
ML algorithms on FPGAs: Recent developments in hls4ml

Jovan Mitrevski for the hls4ml group

August 3, 2022

1

hls 4 ml

https://github.com/hls-fpga-machine-learning/hls4ml

Motivation for hls4ml

• hls4ml was originally created for use in the first level
trigger of the LHC

• see Monday’s talk by Kumar and Gomber for more

information on triggering at the LHC

• Collisions occur at 40 MHz, and trigger decisions
need to be made in about 1 µs.

• Need to reject most events, but efficiently accept
interesting events: machine learning

• Original focus of hls4ml: implement relatively small
NNs in FPGAs to execute very fast

• Weights stored in the fabric, parallel execution

• Focus has subsequently broadened
2

https://indico.cern.ch/event/1109460/contributions/4893233/attachments/2487752/4272248/O_DAQ%20System%20&%20Trigger_61.pdf

Why use FPGAs to run ML inference?

• FPGAs exploit the parallelism of the
problem for low latencies

• FPGAs exhibit predictable real-time
latencies

• FPGAs tend to use less power than GPUs
or CPUs for solving similar problems

• FPGAs can be reprogrammed as
algorithms evolve

3

Page | 4

Adaptive Hardware

Adaptive hardware allows the underlying function of the hardware to be configured after
manufacturing. It can do this because it has two unique capabilities.

The first unique capability is a regular structure of configurable hardware blocks. In an FPGA,
these are called “configurable logic blocks” and each are capable of being configured to
perform one of many possible arithmetic functions that operate on multiple inputs to produce
an output. In newer adaptive computing platforms, these blocks can be significantly more
complex, comprising highly complex configurable functions, including vector processors. We
will focus on the former type for now, but the latter is covered in a subsequent section.

The second unique capability is the configurable connectivity between the blocks. This
configurable interconnect gives adaptive hardware the ability to make connections between
blocks as needed, thus enabling more complex functions to be built by connecting specific
blocks together. The configurable interconnect also allows connection between non-
configurable blocks the end-system may need, such as memory, embedded CPUs, digital
signal processors (DSPs) and the inputs and outputs (I/O or ‘pins’) of the hardware device.

The figure below shows a representation of the unconfigured blocks (left side), and the same
blocks after being configured for an application (right side). In this example, two independent
functions, A and B, have been implemented. Each has numerous stages, some of which can
be parallel (AF5a and AF5b). A and B themselves are also completely parallel. The arrows
show the connectivity that has been configured into the adaptive hardware, while the white text
represents the blocks that have been uniquely configured to implement a specific function.
Four blocks remain unconfigured in this example (still grey in color) but remain available to use
should future changes be desired.

Figure 1: A representation of unconfigured and configured adaptive hardware

From Xilinx Adaptive Computing Technology Overview

How does one program FPGAs?

• Hardware description languages (HDLs) like VHDL or Verilog

• Closely tied to the hardware implementation: can be complicated

• High Level Synthesis (HLS)

• Use (restricted) C++ code with pragmas

• Main restriction is that dynamic memory is not allowed

• Can be both easier and more flexible to write algorithms without having

to explicitly deal with time: pipeline stages can change based on
requirements.

• Can be easier to debug: the C++ code can be compiled and run to
check for correctness much more quickly than HDL can be simulated.

4

HDL

HLS

Converting NNs to HLS: hls4ml

• hls4ml is a compiler taking Keras, pytorch, or ONNX as input and usually producing HLS.

• The “backend” can be changed. Although non-HLS backends exist, hls4ml generally

produces HLS for Vivado HLS, Intel HLS, or Catapult.

• Produces spatial dataflow code specific to the program at hand (not systolic array)

5

2018 JINST 13 P07027
2.1 hls4ml concept

The task of automatically translating a trained neural network, specified by the model’s architecture,
weights, and biases, into HLS code is performed by the hls4ml package. A schematic of a typical
workflow is illustrated in figure 1.

�����������
�����

���
��
���������!�
	"������

#

�������������
����
�����������

��������������

��
��
�������

��
��
��� ������

��������������������

�����������!
���
������

�����

���
���
��������
�������
����!
���!������!

hls 4 ml

hls4ml

HLS 4 ML

Figure 1. A typical workflow to translate a model into a FPGA implementation using hls4ml.

The part of the workflow illustrated in red indicates the usual software workflow required to
design a neural network for a specific task. This usual machine learning workflow, with tools such
as Keras and PyTorch, involves a training step and possible compression steps (more discussion
below in section 2.3) before settling on a final model. The blue section of the workflow is the task
of hls4ml, which translates a model into an HLS project that can be synthesized and implemented
to run on an FPGA.

At a high level, FPGA algorithm design is unique from programming a CPU in that independent
operations may run fully in parallel, allowing FPGAs to achieve trillions of operations per second
at a relatively low power cost with respect to CPUs and GPUs. However, such operations consume
dedicated resources onboard the FPGA and cannot be dynamically remapped while running. The
challenge in creating an optimal FPGA implementation is to balance FPGA resource usage with
achieving the latency and throughput goals of the target algorithm. Key metrics for an FPGA
implementation include:

1. latency, the total time (typically expressed in units of “clocks”) required for a single iteration
of the algorithm to complete.

2. initiation interval, the number of clock cycles required before the algorithm may accept
a new input. Initiation interval (often expressed as “II”) is inversely proportional to the
inference rate, or throughput; an initiation interval of 2 achieves half the throughput as an
initiation interval of 1. Consequently, data can be pipelined into the algorithm at the rate of
the initiation interval.

