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Abstract

We use a path-integral approach to study the tunneling wave function in quantum cosmology

with spatial topology S1 × S2 and positive cosmological constant (the Kantowski-Sachs model).

If the initial scale factors of both S1 and S2 are set equal to zero, the wave function describes

(semiclassically) a universe originating at a singularity. This may be interpreted as indicating

that an S1 × S2 universe cannot nucleate out of nothing in a non-singular way. Here we explore

an alternative suggestion by Halliwell and Louko that creation from nothing corresponds in this

model to setting the initial volume to zero. We find that the only acceptable version of this

proposal is to fix the radius of S1 to zero, supplementing this with the condition of smooth closure

(absence of a conical singularity). The resulting wave function predicts an inflating universe of high

anisotropy, which however becomes locally isotropic at late times. Unlike the de Sitter model, the

total nucleation probability is not exponentially suppressed, unless a Gauss-Bonnet term is added

to the action.
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1. INTRODUCTION

In quantum cosmology the entire universe is treated quantum mechanically and is de-

scribed by a wave function, rather than by a classical spacetime. The wave function Ψ(g, ϕ)
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is defined on the space of all 3-geometries (g) and matter field configurations (ϕ), called

superspace. It can be found by solving the Wheeler-DeWitt (WDW) equation [1]

HΨ = 0, (1.1)

where H is the Hamiltonian operator. Alternatively, one can consider the transition ampli-

tude from the initial state (g′, ϕ′) to the final state (g, ϕ), which can be expressed as a path

integral,

G(g, ϕ|g′, ϕ′) =

∫ (g,ϕ)

(g′,ϕ′)

Dg Dϕ eiS, (1.2)

where S is the action. In general, G is a Green’s function of the WDW equation [2]. But

if (g′, ϕ′) is at the boundary of superspace, then G(g, ϕ|g′, ϕ′) is a solution of the WDW

equation everywhere in the bulk of superspace, and the path integral (1.2) may be used to

define a wave function of the universe.

The choice of the boundary conditions for the WDW equation and of the class of paths

included in the path integral representation of Ψ has been a subject of ongoing debate. The

most developed proposals in this regard are the Hartle-Hawking (HH) [3] and the tunneling

[4–6] wave functions.1 The intuition behind both of these proposals is that the universe

originates ‘out of nothing’ in a nonsingular way. But despite a large amount of work, a

consensus on the precise definition of these wave functions has not yet been reached.

The two proposals have been thoroughly studied in the simple minisuperspace de Sitter

model with S3 spatial topology, where the only degree of freedom is the radius of the

universe. A number of more complicated models with two or more degrees of freedom have

also been considered. Among them is the Kantowski-Sachs (KS) model [13] which describes

an anisotropic universe of spatial topology S1 × S2 with different scale factors. We have

recently presented a detailed analysis of the HH wave function in the KS model [14], and

our goal in the present paper is to extend this analysis to the tunneling wave function.

We shall conclude this Introduction with some comments about prior work on this topic.2

Conti and Hertog [19] considered the semiclassical wave function by studying complex

Schwarzschild-de Sitter instantons of the model, imposing boundary conditions suitable for a

smooth closure of the 4-geometry. An advantage of this approach is that it is straightforward

1 For early work closely related to the tunneling proposal, see Refs. [7–11].
2 For earlier work on KS quantum cosmology see [15–18].
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to obtain approximate expressions for the saddles by algebraic means. On the other hand, it

does not allow one to rigorously define a convergent path integral and select which of these

saddles contribute to the wave function. Specifically, the divergence of the tunneling wave

function found by CH can be attributed to the inclusion of saddle geometries that should

not contribute.

Halliwell and Louko [20] used methods similar to Picard-Lefschetz theory in order to

define a steepest descent contour that renders the path integral convergent. With this

approach it is usually the case that not all extremum geometries contribute to the integral,

since the lapse integration contour in the complex plane does not pass through all the saddles.

In this paper we will follow this procedure, but we will have to extend the analysis to a non-

vanishing cosmological constant, which makes the problem significantly more complicated.

This paper is organized as follows. In Section 2 we review the classical dynamics of the

KS model and its canonical quantization. The definition of the tunneling wave function is

discussed in Section 3, where we outline the approach based on the outgoing wave condition

in superspace, as well as the path integral definition. In this paper we adopt the path

integral approach and study alternative choices of boundary conditions for the path integral

in Sections 4 and 5. In Sec.4 we fix the scale factors of S1 and S2 on both initial and final

spacetime boundaries. The path integral in this case can be calculated exactly [20]. We find

however that the resulting wave function is singular and thus is not an acceptable solution

of the WDW equation.

