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https://github.com/hls-fpga-machine-learning/hls4ml

Motivation for his4dml

nIs4dml was originally created for use In the first level
The CERN accelerator complex

trigger of the LHC
Complexe des accélérateurs du CERN

see Monday’s talk by Kumar and Gomber for more aws
information on triggering at the LHC ‘

Collisions occur at 40 MHz, and trigger decisions
need to be made in about 1 pys.
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Need 1o reject most events, but efficiently accept
INnteresting events: machine learning

--------------------

Original focus of hlsdml: implement relatively small
NNs in FPGASs to execute very fast

Welights stored in the fabric, parallel execution

Focus has subsequently broadened


https://indico.cern.ch/event/1109460/contributions/4893233/attachments/2487752/4272248/O_DAQ%20System%20&%20Trigger_61.pdf

Why use FPGAs to run ML inference?

Input/Output

FPGAs exploit the parallelism of the Mok el
poroblem for low latencies .
FPGASs exhibit predictable real-time ’
latencies Gontigurble

=2

FPGAS tend to use less power than GPUs
or CPUs for solving similar problems

Adaptive Hardware (Unconfigured) Adaptive Hardware (Configured)

FPGASs can be reprogrammed as _

algorithms evolve

From Xilinx Adaptive Computing Technology Overview



How does one program FPGAS?

Hardware description languages (HDLs) like VHDL or Verilog

Closely tied to the hardware implementation: can be complicated

High Level Synthesis (HLS)
Use (restricted) C++ code with pragmas

Main restriction is that dynamic memory is not allowed

Can be both easier ar

to explicitly deal with ti

reguirements.

d more flex

me: pipelir

ble to write algorithms without having
e stages can change based on

Can be easier to debug: the C++ code can be compiled and run to
check for correctness much more quickly than HDL can be simulated.

HDL

HLS



Converting NNs to HLS: his4ml

hisdml is a compiler taking Keras, pytorch, or ONNX as input and usually producing HLS.

-+ The "backend” can be changed. Al

oroduces HLS for Vivado HLS, Inte

HLS, or Catapult.
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‘hough non-HLS backends exist, hlsdml generally

Produces spatial dataflow code specific to the program at hand (not systolic array)
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https://github.com/hls-fpga-machine-learning/hls4ml

Optimizing for FPGASs

Fixed-point arithmetic is preferred for efficiency. ap_fixed<width bits, integer bits>
0101.1011101010

integer fractional

Quantization-aware training (QKeras, Brevitas) performs - .
petter than post-training quantization.

Also have a number of options In tweak the
implementation, including “reuse factor”
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https://github.com/google/qkeras
https://github.com/Xilinx/brevitas
https://arxiv.org/abs/2006.10159

Types of layers supported

- MLP: Dense matrix/vector multiplies map well into FPGA calculations
- Some support for sparse matrices, more in development

- 1D and 2D CNNs
- Batch Normalization
- Max/AveragePooling
*Various activations

- Embedding

- some RNN support (more In development)

- Special support for binary and ternary networks



CNN developments: streaming

Parallel CNN implementations quickly run into limitations for large CNNs

Streaming implementations support large CNNs.

Instead of getting input in parallel, inputs are sent one data point at a time.

use hlis::stream (Vivado) or ihc::stream (Intel) of an array of channels associated
with a data point.

A streaming iImplementation is being developed for Catapult
FIFOs are used between the layers
Can allow for more flexible network structure

- Also Introduced the option to store weights externally for large models



CNN developments

+ We have two streaming CNN implementations for the Vivado backend: line
buffer (default) and encoded

- A CNN implementation is in a pull request for the Quartus backend.

- A tutorial with CNNSs is available in the hlsdml-tutorial.