– 4 –

hls4ml: accelerating ML on hardware

25

Originally designed for LHC triggers applications but broad and growing user base
Example: ML training (qkeras/brevitas), backend devices (Xilinx, Intel, Microsemi, ASIC),

network architectures (Conv, RNN/LSTM, Graph), and applications (…)

fastmachinelearning.org/hls4ml

An open source project - join the conversation!

https://github.com/hls-fpga-machine-learning/hls4ml

Optimizing for FPGAs

• Fixed-point arithmetic is preferred for efficiency.

• Quantization-aware training (QKeras, Brevitas) performs

better than post-training quantization.

• Also have a number of options in tweak the

implementation, including “reuse factor”

6

hls4ml tutorial Aug 18, 2021

Efficient NN design: quantization
∙ In the FPGA we use fixed point representation

− Operations are integer ops, but we can represent fractional
values

∙ But we have to make sure we’ve used the correct data types!

0101.1011101010
width

fractionalinteger

Full performance at 6
integer bits

Scan integer bits
Fractional bits fixed to 8

Scan fractional bits
Integer bits fixed to 6

Full performance at 8
fractional bits

FP
G

A
 A

U
C

 /
Ex

pe
ct

ed
 A

U
C

FP
G

A
 A

U
C

 /
Ex

pe
ct

ed
 A

U
C

ap_fixed<width bits, integer bits>

35

Ultra Low-latency, Low-area Inference Accelerators using Heterogeneous Deep�antization with QKeras and hls4ml

Figure 9: Relative accuracy (left) and resource utilization (right) as a function of bit width. The right-hand panel shows themet-
rics for the benchmarkmodels: "Baseline" (B), "Baseline Pruned" (BP), "Baseline Heterogeneous" (BH), "QKeras Optimized" (O).
The relative accuracy is evaluated with respect to the �oating-point baseline model. Resources are expressed as a percentage
of the Xilinx VU9P FPGA targeted.

Table 3: Model accuracy, latency and resource utilization for six di�erent models. Resources are listed as percentage of total,
with absolute numbers quoted in parenthesis.

Model Accuracy [%] Latency [ns] Latency [clock cycles] DSP [%] LUT [%] FF [%]
Baseline 74.4 45 9 56.0 (1826) 5.2 (48321) 0.8 (20132)
Baseline pruned 74.8 70 14 7.7 (526) 1.5 (17577) 0.4 (10548)
Baseline heterogeneous 73.2 70 14 1.3 (88) 1.3 (15802) 0.3 (8108)
QKeras 6-bit 74.8 55 11 1.8 (124) 3.4 (39782) 0.3 (8128)
QKeras Optimized 72.3 55 11 1.0 (66) 0.8 (9149) 0.1 (1781)

at lowest resource cost. This model is referred to as the ‘baseline
heterogeneous (BH)’ model.

We then train several models using quantization-aware training
with QKeras based on the baseline model architecture. The �rst,
referred to as "QKeras optimized (QO)", is heterogeneously quan-
tized to a per-layer precision maximizing model accuracy while
minimizing area. It uses a reduced number of neurons per layer: 32,
16 and 16 instead of the original 64, 32 and 32. Additionally, three
layers of full-precision batch normalization is added.

A summary of the per-layer quantizations for the baseline (and
baseline pruned) and optimized model is given in Table 2. Finally,
we train a range of homogeneously quantized QKeras models in
order to quantify the impact of a given bit width on resources and
accuracy.

3.5 Performance
Each model is trained using QKeras version 0.7.4, translated into
�rmware using hls4ml version 0.2.1, and then synthesized with
Vivado HLS (2019.2), targeting a Xilinx Virtex Ultrascale 9+ FPGA
with a clock frequency of 200 MHz. We compare the resource con-
sumption and latency on chip for each model, to the model accuracy.
The resources at disposal on the FPGA are digital signal processors
(DSPs), lookup tables (LUTs), memory (BRAM) and �ip-�ops (FF).

The BRAM is only used as a LUT read-only memory for calculating
the �nal Softmax function and is the same for all models, namely
1.5 units corresponding to a total of 54 Kb. The estimated resource
consumption and latency from logic-synthesis, together with the
model accuracy, are listed in Table 3. A fully parallel implemen-
tation is used, with an "initiation interval" of 1 clock cycle in all
cases. Resource utilization is quoted in percentage of total available
resources, with absolute numbers quoted in parenthesis.

The most resource e�cient model is the QKeras optimized (QO)
model, reducing the DSP usage by ⇠ 98%, LUT usage by ⇠ 80%,
and the FFs by ⇠ 90%. The drop in accuracy is less than 3% despite
using half the number of neurons per layer and an overall lower
precision. The extreme reduction of DSP utilization is especially
interesting as, on the FPGA, DSPs are scarce and usually become
the critical resource for ML applications. DSPs are used for all
multiply-add operations, however, if the precision of the incoming
numbers are much lower than the DSP precision (which, in this
case, is 18 bits) multiply-add operations are moved to LUTs. This
is an advantage, as a representative FPGA for the LHC trigger
system has O(1000) DSPs compared to O(1) million LUTs. If the
bulk of multiplication operations is moved to LUTs, this allows for
deeper and more complex models to be implemented. In our case,
the critical resource reduces from 56% of DSPs for the baseline to

arXiv:2006.10159

https://github.com/google/qkeras
https://github.com/Xilinx/brevitas
https://arxiv.org/abs/2006.10159

Types of layers supported

• MLP: Dense matrix/vector multiplies map well into FPGA calculations

• Some support for sparse matrices, more in development

• 1D and 2D CNNs

• Batch Normalization

• Max/AveragePooling

• Various activations

• Embedding

• some RNN support (more in development)

• Special support for binary and ternary networks
7

CNN developments: streaming

• Parallel CNN implementations quickly run into limitations for large CNNs

• Streaming implementations support large CNNs.

• Instead of getting input in parallel, inputs are sent one data point at a time.

• use hls::stream (Vivado) or ihc::stream (Intel) of an array of channels associated

with a data point.