Section 5 is the main part of this work. Here we investigate the choice of boundary

conditions suggested by Halliwell and Louko [20]: we fix the two scale factors on the final

boundary and require a smooth closure of the 4-geometry at the initial boundary. In this

case the path integral cannot be computed exactly, so we employ the methods of Picard-

Lefschetz theory in order to make the integral over the lapse N absolutely convergent. This

is done by finding saddle points of the action in the complex plane and deforming the initial

integration contour to a steepest descent path through the contributing saddles. The wave

function is then found in the WKB approximation by carrying out the Gaussian integrals in

the vicinity of the saddles. Since our analysis is approximate, we singled out three regimes of

interest. Denoting the scale factors of S1 and S2 by a and b respectively and the cosmological

constant by Λ = H2/3 ≪ 1 (in Planck units), we first looked into the case b ≈ 1/H. This

is the value at which the HH wave function gives a maximum probability [14]. We found
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that the tunneling wave function exhibits an opposite behavior: the probability grows away

from this value. We continued by probing the region of large S2 and found that the wave

function is peaked at high anisotropy: a/b ≲ H ≪ 1. We note that in this regime CH found

a divergence in the tunneling solution which we do not observe. Finally, we obtained the

wave function in the limit of a ≪ 1/H. This wave function does not exhibit any exponential

suppression as a function of b. Thus, the familiar picture of tunneling through a potential

barrier does not hold in the KS model.

Our results are summarized and discussed in Section 6.

2. KANTOWSKI-SACHS MODEL

2.1. Classical dynamics

The Kantowski-Sachs (KS) model describing a homogeneous universe with spatial sections

of S1 × S2 topology is represented by a Lorentzian metric as

ds2 = −N2dt2 + a2(t)dx2 + b2(t)dΩ2. (2.1)

The Einstein-Hilbert action is then

S = −π

∫
dt

[
1

N

(
aḃ2 + 2bȧḃ

)
+Na(H2b2 − 1)

]
+ Sb. (2.2)

where the integration is carried out from the initial boundary B0 to the final boundary B.

The inclusion of the boundary term is needed if one chooses to impose Neumann conditions

on one of the scale factors at B0 and is given by

Sb = −
[
π

N

d

dt
(ab2)

]
B0

. (2.3)

Varying the action with respect to the scale factors a, b we obtain the classical equations

of motion in the gauge N = 1:

äb+ ab̈+ ȧḃ−H2ab = 0, (2.4)

2bb̈+ ḃ2 + 1−H2b2 = 0, (2.5)

and varying with respect to the lapse N we obtain the Hamiltonian constraint:

ḃ2 + 2
ȧ

a
ḃb+ 1−H2b2 = 0. (2.6)
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Combining equations (2.5) and (2.6) we obtain

ḃ = κa, (2.7)

where κ is an integration constant. Plugging back into equation (2.5) and integrating we

obtain

κa = ḃ = ±
√

H2b2

3
− 1 +

2M

b
, (2.8)

where again M is an integration constant.

The above solution corresponds to a Euclidean Schwarzschild-deSitter black hole of mass

M. In Euclidean time tE = it and in the gauge N = 1 the metric (2.1) becomes

ds2E =

(
1− 2M

b
− H2b2

3

)
dλ2 +

db2(
1− 2M

b
− H2b2

3

) + b2dΩ2
2, (2.9)

where λ = κx. The black hole mass can be expressed in terms of the boundary data. Setting

a(tE = 0) = a′ and b(tE = 0) = b′ we have

M =
b′

2

(
1− H2b′2

3
+ κ2a′2

)
. (2.10)

The limiting case in which κ = 0 corresponds to the Nariai solution [23] in which:

b =
1

H
, ä = H2a , M =

1

3H
. (2.11)

It describes a 4-geometry dS2 × S2, where the characteristic radius of both dS2 and S2 is

H−1.

2.2. The WdW equation

The WdW equation of the KS model can be more conveniently realized by switching to

time variable dτ = a(t)dt. In this representation the metric is

ds2 = −N2

a2
dτ 2 + a2dx2 + b2dΩ2, (2.12)

where N , a and b are functions of time τ , which we can choose to vary in the range 0 < τ < 1.

After substituting this in the Lorentzian Einstein-Hilbert action and integrating over x and

over the angular variables, the action reduces to

S = −π

∫ 1

0

dτ

[
ḃċ

N
+N(H2b2 − 1)

]
, (2.13)
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where we have introduced a new variable c = a2b.

