUB consortium (2014)

ZigZag Readout (2016) PWO prototype (2018)

Dual-sided PWO readout (2017)

MPGD-LDRD (2019)

Connection to offline computing

27

Pretty standard GRID/distributed computing paradigm