• A streaming implementation is being developed for Catapult

• FIFOs are used between the layers

• Can allow for more flexible network structure

• Also introduced the option to store weights externally for large models

8

CNN developments

• We have two streaming CNN implementations for the Vivado backend: line
buffer (default) and encoded

• A CNN implementation is in a pull request for the Quartus backend.

• A tutorial with CNNs is available in the hls4ml-tutorial.

9

Convolutions in hls4ml

Approach: concatenate kernels by channel and matrix multiply via dense layer to get
output pixel

Two implementations

1. “Encoded” convolutions (current implementation from PR #220)
2. “Line Buffer” convolutions (added implementation in repo)

Extract kernels Flattened
Kernel

Dense
Multiply Output Pixel

https://github.com/fastmachinelearning/hls4ml-tutorial

Recurrent NNs

• Two RNN implementations were made independently, one for the Quartus
backend (10.1007/s41781-021-00066-y), one for Vivado (arXiv:2207.00559)

• Plan: Don’t have two parallel implementations, but merge the features.

10

● There is no difference in

energy output between hls and
hls4ml

● Much more memory and DSPs
used by the HLS4ML
implementation

delta_ploy

Stratix10
1SG280HU2F50E2VG LUTs FFs RAMs DSPs Latency

(min, max,avg)
II

(min, max, avg)
Target

frequency

HLS 8% 6% 4% 13% 325,353,339 1, 1, 1 400 MHz

HLS4ML WITH NO
OPTIMIZATIONS

9 % 7% 14% 22% 322, 346, 322 1, 1, 1 400 MHz

HLS4ML WITH
LUT OPTIMIZATION

9 % 6% 8% 22% 322, 346, 322 1, 1, 1 400 MHz

LUT CENTERED COMPARISON BETWEEN HLS/HLS4ML
AND KERAS

energy_plot

10

Quartus version is for ATLAS calorimeter readout Vivado b-tagging example

May 13, 2022

(a) Top Tagging (b) Flavor Tagging (c) QuickDraw

Figure 2: Ratio of AUCs obtained from pre-and post-quantized (a) Top Tagging, (b) Flavor Tagging, and (c) QuickDraw
models as function of fractional bits. Performance of both GRU (dashed) and LSTM (solid) models are shown. The
precision of the integer part is kept fixed to 6 bits (blue), 8 bits (orange), 10 bits (green), and 12 bits (red).

5.2 Parallelization191

The other main tuning knob besides the precision is the amount of parallelism employed during weight matrix192

multiplication. This is controlled in hls4ml through a parameter called “reuse”. Specifically, reuse is the number of193

multiplication operations each digital signal processing (DSP) block must do for a given matrix multiply. Setting reuse194

to 1, i.e. the fully parallel case, means that each multiplication is done by its own DSP and can happen simultaneously.195

Increasing the reuse factor reduces the number of DSPs that are required, but increases the latency and initiation196

interval of the layer computation in proportion to the reuse. All three benchmark models are synthesized with different197

values of the reuse factor (R) and fractional bit precision. The results are expressed for different FPGA resource198

categories: onboard FPGA memory (BRAM), DSPs, and registers and programmable logic like flip-flops (FFs) and199

lookup tables (LUTs). In hls4ml, a model can either be synthesized to minimize the latency (latency strategy) or the200

resource utilization (resource strategy). For large models with 40k or more trainable parameters it becomes difficult201

to synthesize the models with the latency strategy, and so resource strategy must be used. With resource strategy the202

design is optimized for low resource utilization by reusing existing hardware to complete operations in multiple stages.203

Out of the three benchmark models only the Top Tagging model is small enough to be synthesized with both latency204

and resource strategies, whereas only resource strategy is used for the other two models. The minimum and maximum205

latencies for each model are shown in Table 2, 3, and 4. The amounts of DSPs, FFs, and LUTs for each model are206

shown for different R values in Fig. 3, 4, and 5, respectively.207

We observe that all resources generally increase with smaller values of R and increased precision. In the case of FFs208

and LUTs this increase is roughly linear, while for DSPs the utilization remains flat until the precision exceeds the209

DSP input width. The latency, on the other hand, follows a scaling inverse to that of the FFs and LUTs with respect to210

the reuse. Thus, as with other architectures supported under hls4ml, reuse can be used to reduce FFs and LUTs at the211

expense of latency. This simple scaling is critical for allowing users to tune the resource usage and latency such that the212

synthesized designs to meet desired requirements. The latency strategy adds another finer option to this tuning space for213

latency-limited tasks, but comes at the cost of larger resource usage. As expected we find that the GRU models use214

approximately 1/4 less resources when compared to the LSTM models. This is a result of the 3:4 ratio between the215

number of matrix multiplications in GRU and LSTM models. Finally, it is important to note that the results shown in216

this paper are from HLS synthesis. When running Vivado synthesis we observe a reduction in LUT usage between 20%217

and 65% and in FF usage between 10% and 20%.218

Table 2: Minimum and maximum latencies for the Top Tagging model.