The constraint equation is obtained by varying the action with respect to N :

ḃċ

N
−N(H2b2 − 1) = 0, (2.14)

where overdots stand for derivatives with respect to τ .

The momenta conjugate to the variables b and c are

pb = −πċ/N, pc = −πḃ/N. (2.15)

Using this in the constraint equation (2.14) and replacing pb → −i∂/∂b, pc → −i∂/∂c, we

obtain the WDW equation

πHΨ =
[
∂b∂c + π2(H2b2 − 1)

]
Ψ = 0. (2.16)

This can be rewritten in the form of a Klein-Gordon (KG) equation,

1√
−f

∂α

(√
−ffαβ∂βΨ

)
+ VΨ = 0, (2.17)

where the potential is V = π2(H2b2−1), fαβ is the minisuperspace metric, and f = det(fαβ).

With b and c = a2b used as coordinates, the minisuperspace metric is given by fbb = fcc = 0,

fbc = fcb = 2, and
√
−f = 2. The contravariant components of the metric are f bb = f cc = 0

and f bc = f cb = 1/2. The conserved current density corresponding to this KG equation is

jα = i
√

−ffαβ(Ψ∗∂βΨ−Ψ∂βΨ
∗). (2.18)

It satisfies

∂αj
α = 0, (2.19)

or
∂jb

∂b
+

∂jc

∂c
= 0. (2.20)

This suggests that

dPb = jcdb (2.21)

can be interpreted as the probability distribution for b at a fixed value of c; then c plays the

role of a ”clock” variable. Similarly,

dPc = jbdc (2.22)

can be interpreted as the probability distribution for c at a fixed value of b, with b being the

clock variable [24].
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3. TUNNELING WAVE FUNCTION

The tunneling wave function ΨT was originally defined by imposing a boundary condition

in superspace [4]. The tunneling boundary condition states that ΨT includes only outgoing

modes, with the probability flux directed toward the boundary, at singular boundaries of

superspace.3 The division of the superspace boundary into regular and singular parts has not

been specified in the general case; here is a somewhat heuristic prescription. The boundary

of superspace can be thought of as consisting of singular configurations which have some

regions of infinite 3-curvature or infinite matter density, as well as configurations of infinite

3-volume and infinite values of matter fields. The regular part of the boundary includes

singular 3-geometries which can be obtained by slicing regular Euclidean 4-geometries. For

example, if a 4-sphere embedded in a 5D Euclidean space is sliced by parallel planes, one

gets 3-spheres of vanishing radius and infinite curvature at the two poles, even though the

4-geometry is perfectly regular there. The outgoing wave boundary condition is sometimes

supplemented by requiring that the wave function is normalizable or that its modulus is

bounded from above.

In the simplest minisuperspace model, describing a de Sitter universe, the wave function

depends only on the scale factor a and the superspace is a half-line, 0 ≤ a < ∞. The regular

boundary in this case is at a = 0 and the singular boundary is at a = ∞. The general

picture is that the probability flux is injected into superspace through the regular boundary

and flows out through the singular boundary.

The origin of the universe in the de Sitter model can be pictured semiclassically as

illustrated in Fig.1. The purple hyperboloid at the top is the classical de Sitter space and the

blue hemisphere at the bottom is its Euclidean continuation. Such a continuation is necessary

because Lorentzian geometries cannot close off at the bottom without a singularity. For this

reason the regular boundary of superspace is specified in terms of Euclidean geometries.

The classical de Sitter model describes a universe contracting from infinite size, bouncing

at the turnaround radius a = 1/HdS, and re-expanding. (Here HdS is the de Sitter expansion

rate.) The tunneling wave function represents a universe that transits from a = 0 through

the classically forbidden range 0 < a < 1/HdS and expands from there. It is formally similar

3 The definition of outgoing modes in quantum cosmology is discussed in Ref.[6].
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FIG. 1: Nucleation of a de Sitter universe. Half of de Sitter space is matched to Euclidean

hemisphere at the bounce radius a = 1/HdS.

to a wave function describing quantum tunneling through a potential barrier.

It should be noted that the analogy between quantum cosmology and quantum tunneling

often breaks down in models with more than one degree of freedom. Consider for example a

model with coordinates qα and conjugate momenta pα, satisfying the Hamiltonian constraint

H = K(q, p) + V (q) = 0, where the kinetic energy K is a non-negative-definite quadratic

form in momenta. Then classically we have K ≥ 0, so the range V (q) > 0 is classically

forbidden. On the other hand, in minisuperspace cosmology the quadratic form K is not

generally positive-definite and not even bounded from below – not even at the classical level.