C Flattened Dense 1

Extract kernels Kernel Multiply Output Pixel 2
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https://github.com/fastmachinelearning/hls4ml-tutorial

Recurrent NNs

Two RNN implementations were made independently, one for the Quartus
backend (10.1007/s41781-021-00066-y), one for Vivado (arxiv:2207.00559)

Plan: Don’t have two parallel implementations, but merge the features.
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Quartus version is for ATLAS calorimeter readout Vivado b-tagging example


https://doi.org/10.1007/s41781-021-00066-y
https://arxiv.org/abs/2207.00559

RNNSs (cont)

- Support GRU, LSTM, and simple RNN
- GRU support already exists; others are in review

+ As an aside: Quartus RNN implementation found improvements in LUT
implementations for activations: merged into main
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INnternal hisdml evolution

INn order to better support different backends, and also to better support
optimizations, hisd4ml’s internal representation and processing were overnauled

Processing consists of flows of optimizers
Backend-specific optimizers produce the code

Vivado IP flow

optimize

vivado: init layers

vivado: streaming

vivado: quantization

vivado: optimize

vivado: specific types

vivado: apply templates

convert

fuse bias add

eliminate linear activation

remove useless transpose

fuse consecutive batch
normalization

output rounding
saturation mode

fuse batch normalization

gkeras factorize alpha

replace multidimensional
dense with conv

extract ternary threshold

fuse consecutive batch
normalization

12



Backends

+ The original and most-supported backend is for Vivado HLS
- Vitis HLS will be supported in the near future

- The Quartus backend is in the main branch
+ Currently more limited support: mainly MLP, with streaming and preliminary RNN
But rapidly improving: pull requests for CNNs and RNNs exist
- We are working towards feature parity by the fall.

- Catapult backend is being developed to target ASICs in addition to FPGASs.

+VIivadoAccelerator Is a variant of the backend that makes it easier to deploy
the code on accelerators

13



VivadoAccelerator backend

+ A Block Design is created
containing tr
as the o

wel

e NN IP, as
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https://github.com/fastmachinelearning/hls4ml-tutorial
https://github.com/fastmachinelearning/hls4ml-tutorial

Collaboration with FINN group

- AMD/Xilinx’s FINN project has similar goals, with emphasis on smaller bit widths.

+ We recently started cooperating, with the first step being a common frontena.

Brevitas (PyTorch) and QKeras can export QONNX, with HAWQ export in
development: then hisdm and FINN can import QONNX

+ The frontend has common cleaning and QONNX manipulation utilities

- We have a QONNX model zoo for example models

. Common }
i frontend

. *
------------------

QONNX \

Brevitas

[PyTorch]


https://github.com/Xilinx/finn
https://github.com/fastmachinelearning/qonnx
https://github.com/fastmachinelearning/qonnx_model_zoo

0 (16x64)

[global_in ) 1=0.03125
2=0
k3 =6

QONNX  arXiv:2206.07527 [cs.LG]

0 (64)

QONNX is a simple but flexible method to represent B
uniform quantization

ightwelight: only 3 operators (Quant, BipolarQuant, Trunc)

abstract: not tied to any implementation

Fused quantize-dequantize (QDQ) format @
. X ) ’ o
quantize(x) = clamp (round (; + Z) Vi ymax)
dequantize(y) = s(y — 2) é o

where S IS scale and z Is zero offset.



https://arxiv.org/abs/2206.07527
https://arxiv.org/abs/2206.07527

L ogical Quant Node Handling

Quant Activation (Linear)
scale = 17 output variable precision set appropriately
zero point =0 (mainly ap_fixed or ac_fixed)
Scale/Shift
Quant —
scale # 1% or Activation (as above)
zero point = 0 i

v
Unscale/Unshift

*as an optimization, powers of 2 can be handled the same as when scale = 1 17



Propagating scales

- QDAQ is not meant to be implemented directly

+ Can propagate scales/shifts and across linear
operators If certain conditions are met

+ Often make use of the power of 2 optimization to
offload the scale propagation to the HLS compller.

(Un)Scale

(no shift)

N
Mat]\/lu\

!