Model Latency [µs] R=(6,5) [µs] R=(12,10) [µs] R=(30,20) [µs] R=(60,60 [40]) [µs]

GRU 1.7 - 1.7 2.4 - 6.5 3.2 - 7.3 5.0 - 9.1 8.0 - 12.1
LSTM 1.7 - 1.7 2.7 - 6.8 3.5 - 7.6 5.3 - 9.4 8.3 - 12.4

5.3 Static vs non-static219

In order to study the impacts of the static and non-static modes discussed in Sec 3 we limit our consideration to the Top220

Tagging models. As shown in Fig. 6, resource usage for non-static mode increases dramatically compared to static221

6

https://doi.org/10.1007/s41781-021-00066-y
https://arxiv.org/abs/2207.00559

RNNs (cont)

• Support GRU, LSTM, and simple RNN

• GRU support already exists; others are in review

• As an aside: Quartus RNN implementation found improvements in LUT

implementations for activations: merged into main

11

SYMMETRIC OPTIMIZATION LUT APPLIED

● To improve resource usage, it is possible to apply half the table size using
the symmetry property of sigmoid and tanh function (e.g. sig(-x)=-sig(x))

● Already implemented in hls and implemented in my private branch of
hls4ml and ready for a PR

● Optimizing the LUT’s gives a higher precision for the same resources usage
value

● Sigmoid and hyperbolic tangent LUT output strictly between -1 and 1:
○ no need for integer bits

● Optimization already verified for our RNNs (Last presentation: link)

Internal hls4ml evolution

• In order to better support different backends, and also to better support
optimizations, hls4ml’s internal representation and processing were overhauled

• Processing consists of flows of optimizers

• Backend-specific optimizers produce the code

12

optimize

vivado: init layers

vivado: streaming

vivado: quantization

vivado: optimize

vivado: specific types

vivado: apply templates

convert

eliminate linear activation

fuse consecutive batch
normalization

fuse batch normalization

replace multidimensional
dense with conv

fuse bias add

remove useless transpose

output rounding
saturation mode

qkeras factorize alpha

extract ternary threshold

fuse consecutive batch
normalization

Vivado IP flow

Backends

• The original and most-supported backend is for Vivado HLS

• Vitis HLS will be supported in the near future

• The Quartus backend is in the main branch

• Currently more limited support: mainly MLP, with streaming and preliminary RNN

• But rapidly improving: pull requests for CNNs and RNNs exist

• We are working towards feature parity by the fall.

• Catapult backend is being developed to target ASICs in addition to FPGAs.

• VivadoAccelerator is a variant of the backend that makes it easier to deploy

the code on accelerators

13

VivadoAccelerator backend

• A Block Design is created
containing the NN IP, as
well as the other necessary
IPs to create a complete
system.

• More information is
available in the hls4ml-
tutorial.

• Work is being done
towards supporting Alveo
cards.

14

https://github.com/fastmachinelearning/hls4ml-tutorial
https://github.com/fastmachinelearning/hls4ml-tutorial

Collaboration with FINN group

• AMD/Xilinx’s FINN project has similar goals, with emphasis on smaller bit widths.

• We recently started cooperating, with the first step being a common frontend.

• Brevitas (PyTorch) and QKeras can export QONNX, with HAWQ export in
development: then hls4m and FINN can import QONNX

• The frontend has common cleaning and QONNX manipulation utilities

• We have a QONNX model zoo for example models

15

https://github.com/Xilinx/finn
https://github.com/fastmachinelearning/qonnx
https://github.com/fastmachinelearning/qonnx_model_zoo

QONNX

16

• QONNX is a simple but flexible method to represent
uniform quantization

• lightweight: only 3 operators (Quant, BipolarQuant, Trunc)

• abstract: not tied to any implementation

• Fused quantize-dequantize (QDQ) format

where s is scale and z is zero offset.

quantize(x) = clamp (round (x
s

+ z), ymin, ymax)
dequantize(y) = s(y − z)

arXiv:2206.07527 [cs.LG]

https://arxiv.org/abs/2206.07527
https://arxiv.org/abs/2206.07527

Logical Quant Node Handling

17

Quant

scale = 1*

zero point = 0

Quant

scale ≠ 1* or

zero point ≠ 0

Activation (Linear)

output variable precision set appropriately

(mainly ap_fixed or ac_fixed)

Activation (as above)

Scale/Shift

Unscale/Unshift

*as an optimization, powers of 2 can be handled the same as when scale = 1

Propagating scales

• QDQ is not meant to be implemented directly

• Can propagate scales/shifts and across linear

operators if certain conditions are met

• Often make use of the power of 2 optimization to

offload the scale propagation to the HLS compiler.

18

MatMul

(Un)Scale 
(no shift)

MatMul

(Un)Scale 
(no shift)

TinyML

• One of the advantages of FPGAs is low power vs performance

• Together with the FINN group we competed in MLPerf Tiny Inference

Benchmark v0.7 open division

• hls4ml was used for image classification (IC) and anomaly detection (AD)

• Used a SoC (ZYNQ) and an FPGA-only 

design (Arty)

19

arXiv:2206.11791 [cs.LG]

Open-source FPGA-ML codesign for the MLPerf™ Tiny Benchmark

subset was updated to maintain class balance. The refer-
ence model achieves 87.0% accuracy across the 200 testing
images of the v0.7 benchmark.

2.2 Anomaly detection

Anomaly detection is a task that requires separating nor-
mal and anomalous signals in various data formats. For
this benchmark as defined by MLPerf Tiny, an unsuper-
vised approach is developed to train the neural network to
closely match industrial use-cases where normal behavior
may be well defined because it is less feasible to collect
every possible anomalous signal and train a binary classifier
in a supervised learning approach.

The unsupervised AD model is trained on the DCASE
2020 Challenge Task 2 dataset which employs the ToyAD-
MOS (Koizumi et al., 2019) ToyCar dataset. The dataset is
comprised of 10 s WAV files. The full set is split into 7,000
normal audio files for training and 2,459 for testing.

Before training on the audio files, we preprocess them into
mel spectrograms of 128 bands describing each 32 ms inter-
val. The model is then trained on a sliding window of five
frames of the spectrogram yielding an input size of 640. We
use an autoencoder NN structure that attempts to recreate
the input. We calculate the mean-squared error (MSE) be-
tween the input and output and average it over each of the
windows (196⇥). We use a smaller version of the MLPerf
Tiny AD autoencoder network that has 128 inputs with an
encoder and decoder comprised of two quantized 72-unit
fully-connected (FC) layers with batch normalization (BN)
and ReLU activation. An FC layer is also used as the output
layer. To evaluate the model performance, we average the
MSE over each the windows in the audio sample to compute
an anomaly score. To set the threshold between normal and
anomalous sounds, we use the receiver operating charac-
teristic (ROC) curve and the corresponding area under the
curve (AUC) as the quality metric.