Hence, in multi-dimensional models superspace cannot generally be divided into classically

allowed and classically forbidden regions.

An alternative definition of the tunneling wave function has been given in terms of a

path integral [6]. It states that ΨT (g) is given by a path integral over Lorentzian histories

interpolating between a 3-geometry of vanishing size (”nothing”) and a given configuration

g, with the lapse integration taken over the positive range 0 < N < ∞. As discussed in [2], a

lapse integral over a half-infinite range gives a Green’s function of the WDW equation. But

in this case the source term has support only at geometries of vanishing size, which are at the

boundary of superspace. Hence one can expect that ΨT is a solution of the WDW equation

everywhere in the bulk of superspace. The positive lapse condition can be thought of as a

causality requirement [2]: the histories included in the path integral are to the future of the

origin event of ”nothing”. In the present paper we shall adopt the path integral approach
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to the tunneling wave function.

In the case of de Sitter model the path integral is taken over the scale factor a(t) with

the boundary condition a(0) = 0. We note that this boundary condition, combined with the

classical constraint equation ȧ2+1 = H2
dSa

2 implies ȧ(0) = ±i. After Euclidean continuation

t = iτ , this gives da/dτ = ±1, which is the condition of a smooth closure (absence of a

conical singularity) in the Euclidean geometry at τ = 0. Thus the boundary condition a = 0

enforces the regularity condition at a semiclassical level. Alternatively, one could impose

the regularity requirement da/dτ(0) = ±1 as a boundary condition. Then the constraint

equation would imply semiclassical closure, a(0) = 0. The Lorentzian path integral for the

de Sitter model with both of these boundary conditions has been calculated in Refs.[12, 21].

In both cases the result coincides with the wave function obtained from the outgoing-wave

boundary condition.

Turning now to the KS model, we first need to specify the class of histories included

in the path integral. By analogy with the de Sitter model, one might consider histories

originating from a configuration of vanishing 3-geometry, a = b = 0. However, it has been

shown in Ref.[20] that Euclidean 4-geometries admitting S1 × S2 slicing with radii a and b

necessarily have a divergent 4-curvature in the limit a, b → 0 and are therefore singular even

at the semiclassical level.

The conclusion could be that a universe of topology S1 × S2 cannot be created from

nothing. In this paper we shall explore an alternative idea, suggested by Halliwell and

Louko in Ref.[20]. We shall relax the condition a = b = 0 and require that only one of

the two scale factors, a or b, is equal to zero. One possibility is then to fix the other scale

factor at a nonzero value that is consistent with a non-singular geometry. Alternatively,

we can leave the other scale factor unspecified and impose a regularity condition excluding

conical singularities, as we mentioned for the de Sitter model. We shall discuss both of these

approaches here.
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4. FIXING INITIAL SCALE FACTORS

The transition amplitude from the initial state {a′, b′} to the final state {a, b} in the KS

model has been calculated by Halliwell and Louko in Ref.[20]. It is given by

G(a, b|a′, b′) =
∫ ∞

0

dN

N
exp

[
iπ

(
αN − β

N

)]
, (4.1)

where

α = 1− H2

3
(b2 + bb′ + b′

2
), β = (a2b− a′2b′)(b− b′). (4.2)

The contour of N -integration is generally complex; here we choose it to lie along the positive

real axis, as required for the tunneling wave function.

The integral over N in (4.1) can be expressed in terms of Bessel functions [20]. The

resulting wave function is

ΨT = −iπH
(2)
0 (2π(−X)1/2) (4.3)

for X < 0 and

ΨT = 2K0(2π(X)1/2) (4.4)

for X > 0, where X = αβ. If we set a′ = 0, then

−X = a2b2
(
H2b2

3
− 1 +

2M

b

)
(4.5)

with M from Eq.(2.10), and if we set b′ = 0, then M = 0 and X is independent of a′,

−X = a2b2
(
H2b2

3
− 1

)
. (4.6)

We note that the same value of M = 0 is obtained for a′ = 0, b′ = H−1
√
3; hence this choice

of parameters gives the same wave function as b′ = 0 with arbitrary a′.