N/
I\/IatMu\

'

(Un)Scale

(NO shift)
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TINYML  arxiv:2206.11791 [es.LG]

One of the advantages of FPGAs Is low power vs performance

logether with the FINN group we competed in MLPert Tiny Inference

Benchmark vO.7 open division

hisdml was used for image classification (IC) and anomaly detection (AD)

Used a SoC (ZYNQ) and an FPGA-only
design (Arty)

Benchmark | Flow Prec. [bits] Params. | Accuracy
IC hls4ml 8—12 58115 83.5%
IC FINN 1 | 1542848 84.5%
AD hls4ml 6-12 22285 | 0.83 AUC
KWS FINN 3 259 584 82.5%
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https://mlcommons.org/en/inference-tiny-07/
https://mlcommons.org/en/inference-tiny-07/
https://arxiv.org/abs/2206.11791

TinyML

Developing the models for the competition discovered useful optimizations:

Buffer depth optimization: Fl

-Os are used betweenr
implementations. One can reduce resources by tuni

the layers In streaming
ng the size.

Dense + RelLU merging: can avoid FIFO altogether in this common case

BRAM [18 kb] FF LUT
Available 280 106 400 53200
Without opt. 477 1704% | 79177 74.4% | 66838 125.6%
With FIFO opt. | 278 99.3% | 72686 68.3% | 58515 110.0%
With ReLLU opt. | 345  123.2% | 72921 68.5% | 55292 103.9%
With all opt. 146 52.1% | 66430 62.4% | 46969  88.3%

Quantized Dense + BatchNormalization merging: new layer avoids

also added to QKeras.)

—O. (New layer

There are pull requests to the main branch of hisdml from these developments
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ML methods on the edge for accelerators

- Study using reinforcement learning to regulate the gradient magnet power supply
of the Fermilab Booster (arXiv:2011.07371)

Improve beam performance for the MuZ2e experiment by integrating ML Iinto
accelerator operations (arXiv:2103.03928)

Employing Intel Arria 10 SoC systems with distributed controls, in cooperation
with Crossfield Technology LLC.

State, Reward:
based on ideal spill intensity at time t

Offline Workflow

Train digital twin



https://arxiv.org/abs/2011.07371
https://arxiv.org/abs/2103.03928

For more Information

Main repository: https://github.com/

fastmachinelearning/hls4mi

fastmach

Good starting point for those interested:

tps://github.com/fastmachinelearning/

Help ava

sdml-tutorial

Documentation: https://

nelearning.org/hls4dml/

able at https://github.com/

fastmachinelearning/hlsdml/discussions

g
g

Open-source project, so welcome to

contribute

: Home Page - Select or create a X &' part1_getting_started - Jupyter X +

w  Q search N @ © =

-2) Import bookmarks... %} Most Visited [ Courses [JPhysics [(Jfnal [JcMS [ News @ Maps ﬂ Facebook W Twitter WU @ Radio Garden

C O O localhost:8888/notebooks/part1_getting_started.ipynb

D Other Bookmarks

: Jupyter part1_getting_started (autosaved) Logout

File Edit View Insert Cell Kernel Widgets Help Trusted | Python 3 (ipykernel) O

+ x @A B 2+ ¥ »>PRuin B C » Markdown v

Part 1: Getting started

In [1]: from tensorflow.keras.utils import to_categorical

from sklearn.datasets import fetch_openml

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder, StandardScaler
import numpy as np

%matplotlib inline

seed = 0

np.random.seed(seed)

import tensorflow as tf

10 tf.random.set_seed(seed)

11 import os

12 os.environ['PATH'] = '/opt/Xilinx/Vivado/2019.2/bin:' + os.environ['PATH']

CoO~NOULTAE WNR

Fetch the jet tagging dataset from Open ML

In [2]: 1 data = fetch_openml('hls4ml_lhc_jets_hlf")

data['data'], datal'target']

Let's print some information about the dataset

Print the feature names and the dataset shape

In [3]: 1 print(datal'feature_names'])
2 print(X.shape, y.shape)
3 print(X[:5])

4 print(y[:5])