2.3 Keyword spotting

Over the last decade, keyword spotting has become increas-
ingly prevalent, especially in modern voice assistants. Run-
ning a full speech recognition system only to detect an
activation word is often impractical because of power im-
plications and privacy concerns. Instead, modern devices
only listen for an activation word, a specific keyword. Since
recognizing a limited set of words is significantly simpler
than full speech recognition, the keyword spotting system
can be run locally on a given device and with low power
impact. Keyword spotting is also interesting for general
robot control, by setting a vocabulary with words such as
“start,” “stop,” “louder,” and “quieter.”

For the MLPerf Tiny benchmark the KWS task is based on

the Google speech commands dataset V2 (Warden, 2018).
The dataset consist mainly of 1 s audio files, each containing
one spoken word. In total 105 829 data samples are avail-
able, recorded by different speakers. The data samples are
partitioned into training, validation, and test sets, such that a
given speaker only appears in one of the sets. Additionally,
longer files with background noises are included. Overall
the dataset contains 35 classes, each representing the utter-
ance of one word. The dataset is however more often used
in its twelve-class variant, where ten fixed classes are used
and the additional 25 classes are grouped into the unknown
class, while also adding a new class called silence, com-
prised of samples from the included background noises. For
MLPerf Tiny, this twelve-class variant is used. Along with
sample code for setting up the pre-processing for the dataset
MLPerf Tiny also provides a reference model for the KWS
task, which is a depthwise separable convolutional neural
network (DS-CNN) from Zhang et al. (2017). The DS-CNN
model is relatively compact and optimized for low-power
microcontrollers. For on-device testing, 1,000 samples from
the Google speech commands test test are selected for the
benchmark. Over this subset, the reference model achieves
an accuracy of 92.2%.

3 MODEL DEVELOPMENT AND CODESIGN

An overview of the models developed for the submission
are presented in Table 1. Two models for the IC task one
each for the AD and KWS tasks were submitted. Below,
we will describe in detail the model architecture and opti-
mizations, both for training and implementation, that were
performed for each of the models for the two FPGA hard-
ware platforms considered. To optimize performance, all
of the FPGA neural network do not use off-chip memory.
However, to measure the performance of the models using
the MLPerf Tiny benchmarking suite, the ARM processing
system uses off-chip memory which would not necessarily
be required in a standalone design. Each model is developed
through hardware-software codesign to search for Pareto-
optimal solutions in model accuracy and resource usage by
tuning a number of design machine learning and hardware
architecture parameters. The solutions are not configurable
at runtime for optimized performance.

Benchmark Flow Prec. [bits] Params. Accuracy
IC hls4ml 8–12 58 115 83.5%
IC FINN 1 1 542 848 84.5%
AD hls4ml 6–12 22 285 0.83 AUC
KWS FINN 3 259 584 82.5%

Table 1. Summary of models submitted for the v0.7 benchmark
including benchmark task, tool flow used, precision of model, num-
ber of parameters, and performance—by default this is accuracy
unless denoted as AUC

Open-source FPGA-ML codesign for the MLPerf™ Tiny Benchmark

of each IP block can be done in parallel.

4.2.2 IP Integration

We used the Xilinx Vivado Design Suite 2019.1 to instan-
tiate and interconnect IP cores from the Vivado IP catalog
and the hls4ml and FINN codesign workflows. We first
interactively used the IP integrator design canvas to develop
an automated flow using the Tcl programming interface. In
particular, we integrated most of the IP cores at the advanced
extensible interface (AXI) level, but we also worked at the
port-and-constraint level to interface the device under test
(DUT) with the Embedded Microprocessor Benchmark Con-
sortium (EEMBC) performance and power analysis setup.

Fig. 6 shows the main components for the integration on
both Zynq-7020 SoCs and pure FPGA chips. A Zynq-
7020 SoC combines hard cores, e.g., ARM Cortex-A, of
the processing system (PS) and with the flexibility of the
programmable logic (PL). AXI ports connect the PL with
the off-chip memory through the PS. In Fig. 6a, we inte-
grate both FINN and hls4ml accelerators with AXI buses to
support both the accelerator control (s axi) and data move-
ment (m axi). Fig. 6b shows the design on a pure FPGA,
where we similarly instantiate the accelerator, but we inte-
grate a soft processor (MicroBlaze) on the PL instead. The
memory controller (MIG) and the on-chip memory (OCM)
are instantiated as soft IPs as well. For our experiments, we
sized the MicroBlaze instruction and data cache in the range
1–16 kB and the on-chip memory in the range 32–128 kB to
balance BRAM usage and software performance.

VBD[L
PBD[L

PBD[L

FO
N

UV
W

3/����36
D[LBLQWHUFRQQHFW

]\QTBSV
D[LBLQWHUFRQQHFWPOBDFFHOHUDWRU

VBD[L
PBD[L

PBD[L

FO
N

UV
W

3/
D[LBLQWHUFRQQHFW

PFX
D[LBLQWHUFRQQHFWPOBDFFHOHUDWRU D[LBLQWHUFRQQHFW

0,*
GUDP

UHVHW
FONBRXW

,/0%�'/0%
2&0 FONBLQ

�D�

�E�

Figure 6. Acceleration integration for (a) SoC and (b) FPGA-only
designs

4.2.3 Experimental Results on Development Boards

In our experimental setup we used two off-the-shelf develop-
ment boards: the TUL Pynq-Z2 and Digilent Arty A7-100T
boards. The TUL Pynq-Z2 board is based on a Xilinx Zynq-
7020 SoC and designed for the Xilinx University Program
to support the Pynq software stack. The Zynq-7020 SoC
on the board (xc7z020-1clg400c) combines an ARM

dual-core Cortex-A9 processor at 650 MHz with 13,300
logic slices (four 6-input LUTs and eight FFs), 630 kB of
BRAM, and 220 DSP slices.