Let us now consider the wave function with M = 0. For Hb >
√
3 it is given by

ΨT (Hb >
√
3) = −iπH

(2)
0

(
2πab

√
H2b2

3
− 1

)
. (4.7)

To verify that this wave function satisfies the outgoing flux criterion, we first note its asymp-

totic form for large argument:

ΨT ∝ exp

[
−2iπab

√
H2b2

3
− 1

]
, (4.8)
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where we have ignored the pre-exponential factor. This gives a good approximation for the

exponent, as long as b is not very close to H−1
√
3. Acting with the momentum operators

and using the gauge N = 1 we obtain:

ΠaΨT = −i
∂ΨT

∂a
−→ ḃ = +

√
H2b2

3
− 1 > 0 (4.9)

ΠbΨT = −i
∂ΨT

∂b
−→ ȧ

a
=

bH2

3
√

H2b2

3
− 1

> 0. (4.10)

The solution of these equations for b and a is

b(t) =

√
3

H
cosh

(
Ht√
3

)
, a(t) = D sinh

(
Ht√
3

)
, (4.11)

where D > 0 is a constant parameter.

In the semiclassical approximation, the wave function (4.7) describes a congruence of

expanding classical trajectories (4.11) with different values of D. The trajectories start at

a′ = 0, b′ = H−1
√
3 and extend to a, b → ∞. The trajectory with D = H−1

√
3 describes

a de Sitter space with expansion rate H/
√
3, while for other values of D the geometries

(4.11) have conical singularities at t = 0. For large values of Ha and Hb all these geometries

approach an expanding de Sitter space.

The wave function for X > 0 can be similarly analyzed. The resulting congruence of

trajectories is a Euclidean continuation of (4.11):

b(τ) =

√
3

H
cos

(
Hτ√
3

)
, a(τ) = iD sin

(
Hτ√
3

)
, (4.12)

where τ is the Euclidean time. It describes trajectories staring at a′ = 0, b′ = H−1
√
3

and ending at a = D, b = 0. Once again, the trajectories with D ̸= H−1
√
3 have conical

singularities at τ = 0. We note that even though the wave function (4.7) is obtained for

several choices of the initial values a′, b′, the congruence of trajectories that it describes

corresponds to only one of these choices: a′ = 0, b′ = H−1
√
3.

We can use the conserved current (2.18) to find the probability distribution for c = a2b

at a fixed value of b, with b playing the role of a clock. Using the Wronskian products of

the Hankel functions, we find that the current is given by

jα = 4π
√
−ffαβ ∂ ln(X)

∂yβ
, (4.13)
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where yβ are the superspace coordinates b, c and X = 2π
√

cb
(
H2b2

3
− 1
)
. From Eq.(2.22)

we obtain the probability distribution

dPc ∝ jbdc ∝ dc

c
. (4.14)

Since b is fixed, the distribution for a is dPa ∝ da/a. This distribution is not normalizable,

but it admits a simple interpretation: values of a in each logarithmic interval are equally

probable (at any given value of b).

The problem with the wave function (4.7) is that it exhibits a logarithmic singularity

at Hb =
√
3. Hence it is not a solution of the WDW equation in the entire superspace,

0 ≤ a, b < ∞. Furthermore, the semiclassical geodesic congruence described by this wave

function has conical singularities and thus does not correspond to a non-singular origin of the

universe. The reason is that the boundary conditions that we used for initial scale factors do

not enforce regular geometry even at the semiclassical level. Similar features are obtained

for wave functions specified by a vanishing initial scale factor a′ = 0 with an arbitrary value

of b′. We therefore conclude that this class of wave functions is not a suitable choice for the

tunneling wave function of the universe.

5. SMOOTH CLOSURE

We now consider the boundary condition of a smooth closure of Euclidean geometry with

one of the scale factors vanishing. In the rest of the paper it will be more convenient to

switch to Euclidean signature, by replacing N → −iN .

It has been shown in [20] that in a classical Euclidean KS geometry a smooth closure can

be achieved by one of the following two sets of boundary conditions:

a′ = 0,
1

N
ȧ′ = ±1,

1

N
ḃ′ = 0, (5.1)

b′ = 0,
1

N
ḃ′ = ±1,

1

N
ȧ′ = 0, (5.2)

where a prime indicates evaluation at the initial boundary and the Euclidean lapse parameter

N is now real. The former set corresponds to a smooth closing of S1, while the latter to a

smooth closing of S2.
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Neither set of boundary conditions can be implemented in quantum theory. This becomes

apparent if we introduce new variables

A = b2, B = ab (5.3)

with conjugate momenta

PA = − ȧ

2N
, PB = − ḃ

N
. (5.4)

In this representation, the regularity conditions (5.1), (5.2) take the form

B′ = 0, PA
′ = ∓1

2
, P ′

B = 0 (5.5)

and

A′ = 0, PA
′ = 0, P ′

B = ∓1. (5.6)

