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We propose new standardized benchmarks representing state-of-the-art 
scientific ML tasks across supervised, unsupervised, and reinforcement 
learning that eclipse previously-considered levels of throughput and latency.

In pursuit of scientific discovery, experiments constantly evolve to probe 
physical systems at smaller spatial resolutions and shorter timescales.  Order-
of-magnitude advancements have lead to an explosion in data volumes and 
richness, requiring novel methods of real-time processing on the edge, 
where selection and distillation of the complete data increasingly occurs before 
transmission off-detector.

FastML Science Benchmarks

Type Benchmark
Input Pipeline Real-time

Misc. Req.
Baseline Model

Precision Rate Latency Parameters

Supervised Learning Jet Classification 16b 150 ns 1µs - 4,389
Unsupervised Learning Sensor Data Compression 9b 25 ns 100 ns area, power (65 nm) 2,288
Reinforcement Learning Beam Control 32b 5 ms 5 ms - 34,695

Table 2. Summary of constraints for three benchmark tasks and number of parameters for the benchmark baseline models.

Power supply 
control system

Programmable 
logic

Booster
Synchrotron

Control signal

Environment 
feedback

Bending magnet 
in-situ measurement

Figure 4. Synchrotron magnet power supply control system for the
Fermilab Booster Ring, adapted from (St. John et al., 2021)

framed as a reinforcement learning benchmark task. Be-
cause an accurate and reliable simulation of the synchrotron
is not possible from first principles, a “virtual” accelerator
complex surrogate model has been developed to emulate
the actual physical system. This surrogate model will serve
as the environment with which our reinforcement learning
benchmark interacts.

Dataset A Booster synchrotron power supply regulation
dataset provides cycle-by-cycle time series of readings and
settings from the most relevant devices available in the Fer-
milab control system. This data was drawn from the time
series of a select subset of the roughly 200,000 entries that
populate the device database of the accelerator control net-
work. Data was sampled at 15 Hz for 54 devices pertaining
to the system’s regulation. Because of how data is trans-
mitted and communicated, inputs are 32-bit floating-point
numbers, but the sensor source’s precision is, in many cases,
less.

Real-time System Constraints The Booster ramping cy-
cle rate is 15 Hz, which sets the control loop’s time scale.
We define the algorithm latency requirement as 5 ms for this
benchmark due to data movement latency.

Performance Metrics The primary performance metric
in this reference benchmark is the reward, R, defined as the
negative of the error with respect to the reference expected
current in the Booster, R = �|�Imin|.

Baseline Model(s) There are two models involved in this
benchmark task: (1) the surrogate model for the Booster
accelerator and (2) the online agent, which is correcting the
reference magnet power supplies in real-time. The surrogate
model is fixed in this benchmark task and plays the role of
the environment in this reinforcement learning task. The
long short-term memory (LSTM) (Hochreiter & Schmidhu-
ber, 1997) surrogate model inputs are the previous 150-time
steps of the top 5 causal variables—variables related to
the synchrotron and downstream accelerator currents and
current errors concerning reference. The model has approxi-
mately 1.5 million parameters.

The benchmark online agent running in the Arria10 system-
on-chip (SoC) is a multilayer perceptron taking the five
input parameters, has three hidden layers (128, 128, 128)
and approximately 35,000 parameters. The architecture is a
fully-connected neural network because the 5 inputs are al-
ready selected expert variables. The deep Q-network (Mnih
et al., 2013; 2015) has 7 discrete outputs and maximizes the
reward, R, defined above. The reward metric is measured as
a function of RL episode and is presented in Fig. 7 (bottom)
of (St. John et al., 2021).

The benchmark model weights and biases are quantized to
20 total bits in a fixed-point representation in hardware. The
lowest latency implementation of the model is implemented
for an Intel Arria10 SoC with a resource usage of 53 DSPs,
238 BRAMs, 672 MLABs, 43.3 kALMs, 92.6 kFFs. The
algorithm has a latency of 3.9µs.

4 DISCUSSION AND OUTLOOK

This position paper highlights both the need and challenges
for developing machine learning (ML) benchmarks for edge
applications in science. Given the demise of Moore’s law
and Dennard scaling (Dennard et al., 1974; Esmaeilzadeh
et al., 2011) and advances in scientific instrumentation re-
sulting in rapidly growing data rates, edge computing is
becoming exceedingly crucial for reducing and filtering
scientific data in real-time to accelerate science experimen-
tation and enable more profound insights. There are chal-
lenges in building well-constrained benchmark tasks with
enough specification to be generically applicable and ac-
cessible simultaneously. However, we can use these edge
applications in extreme data processing environments to ad-
vance many scientific domains and enable the development

Table 1 Summary of constraints for the three FastML Science benchmark scenarios.

Supervised classification of particle jets

Irregular sensor data compression

Accelerator beams control

Machine learning (ML) has 
emerged as a powerful and 
flexible framework to 
process large quantities of 
information, using 
algorithms that learn 
directly from the data.  
Deep neutral networks in 
particular have proven 
capable of solving complex 
problems across a wide 
range of scientific domains.

Figure: Reference latencies and streaming 
input data rates for common benchmarks and 
those proposed in this work.  The FastML 
Science regime represents data volumes and 
inference latency requirements that are orders 
of magnitude more stringent than traditional 
consumer-facing applications.
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A representative identification task for FPGA-based Large Hadron Collider 
(LHC) detector trigger systems, which produce 100s of TB/s of data at 
40MHz event rates.

Data: Labeled jets with particle constituents or 16 expert features
Metrics: Classification accuracy, and FPR @ 50% TPR.
Baseline: 5-layer MLP; quantization-aware training; Xilinx VU9P target.

This next-generation CMS imaging calorimeter 
will compress data by 400x, without sacrificing 
the ability to classify and measure particles.  
This high-radiation, on-chip environment 
requires an ASIC-friendly design.

Data: Sensors of 48 normalized trigger cells.
Metrics: Similarity score based on the 
magnitude and distance of energy differences.
Baseline: Convolutional NN targeting 65nm CMOS process, 3.6mm2 in area, drawing 60mW.

At Fermilab, the Booster accelerator must guide protons along a precise trajectory in order to achieve
maximal intensities.  Here an ML agent 
controls the bending magnets, acting on 
past trajectories and other external 
measurements provided by a surrogate 
model of the accelerator complex.

Dataset: 54 measurement devices, 
sampled at the 15hz beam repetition rate.
Metrics: Time-averaged difference in the 
target and measured particle trajectories.
Baseline: Deep-Q network selecting from 
7 possible actions (3-layer MLP). Design 
targets an Intel Arria10 FPGA.