The Digilent Arty A7-100T board is based on Xilinx Artix-7
technology and designed for low-power and low-cost appli-
cations. The FPGA chip (xc7a100t-1csg324) comes
with 15,850 logic slices (four 6-input LUTs and eight FFs),
607.5 kB of BRAM, and 240 DSP slices. Table 5 reports
the final resource usage after placement and routing for all
designs implemented on both platforms.

We can directly compare the two different solutions—one
based on hls4ml and one based on FINN—that were submit-
ted on the same hardware platforms for the IC benchmark
task. First, we note some differences in the model design.
The hls4ml IC model is a relatively small CNN (58 115 pa-
rameters) implemented using fixed-point precision weights
and activations with bit widths in the range 8–12, while the
FINN IC model is significantly larger (1 542 848 parame-
ters), but implemented with binary weights and activations.
Thus while the FINN IC model implements more operations,
they are each less computationally expensive.

Another distinction between the models is the chosen
resource-latency tradeoff. The hls4ml IC model utilizes
58% fewer BRAMs compared to the FINN IC model for
the Pynq-Z2 platform. However the latency is 18.2 times
larger, the bulk of which is required by the penultimate
convolutional layer (6.6 times longer latency than the next
slowest layer). The hls4ml streaming architecture chosen
is such that the 32 ⇥ 32 input image size is iterated over
sequentially. For each iteration, the inputs are assembled
into the corresponding 4⇥ 4⇥ 32 input tensor for a single
kernel multiplication and up to 16 384 multiplications are
performed sequentially, resulting in 32 outputs per kernel
multiplication. Thus while the resource usage is kept to a
minimum, the worst-case latency scales approximately as
32⇥ 32⇥ 16 384 clock cycles. In future submissions, we
plan to more efficiently pipeline these operations to substan-
tially reduce the latency of the hls4ml IC model.

4.3 Software Integration

4.3.1 Bare-Metal Setup

In our setup, the processor, or microcontroller, is in charge
of initiating the memory with the benchmark data, program-
ming the accelerator, starting it, and waiting for its com-
pletion with polling on a register. Finally, we compare the
correctness of the accelerator outputs against precomputed
reference outputs. The accelerator responds to the initial
configuration from the processor, and then autonomously
transfers data between off-chip memory and local buffers.
The communication between processor and accelerator al-
ways uses memory-mapped I/O. The processor can directly

https://mlcommons.org/en/inference-tiny-07/
https://mlcommons.org/en/inference-tiny-07/
https://arxiv.org/abs/2206.11791

TinyML

• Developing the models for the competition discovered useful optimizations:

• Buffer depth optimization: FIFOs are used between the layers in streaming

implementations. One can reduce resources by tuning the size.

• Dense + ReLU merging: can avoid FIFO altogether in this common case

• Quantized Dense + BatchNormalization merging: new layer avoids FIFO. (New layer
also added to QKeras.)

• There are pull requests to the main branch of hls4ml from these developments
20

Open-source FPGA-ML codesign for the MLPerf™ Tiny Benchmark

the FPGA resource usage for the hls4ml IC model is shown
with and without the optimization. This optimization signifi-
cantly reduces the FPGA resources enabling the deployment
of larger models.

For FINN an equivalent optimization exists, which was
applied to all FINN-based models in this submission. Fun-
damentally the optimization executes very similar steps to
the optimization in hls4ml, running PyVerilator (Wright
et al., 2020) on the full design, to perform an estimation
for the optimal FIFO buffer depths between the layers of a
given neural network design. The found FIFO buffer depths
are then saved in the internal ONNX representation and are
applied at a later step. Even though the simulation of the
whole model in an RTL simulation is time consuming, this
approach has proven useful for many FINN models, such
that it is now part of the default compiler flow in FINN.

Table 2 shows a summary of the FIFO buffer sizes set with
this optimization for both hls4ml and FINN.

Benchmark Flow FIFO optimization FIFO size
IC hls4ml enabled 1–1066
IC FINN enabled 2–512
AD hls4ml disabled 1
KWS FINN enabled 32–64

Table 2. Summary of FIFO buffer sizes for models submitted for
the v0.7 benchmark. For the hls4ml FIFO optimization the FIFO
buffer sizes can take an arbitrary integer values, while for FINN
they can only be powers of two. No FIFO optimization was per-
formed for the AD model.

3.1.3 ReLU Layer Merging

As mentioned in the previous section, each dataflow stage
consists of a neural network layer, which are linked together
by FIFOs that cost BRAMs, LUTs, and flip flops (FFs). By
default in hls4ml, each rectified linear unit (ReLU) layer
is implemented as its own dataflow stage. Because each
additional dataflow stage costs extra logic and FIFOs, we
reduce the resource utilization by merging the ReLU activa-
tion function into the layer preceding it. Although the layers
with the newly merged ReLU functionality use more logic
than before, there is still a net decrease in resources. Table 3
shows the resulting resource utilization reductions.