Quantum mechanically, however, one is not allowed to impose these regularity conditions

in their entirety, since that would violate the uncertainty principle: we cannot fix both a

superspace variable and its conjugate momentum at the boundary. The best we can do is

to enforce two of the three conditions. The third can then be inferred from the classical

equations of motion, indicating that the semiclassical wave function would approximately

describe a regular geometry. As we shall see in the next subsection, setting b′ = 0 does not

allow one to specify the momenta, since they appear in the action factored to b′. In fact,

with b′ = 0 one necessarily gets the same wave function (4.7) as we discussed in Sec 4, which

we have concluded should be disqualified. We therefore focus on the boundary conditions

B′ = 0, PA
′ = ∓1

2
. (5.7)

5.1. General formalism

The formalism for calculating the propagator with specified values of a and b at the future

boundary B and boundary conditions (5.7) at the initial boundary B0 has been developed

in [14, 20]. Here we will outline the approach for constructing the propagator; the details

can be found in these references.

The fist step is to compute the action by integrating Eq.(2.2) while also evaluating the

boundary term (2.3). After substituting a′ = 0, the result is

SE = π

[
H2

3
N(b2 + bb′ + b′

2
)−N − a2b

N
(b− b′) + 2b′2PA

′
]
. (5.8)
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This is the action for a(t) and b(t) satisfying the classical equations of motion and boundary

conditions, but not the constraint. The quantity b′ in Eq.(5.8) has to be expressed in terms

of the boundary data {a, b}, {P ′
A} and N using the equations of motion. This gives

b′ = − b

2N

a2 +H2N2/3

2PA
′ +H2N/3

. (5.9)

Substituting this expression in the action (5.8) and simplifying, we have

SE =
πN

3
(H2b2 − 3)− π

N
a2b2 − πb2

4N2

(
a2 + H2N2

3

)2
2P ′

A + H2N
3

(5.10)

The transition amplitude from the initial state Zβ = {B′, P ′
A} to the final state Qα = {A,B}

can now be expressed as

ΨT (Q
α) =

∫
C

µ(Qα, Zβ, N) exp
[
−SE

(
Qα;N |Zβ

)]
dN (5.11)

where µ is the semiclassical prefactor and C is a Lorentzian integration contour along the

positive imaginary axis.

At this point the transition amplitude is not yet fully defined since we have not specified

which of the values of P ′
A = ±1/2 should be used. We make this choice by requiring that

the integral (5.11) is convergent. Representing N = iy with 0 < y < ∞, let us examine the

behavior of the integrand at y → 0. In this limit the action (5.10) becomes

SE ≈
(
πb2a4

8P ′
A

)
1

y2
(5.12)

In order for the integral of exp(−SE) to converge near the origin, the appropriate choice is

P ′
A = +1/2. This is opposite to the choice P ′

A = −1/2 made in Refs.[14] for the Hartle-

Hawking wave function.

In the limit y → +∞ the action becomes

SE ≈ iπ(H2b2 − 4)
y

4
. (5.13)

Thus the integral of exp(−SE) will be convergent in the following cases:

arg(y) ∈ (−π

2
, 0) , Hb > 2 (5.14)

or

arg(y) ∈ (0,
π

2
) , Hb < 2. (5.15)
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So, depending on the sign of (Hb−2), the integration contour must be given an appropriate

tilt in order to converge.

Unlike in the case of transition between fixed scale factors, the amplitude (5.11) cannot

be evaluated exactly. We shall therefore compute the integral following the methods of

Picard-Lefschetz, namely distorting the integration contour C to a steepest descent/ascent

path going through (at least) one of the saddle points of the action.

In order to simplify the analysis we will rescale our variables:

u = H2a2 , v = H2b2 , Ñ = H2N , S̃E =
H2SE

π
. (5.16)

In this representation the rescaled action becomes

S̃E =
Ñ(v − 3)

3
− uv

Ñ
− v

4Ñ2

(
u+ Ñ2

3

)2
2P ′

A + Ñ
3

. (5.17)

The saddle points of the action are found by solving the algebraic equation

∂S̃E

∂Ñ
= 0. (5.18)

This is a quintic equation for Ñ that cannot be solved exactly for all values of u, v, except

in some limits.

