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Radiations arpervadingeverywheré
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Natural atmospheric neutron flux spectrum at grolewel after
interactionsin the atmosphere (O and N)
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Geophysics :
of cosmimaturalfadiation inthe ~ => ConcernsGlobakafetyof transportation

atmosphereand atgoundlevel

Atmospheric Aircraft builders
Reliabilityin time
CertificationAuthorities
Stlngentsafetyspemﬁcaﬂons
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EngineControlers
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A More electricautomotive
A More Information Technologydependablesystems
A Internet backbone
. A high-end servers and computers




CMOSeliabilitycontinouslymprovedby
manufacturingremendousprogress
(if we disregardradiation radiatioreffectg

Historical IC Failure Rates
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Conversely, the Effects of
Additional Radiation
Becameclearly visible.

BUT

dueever increasing circuit sensitivity to natural
particle
environment

Especiallyisible in Everyday
Vehiclesor High Security
Business
(Airplanes Automotives,

Railways, InterneRouters.)

INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM 2002
Reliability Issues for Advanced
IC Technologies Anthony S. Oates



Neutron Flux vs. Altitude
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Wherein RealTimeEffectan adetectionchain?

2 DETECTOR SYSTEMS OVERVIEW
INCIDENT SENSOR  PREAMPLIFIER PULSE ANALOGTO  DIGITAL
RADIATION SHAPING DIGITAL  DATABUS
\ CONVQQSION
NNN\> \

N\

Fic. 1.2. Basic detector functions: Radiation is absorbed in the sensor and converted
into an electrical signal. This low-level signal is integrated in a preamplifier, fed to
a pulse shaper, and then digitized for subsequent storage and analysis.

More digital and highbandwidth
SET (Single Eventpsets Single Event Rate
Single EvenfEunctionalinterupts)

t

More analogand S/N ratias critical
Single Event Transient)
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First mention of a oftError» 43yearsago(1979)

Aln Dynamic Memory (1kb)
ASingle biat a time,random)

ARelatedto single alphgarticle
randomemissionfrom ceramic
packaging

ARelatedto U and Th content
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AAnticipatedto occurin arrays

2 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. ED-26, NO. 1, JANUARY 1979

Alpha-Particle-Induced Soft Errors in Dynamic
Memories

TIMOTHY C. MAY, MEMBER, 1EEE, AND MURRAY H. WOODS

Abstract— A new physical soft error mechanism in dynamic RAM’s
and CCD’s is the upset of stored data by the passage of alpha particles
through the memory array area. The alpha particles are emitted by the
radioactive decay of uranium and thorium which are present in parts-
per-million levels in packaging materials. When an alpha particle
penetrates the die surface, it can create enough electron-hole pairs
near a storage node to cause a random, single-bit error. Resuits of
experiments and measurements of alpha activity of materials are re-
ported and a physical model for the soft error is developed. Implica-
tions for the future of dynamic memories are also discussed.

I. INTRODUCTION

HE SEMICONDUCTOR industry has seen a continuing
trend toward higher levels of integration in memory
circuits. Random-access memories (RAM’s) have progressed
from the 1K dynamic RAM with a 3-transistor cell, introduced

suchasearlySRAMS and / 5 { Qa

tion that the sources mentioned above have been eliminated.
The significance of this mechanism is that it cannot be elim-
inated by standard noise-reduction procedures; only proper
design of the memory device itself can eliminate these soft
errors.

Dynamic memories store data as the presence or absence of
minority carrier charge on storage capacitors. Refresh is
required to maintain the stored charge. For n-channel MOS
RAM’s and CCD’s the charges are electrons, and capacitors
take the form of potential wells in the p-type silicon under
positively charged polysilicon gate electrodes. The amount
of charge which can be stored is typically in the range of
300 000 to 3000000 electrons. However, the number of
electrons which differentiates between “empty” and “full”
wells is reduced from the above amounts by such effects as:



Interactions in a typicdl /
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Silicon Devices as Particle Detectors of neutrons
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Wego back of the basic of a transistor
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Effectof onechargedparticle
Radiation and Hard or Séftrors

A singleparticlehit excitesbetween
1 000 and 100 OO@lectronsandholes
/micron in atypicalsemiconductor
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SCALINE&Ordersof magnitude in case etmospheriacneutrons
One neutron

™ Sensitive Layer 1 pm approx
Rationale

AProbabilitythat a neutron hit asiliconatom neara transistor and
randomlygeneraterecoilswitch trigger a signal

A Assumptions
A's e Order of magnitude 1 barn ;
A 28Si (10B as a dopant to silicon also is of concern for thermal neutrons)
A Active layer in silicon wafer ~ a layer of 1 pm where the transistors stan

=>Probability of a signal ~ approx. I®per incomingneutron

ConsequenceaseriousReliabilitylssue..

A at sealevel: 10 neutron/cn¥/ hour
Y 10 x 16 = 104transient perhour per cn? of circuit
A at airplaneAltitude: 10 000 neutron/cni/Rour

upperlimit of one transient per 10oursof flight per cnd of circuit



10B isotope ielectronicdevices

Boron is a commonly used as dopant or softener of glass oxide in silicon devices. Its
content and repartition near sensitive volumes is generally unknown. It may be absent.

Nuclear capture breaks 10B and gives highly ionizing alpha particle recoils of single

energy 1.5 MeV
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Continue The Lg Scaling Path

What is needed:
Narrow fins
Mobility enhancement
Conductive metals
Tunable materials
Precision structure control
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SoftErrorRatetrendsc Linkedo the storedCharge in a bitell

Year 2001 2004 2007 2010 2013 2016
Litho CD (nm) 130 90 65 45 32 22
Supply Voltage (V) 1.3 1.0 0.7 0.6 0.5 0.4
Nodal Capacitance (fF) 2.00 1.38 1.00 0.69 0.49 0.34
Nodal Charge (fC) 2.60 1.38 0.70 0.42 0.25 0.14
Nodal Charge (electrons) | 16250 | 8654 4375 2596 1538 846
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PlanarElectronicss becoming3Dwith a stratosphericaumber
of transistors on one cm?2
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» Precision etch and CMP
* Scaled metals
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Currentshape
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Single Event in an analog circuit
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Example on an amplifier (LM124), various strike location

Bipolar transistors are particularly sensitive
because of current gain In CMOSechnology

Dale McMorrow, NRL, USA
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Single Event Transients

LM124
Inverting
Configuration:
Vyg=+-6V
V,, =60 mV

MOREOVER, in a CMOS circamy NPN and PNP at@denin the meshof N and P dopingTheyare used
in isolation and aresupposedo be off, but they are not muteunderradiation. Theycanlock (atcha CMOS

devicesupposedwithout bipolar:
21
Buchner, et al., 50, IEEE Trans on Nucl. Science, Dec. 2003