BRAM [18 kb] FF LUT
Available 280 106 400 53 200
Without opt. 477 170.4% 79 177 74.4% 66 838 125.6%
With FIFO opt. 278 99.3% 72 686 68.3% 58 515 110.0%
With ReLU opt. 345 123.2% 72 921 68.5% 55 292 103.9%
With all opt. 146 52.1% 66 430 62.4% 46 969 88.3%

Table 3. Resource estimates from Vivado HLS for the IC model
with hls4ml for the v0.7 MLPerf Tiny submission

3.2 Optimization for IC with FINN

The model submitted for the IC task with FINN is called
CNV-W1A1 from Umuroglu et al. (2017). The model ar-
chitecture takes inspirations form BinaryNet (Hubara et al.,
2016) and VGG-16 (Simonyan & Zisserman, 2015), con-
sisting of first multiple convolutional blocks and then fully
connected layers at the end. The whole architecture can be
described as follows:

• Three convolutional blocks, consisting of two 3 ⇥ 3
convolutions and one 2 ⇥ 2 max pooling layer at the
end. The convolutions in each of these blocks have the
following number of channels respectively: 64, 128,
256.

• The network then continues with two fully connected
layers with 512 neurons and one output layer with 10
neurons.

• Finally a top-k layer is inserted to calculate the classifi-
cation result in hardware.

Since the original release of the FINN paper the framework
has been extended to support arbitrary bit widths, meaning
that weight and activations with more than one bit can also
be synthesized. However, bit widths below eight bit are gen-
erally recommended for FINN, due to how the underlying
activation implementation scales with bit width. As such
the CNV model also exists in variants with two bit weights
and activations. For the MLPerf Tiny submission, the bi-
nary version of the model is used. Here, the weights and
activations are quantized to a bipolar representation, with
the notable exception being the input layer, which processes
the input images as 8-bit data. Consequently the activation
function associated with the input layer performs an eight
bit calculation, while all other layers of the network work
with a binary representation of the weights and activations.

3.2.1 ASHA for IC with FINN

We used the adaptive ASHA algorithm (Li et al., 2020) from
Determined AI to search for a more efficient or accurate
model. The starting point for the scan was the CNV-W1A1
model. The hyperparameters that were varied were the
number of convolutional filters (from 32 to 512), whether
or not to pool after convoluational layers, strides (from 1 to
4), kernel sizes (from 1 to 4), pooling size (2 or 4), number
of neurons in fully connected layers (from 16 to 512), and
activation and weight bit widths (1 or 2), The adaptive scan
allocates a set of resources to scan varied hyperparameter
configurations, throwing out the worse half based on the
specified validation metric and repeating until only one
optimal configuration remains. A batch size of 50 was used
and each model was trained for up to 100 epochs, although
the adaptive ASHA algorithm may terminate training earlier.

For each model, several inference cost metrics are computed

ML methods on the edge for accelerators

• Study using reinforcement learning to regulate the gradient magnet power supply
of the Fermilab Booster (arXiv:2011.07371)

• Improve beam performance for the Mu2e experiment by integrating ML into
accelerator operations (arXiv:2103.03928)

• Employing Intel Arria 10 SoC systems with distributed controls, in cooperation
with Crossfield Technology LLC.

21

Accelerator Real-time Edge AI for Distributed Systems (READS)

transferred to the ML processing, the FPGA to CPU communication, and the streaming to offline data
storage for large ML training workflows.

In the next section, Section. B.d, we will discuss the aspects of Fig. 6 pertaining to the development
of the machine learning models and the creation of input and training data. In Section B.e, we will
discuss how we will implement those ML models into the FPGA fabric itself for real-time online
operations.

Figure 6: A reinforcement learning schematic for Mu2e spill extraction application including data flow
pathways across the control system

B.d Machine Learning Model Development
In this section we will elaborate on our proposed ML methods that are tailored to the needs of different
accelerator control problems. This part of the project will be led by Co-PI Liu who has an extensive
expertise and background in ML and leading ML projects.

Reinforcement Learning for Controlling the Spill Regulation System
SRS simulations A full suite of physics simulations can be used to study the regulation algorithms
enhanced by ML while the beam instrumentation and controls are being developed. This will inform
the early stages of the ML model studies in a well-understood simulation environment.

The detailed simulations of the slow spill regulation have to include a large number of physics
processes and the statistical nature of the extraction process. Such a modeling of the extraction
process takes substantial computing time using grid resources. We have expertise on performing
simulations at this complexity [7]. For the purposes of studying the regulation process, the model
can be significantly simplified. The new model would replace the most time-consuming part of beam
dynamics with an analytical model, which is, with a few exceptions, still adequately representative for
the most significant extraction response to the sources of variation. This model can be used for fast
MATLAB simulations to test the real-time firmware and provide data sets for the offline training of
ML models.

ML Model Building The primary function of the control loop in the Mu2e slow spill is to tune
the RFKO power and the quadrupole correction currents. The goal is to maintain a consistent spill
intensity to achieve a high Spill Duty Factor as defined in Eq. 1. We plan to target a class of
reinforcement learning techniques [8] which model the control loop as an online agent taking action
to tune the RFKO and quadrupole systems. The action at, which will be selected by the learned
policy ⇡ based on the current state st, generates a stimuli to the environment which updates the state
of the agent and a reward rt is computed based on the ideal spill intensity for a 100% Spill Duty

Narrative Section B 8

https://arxiv.org/abs/2011.07371
https://arxiv.org/abs/2103.03928

For more information

• Main repository: https://github.com/
fastmachinelearning/hls4ml

• Good starting point for those interested:
https://github.com/fastmachinelearning/
hls4ml-tutorial

• Documentation: https://
fastmachinelearning.org/hls4ml/

• Help available at https://github.com/
fastmachinelearning/hls4ml/discussions

• Open-source project, so welcome to
contribute

22

https://github.com/fastmachinelearning/hls4ml
https://github.com/fastmachinelearning/hls4ml
https://github.com/fastmachinelearning/hls4ml
https://github.com/fastmachinelearning/hls4ml-tutorial
https://github.com/fastmachinelearning/hls4ml-tutorial
https://fastmachinelearning.org/hls4ml/
https://fastmachinelearning.org/hls4ml/
https://github.com/fastmachinelearning/hls4ml/discussions
https://github.com/fastmachinelearning/hls4ml/discussions

Backup

23

24

TABLE II
THE NEW QUANTIZATION OPERATORS IN THE QONNX STANDARD FORMAT.