Once the steepest descent contour has been specified, along with the contributing saddle

points, the integral can be approximated by expanding the action about the extrema and

carrying out a Gaussian approximation. Specifically, for each contributing saddle Ni the

action can be expanded in the vicinity of Ni as

SE(N −Ni) ≈ SE(Ni) +
SNN(Ni)

2
(N −Ni)

2, (5.19)

where SNN = ∂2SE/∂N
2. Inserting in the integral (5.11) and integrating over d(N −Ni) we

can approximate the transition amplitude as

Ψ ∝
∑
i

µ(Ni)√
SNN(Ni)

exp[−SE(Ni)]. (5.20)

Thus, the overall WKB pre-exponential factor for each contributing saddle will be given by

µ̃ =
µ√
SNN

. (5.21)
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The semiclassical prefactor µ for the propagator (5.11) has been derived in []. For the

choice of P ′
A = +1/2 it is given by

µ (a, b,N) ∝ b′

N
√
H2N + 3

, (5.22)

where b′ is the initial radius of S2 defined in (5.9). The denominator of µ introduces a branch

cut. For convenience, we can choose its orientation to be along the real axis at H2N < −3,

but as we will see this will not affect the calculation of the propagator, since any integration

along the branch cut is exponentially suppressed.

5.2. S2 of radius Hb ≈ 1

The classical KS model has a Nariai solution (2.11), which describes a 4-geometry dS2×S2

with the radius of S2 being b = 1/H. The dS2 part of the geometry is a circle S1 undergoing

inflation with an expansion rate H. Our analysis of the Hartle-Hawking wave function ΨHH

for this model [14] showed that it gives a probability distribution for b at fixed values of a

which is peaked at b = H−1. So this wave function predicts Nariai-type evolution as the

most probable scenario. To compare this prediction with that of the tunneling wave function

ΨT , we shall now study the behavior of ΨT in the regime Hb ≈ 1.

5.2.1. Saddles and contours

Following the method of Ref.[14], we shall first find the saddle points for Hb = 1 and

then consider small perturbations of those points. Using the rescaled variables (5.16) and

setting v = H2b2 = 1, the action (5.17) becomes

S̃E0 = −2Ñ

3
− u

Ñ
−

(
3u+ Ñ2

)2
12Ñ2

(
Ñ + 3

) , (5.23)

where the subscript 0 indicates zeroth order with respect to (1 − v). The saddle equation

(5.18) for v = 1 is (
Ñ2 + 2Ñ + u

)(
Ñ3 + 4Ñ2 − 3Ñu− 6u

)
= 0. (5.24)

It has two solutions,

Ñ1,2 = −1±
√
1− u, (5.25)
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which are real for u ≤ 1 and form a complex conjugate pair for u > 1, along with three

solutions Ñ3,4,5 which are real for all u ≥ 0 and whose explicit form will not be needed.

The saddle points and steepest descent/ascent lines for Ha > 1 are shown in Fig.2 Our

nearly Lorentzian contour can be distorted into a contour running from N = 0 along the arc

through the saddle N1, all the way to N5. Then it takes a turn and runs along the negative

N axis to N → −∞. This contour is dominated by the saddle point at N1.

FIG. 2: The steepest descent contours for Ha > 1 and Hb = 1. The arrowheads point to

the direction where Re(−S̃E) decreases. The saddles Ñi are marked with solid dots and

the singularities with circles. Note the branch cut at Ñ ∈ (−∞,−3). Our

nearly-Lorentzian contour corresponds to the solid curve starting from the singularity

N = 0; it is dominated by the saddle N1.

We now consider small deviations from Hb = 1. In the region Ha > 1 we have identified

the saddle Ñ1 as the dominant one, so we will introduce a shift x defined by

Ñ = Ñ1 + x, (5.26)

where Ñ1 is given by (5.25) and |x| << 1. We insert this into the action (5.17) and expand

to second order in x:

S̃E ≈ 1− i(1− v)
√
u− 1− (1− v)x+

v

f(u)
x2 +O(x3), (5.27)
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where

3f(u) =
(
2i+ 2

√
u− 1− iu− iu2

)
(u− 1)−3/2. (5.28)

The action is extremized with

x =
1− v

2v
f(u). (5.29)

To lowest order in (1−Hb), we have x ∝ (1−Hb), so the contribution of the x-dependent

terms to the action is O[(1−Hb)2] and we can write

SE ≈ π

H2
− 2iπ

H2
(1−Hb)

√
H2a2 − 1 +O[(1−Hb)2]. (5.30)

The higher order correction term O[(1 − Hb)2] is proportional to f(u) and will play an

important role in the probability distribution that the tunneling wave function predicts.

