FastML Science Benchmarks: Accelerating Scientific Edge ML

J. Duartel, N. Tran2, B. Hawks2, C. Herwig?, J. Muhizi3, S. Prakashs3, V. Janapa Reddi3

Introduction and motivation

In pursuit of scientific discovery, experiments constantly evolve to probe
physical systems at smaller spatial resolutions and shorter timescales. Order-
of-magnitude advancements have lead to an explosion in data volumes and
richness, requiring novel methods of real-time processing on the edge,
where selection and distillation of the complete data increasingly occurs before
transmission off-detector.
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Machine learning (ML) has
emerged as a powerful and
flexible framework to
process large quantities of
information, using
algorithms that learn
directly from the data.
Deep neutral networks in .
particular have proven 108 MLPerf Tiny (IC) -
capable of solving complex |
problems across a wide Beam Control

range of scientific domains. i
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Figure: Reference latencies and streaming MLPert Mobile (NLP)
input data rates for common benchmarks and
those proposed in this work. The FastML
Science regime represents data volumes and
inference latency requirements that are orders
of magnitude more stringent than traditional
consumer-facing applications.
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We propose new standardized benchmarks representing state-of-the-art
scientific ML tasks across supervised, unsupervised, and reinforcement
learning that eclipse previously-considered levels of throughput and latency.

Table 1 Summary of constraints for the three FastML Science benchmark scenarios.

Input Pipeline | Real-time
Type Benchmark -
Precision Rate Latency
Supervised Learning Jet Classification 16b 150 ns 1 us
Unsupervised Learning | Sensor Data Compression 9b 25 ns 100 ns
Reinforcement Learning Beam Control 32b S ms S ms

{02l 1A tUniversity of California San Diego

2 | lonal Accelerator Laborator
Fermi Natlo.na .cce erator Laboratory
SHarvard University

Supervised classification of particle jets

A representative identification task for FPGA-based Large Hadron Collider
(LHC) detector trigger systems, which produce 100s of TB/s of data at
40MHz event rates.

Data: Labeled jets with particle constituents or 16 expert features
Metrics: Classification accuracy, and FPR @ 50% TPR.
Baseline: 5-layer MLP; quantization-aware training; Xilinx VU9P target.

Irregular sensor data compression  High-granularity Algorithms Output to
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This next-generation CMS imaging calorimeter
will compress data by 400x, without sacrificing
the ability to classify and measure particles.
This high-radiation, on-chip environment
requires an ASIC-friendly design.
Data: Sensors of 48 normalized trigger cells.
Metrics: Similarity score based on the
magnitude and distance of energy differences.

Baseline: Convolutional NN targeting 65nm CMQOS process, 3.6mmz2 in area, drawing 60mW\.
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Accelerator beams control

At Fermilab, the Booster accelerator must guide protons along a precise trajectory in order to achieve

maximal intensities. Here an ML agent

controls the bending magnets, acting on
Environment past trajectories and other external
teedback measurements provided by a surrogate

model of the accelerator complex.
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Power supply

Dataset: 54 measurement devices,
control system

sampled at the 15hz beam repetition rate.

Booster

Synchrotron Metrics: Time-averaged difference in the

Programmable target and measured particle trajectories.
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Baseline: Deep-Q network selecting from
7 possible actions (3-layer MLP). Design
Control signal targets an Intel Arria10 FPGA.
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