Quant: calculate the quantized values of one input tensor and produces one output data tensor.

Attributes:
• signed (boolean): defines whether the target quantization interval is signed or not.
• narrow (boolean): defines whether the target quantization interval should be narrowed by 1. For example, at 8 bits if signed is true

and narrow is false, the target is [�128, 127] while if narrow is true, the target is [�127, 127].
• rounding_mode (string): defines how rounding should be computed during quantization. Currently available modes are: ROUND,

ROUND_TO_ZERO, CEIL, FLOOR, with ROUND implying a round-to-even operation.

Inputs:
• x (float32): input tensor to be quantized.
• scale (float32): positive scale factor with which to compute the quantization. The shape is required to broadcast with x.
• zero_point (float32): zero-point value with which to compute the quantization. The shape is required to broadcast with x.
• bit_width (int, float32): the bit width for quantization, which is restricted to be � 2. The shape is required to broadcast with x.

Outputs:
• y (float32): quantized then dequantized output tensor

BipolarQuant: calculate the binary quantized values of one input tensor and produces one output data tensor.

Attributes: None
Inputs:

• x (float32): input tensor to be quantized.
• scale (float32): positive scale factor with which to compute the quantization. The shape is required to broadcast with x.

Outputs:
• y (float32): quantized then dequantized output tensor

Trunc: truncate the least significant bits (LSBs) of a quantized value, with the input’s scale and zero_point preserved.

Attributes:
• rounding_mode (string): defines how rounding should be computed during truncation. Currently available modes are: ROUND, CEIL,

and FLOOR, with FLOOR being the default.

Inputs:
• x (float32): input tensor to quantize.
• scale (float32): positive scale factor with which to compute the quantization. The shape is required to be broadcast with x.
• zero_point (float32): zero-point value with which to compute the quantization. The shape is required to be broadcast with x.
• in_bit_width (int, float32): bit-width of the input, which is restricted to be � 2. The shape is required to broadcast with x.
• out_bit_width (int, float32): bit width of the output, which is restricted to be � 2. The shape is required to broadcast with x.

Outputs:
• y (float32): dequantized output tensor.

Fig. 2. The same part of the CNV-w2a2 model highlighting the transition
from convolutional layers to fully connected ones after cleaning. Note that the
intermediate tensors now have shape descriptions and the Shape, Gather,
Unsqueeze, Concat, and Reshape structure was collapsed into a single
Reshape operation.

Fig. 3. The same part of the CNV-w2a2 model highlighting the transition
from convolutional layers to fully connected ones after applying both cleaning
and the channels last transformation.

model execution is based on a node-level execution in Python
built with the custom node execution engine used in FINN.

Quant and BipolarQuant nodes

Supported

Not yet 
supported

Trunc nodes

25

TABLE II
THE NEW QUANTIZATION OPERATORS IN THE QONNX STANDARD FORMAT.

Quant: calculate the quantized values of one input tensor and produces one output data tensor.

Attributes:
• signed (boolean): defines whether the target quantization interval is signed or not.
• narrow (boolean): defines whether the target quantization interval should be narrowed by 1. For example, at 8 bits if signed is true

and narrow is false, the target is [�128, 127] while if narrow is true, the target is [�127, 127].
• rounding_mode (string): defines how rounding should be computed during quantization. Currently available modes are: ROUND,

ROUND_TO_ZERO, CEIL, FLOOR, with ROUND implying a round-to-even operation.

Inputs:
• x (float32): input tensor to be quantized.
• scale (float32): positive scale factor with which to compute the quantization. The shape is required to broadcast with x.
• zero_point (float32): zero-point value with which to compute the quantization. The shape is required to broadcast with x.
• bit_width (int, float32): the bit width for quantization, which is restricted to be � 2. The shape is required to broadcast with x.

Outputs:
• y (float32): quantized then dequantized output tensor

BipolarQuant: calculate the binary quantized values of one input tensor and produces one output data tensor.

Attributes: None
Inputs:

• x (float32): input tensor to be quantized.
• scale (float32): positive scale factor with which to compute the quantization. The shape is required to broadcast with x.

Outputs:
• y (float32): quantized then dequantized output tensor

Trunc: truncate the least significant bits (LSBs) of a quantized value, with the input’s scale and zero_point preserved.

Attributes:
• rounding_mode (string): defines how rounding should be computed during truncation. Currently available modes are: ROUND, CEIL,

and FLOOR, with FLOOR being the default.

Inputs:
• x (float32): input tensor to quantize.
• scale (float32): positive scale factor with which to compute the quantization. The shape is required to be broadcast with x.
• zero_point (float32): zero-point value with which to compute the quantization. The shape is required to be broadcast with x.
• in_bit_width (int, float32): bit-width of the input, which is restricted to be � 2. The shape is required to broadcast with x.
• out_bit_width (int, float32): bit width of the output, which is restricted to be � 2. The shape is required to broadcast with x.

Outputs:
• y (float32): dequantized output tensor.

Fig. 2. The same part of the CNV-w2a2 model highlighting the transition
from convolutional layers to fully connected ones after cleaning. Note that the
intermediate tensors now have shape descriptions and the Shape, Gather,
Unsqueeze, Concat, and Reshape structure was collapsed into a single
Reshape operation.

Fig. 3. The same part of the CNV-w2a2 model highlighting the transition
from convolutional layers to fully connected ones after applying both cleaning
and the channels last transformation.

model execution is based on a node-level execution in Python
built with the custom node execution engine used in FINN.

Not yet 
supported