['zlogz', 'cl_b@_mmdt', 'cl_bl_mmdt', 'cl_b2_mmdt', 'c2_bl_mmdt', 'c2_b2_mmdt', 'd2_bl_mm
dt', 'd2_b2_mmdt', 'd2_al_bl_mmdt', 'd2_al_b2_mmdt', 'm2_bl_mmdt', 'm2_b2_mmdt', 'n2_bl_m
mdt', 'n2_b2_mmdt', 'mass_mmdt', 'multiplicity’]
(830000, 16) (830000,)
zlogz c1_b@_mmdt c1_bl_mmdt cl_b2_mmdt c2_bl_mmdt c2_b2_mmdt \
-2.935125 0.383155 0.005126 .000084 0.009070 0.000179
-1.927335 0.270699 0.001585 . 000011 0.003232 0.000029
-3.112147 0.458171 0.097914 .028588 0.124278 0.038487
-2.666515 0.437068 0.049122 .007978 0.047477 0.004802
-2.484843 0.428981 0.041786 .006110 0.023066 0.001123

APUWUNEFRS
(SESESRSNSN

d2_bl_mmdt d2_b2_mmdt d2_al_bl_mmdt d2_al_b2_mmdt m2_bl_mmdt \
1.769445 2.123898 1.769445 0.308185 0.135687
2.038834 2.563099 2.038834 0.211886 0.063729
1.269254 1.346238 1.269254 0.246488 0.115636
0.966505 0.601864 0.966505 0.160756 0.082196
0.552002 0.183821 0.552002 0.084338 0.048006

APUWUNEFES
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https://github.com/fastmachinelearning/hls4ml
https://github.com/fastmachinelearning/hls4ml
https://github.com/fastmachinelearning/hls4ml
https://github.com/fastmachinelearning/hls4ml-tutorial
https://github.com/fastmachinelearning/hls4ml-tutorial
https://fastmachinelearning.org/hls4ml/
https://fastmachinelearning.org/hls4ml/
https://github.com/fastmachinelearning/hls4ml/discussions
https://github.com/fastmachinelearning/hls4ml/discussions

Backup
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Quant and BipolarQuant nodes

Supported

Not yet
supportea

Quant: calculate the quantized values of one input tensor and produces one output data tensor.

Attributes:

e signed (boolean): defines whether the target quantization interval is signed or not.

e narrow (boolean): defines whether the target quantization interval should be narrowed by 1. For example, at 8 bits if signed is true
and narrow is false, the target is [—128,127] while if narrow is true, the target is [—127,127].

e rounding_mode (string): defines how rounding should be computed during quantization. Currently available modes are: ROUND,
ROUND_TO_ZERO, CEIL, FLOOR, with ROUND implying a round-to-even operation.

Inputs:

x (float32): input tensor to be quantized.

scale (float32): positive scale factor with which to compute the quantization. The shape 1s required to broadcast with x.
zero_point (float32): zero-point value with which to compute the quantization. The shape 1s required to broadcast with x.
bit_width (int, float32): the bit width for quantization, which is restricted to be > 2. The shape 1s required to broadcast with x.

Outputs:
o v (float32): quantized then dequantized output tensor

BipolarQuant: calculate the binary quantized values of one input tensor and produces one output data tensor.

Attributes: None
Inputs:

o x (float32): input tensor to be quantized.
e scale (float32): positive scale factor with which to compute the quantization. The shape is required to broadcast with x.

Outputs:
e v (float32): quantized then dequantized output tensor
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Trunc nodes

Not yet

ed

sSUppor

Trunc: truncate the least significant bits (LSBs) of a quantized value, with the input’s scale and zero_point preserved.

Attributes:

e rounding_mode (string): defines how rounding should be computed during truncation. Currently available modes are: ROUND, CETIL,
and FLOOR, with FLOOR being the default.

Inputs:

x (float32): input tensor to quantize.

scale (float32): positive scale factor with which to compute the quantization. The shape is required to be broadcast with x.
zero_point (float32): zero-point value with which to compute the quantization. The shape is required to be broadcast with x.
in_bit_width (int, float32): bit-width of the input, which is restricted to be > 2. The shape 1s required to broadcast with x.
out_bit_width (int, float32): bit width of the output, which is restricted to be > 2. The shape is required to broadcast with x.

Outputs:
o v (float32): dequantized output tensor.
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