5.2.2. WKB tunneling wave function

We are now in a position to compute the WKB tunneling wave function in the region

Hb ≈ 1 and Ha > 1 following the prescription (5.20). The WKB prefactor µ̃ defined in

(5.21) can be computed for the saddle N1 as:

µ̃ ∝ 1√
H2a2 − 1

(5.31)

Keeping only the lowest non-trivial orders of (1−Hb) in the action (5.30), we arrive at an

expression for the tunneling wave function:

ΨT (Ha > 1) ∝ 1√
H2a2 − 1

exp
(
− π

H2

)
exp

(
2πi

H2
(1−Hb)

√
H2a2 − 1

)
. (5.32)

There are a few things to note about this solution. It exhibits a WKB-type divergence at

the turning point Ha = 1, as expected. Additionally, the tunneling exponential suppression

factor exp(−π/H2) is present. This is a consequence of the choice P ′
A = +1/2 for our

boundary condition. Finally, it is easily verified that the wave function ΨT (Ha > 1, Hb = 1)

describes an outgoing wave at Ha ≫ 1, and thus ΨT satisfies the outgoing wave boundary

condition in the region Hb ≈ 1.

In order to obtain a probability distribution for b in the region Hb ≈ 1 we must include

higher order corrections to the wave function (5.32). Making use of the perturbed action

(5.27) and ignoring corrections to the prefactor, we arrive at

ΨT (Ha > 1) ∝ 1√
H2a2 − 1

exp
(
− π

H2

)
exp

[
2πi

H2
(1−Hb)

√
H2a2 − 1 + f(a)(Hb− 1)2

]
,

(5.33)
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where the function f(a) is given by (5.28). Utilizing the methods of section 2.2, we calculate

the current density:

dPb ∝ jadb ∝ db√
H2a2 − 1

exp
[
2(Hb− 1)2Ref(a)

]
. (5.34)

This can be interpreted as the distribution for b on surfaces of constant a. The real part of

f(a) is given by:

Ref(a) =
2π

3H2(H2a2 − 1)
. (5.35)

Thus the probability distribution can be written explicitly as:

dP ∝ db√
H2a2 − 1

exp

[
4π(Hb− 1)2

3H2(H2a2 − 1)

]
. (5.36)

This distribution grows as we move away from Hb = 1, favoring large values of Hb. This

is in contrast with the HH state for which the probability distribution is peaked at Hb = 1

[14].

5.3. Large S2 region Hb ≫ 1

5.3.1. Saddles and contours

Since the distribution (5.36) appears to favor large values of Hb, we shall now explore the

behavior of the wave function at Hb ≫ 1. In order to find the saddle points in this regime,

we neglect the −3 term in the first parenthesis of (5.17). Then the saddle equation (5.18)

can be factored: (
Ñ2 + 3u

)(
Ñ3 + 6Ñ2 + 12Ñ + 3uÑ + 6u

)
= 0. (5.37)

The corresponding solutions include two complex conjugate pairs and one real saddle. Two

obvious solutions are

Ñ1,2 = ±i
√
3u (5.38)

and we label the other pair as Ñ4,5 and the real saddle as Ñ3. We note that the numbering

of saddle points here is not related to the one used in Section 5.2.

The steepest descent contours for this set of saddles are shown in Fig.3. A nearly

Lorentzian contour can be distorted into a contour that follows the steepest ascent path

from the origin N = 0 to the saddle N1 and continues on the steepest descent path all
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FIG. 3: The steepest descent contours for Hb ≫ 1. The tunneling contour corresponds to

the solid curve starting from the singularity N = 0 and dominated by saddle N1.

the way to infinity in the first quadrant. The contour can be closed with an infinite arc at

N → +i∞. The dominant contribution to the wave function comes from the saddle N1.

To obtain a more accurate expression for the saddle point, we set Ñ = Ñ1 + x with Ñ1

from (5.38) and x ≪ Ñ1. We then substitute it in the action (5.17), without neglecting the

−3 term and expand the action to second order in x:

S̃E ≈ i
√
u(2v − 3)√

3
− x− vx2

3(u− i
√
3u)

+O(x3). (5.39)

Extremizing with respect to x we find

x =
3(i

√
3u− u)

2v
. (5.40)

This approximation is valid in the region of superspace where v ≫ 1 and u ≪ v2 in order for

the condition Ñ1 ≫ x to be satisfied. The x-dependent terms in the action introduce cor-

rections O(v−1). Switching back to variables a and b, the perturbed action can be expressed

as

SE ≈ 2iπab2H√
3

−
√
3iπa

H
− 3

√
3iπa

4H3b2
+

3πa2

4H2b2
+O

(
1

H3b3

)
. (5.41)

As with the case of Hb ≈ 1, the higher order correction terms will be important for

obtaining the probability distribution that the tunneling wave function predicts.
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5.3.2. WKB tunneling wave function

To lowest order in (Hb)−1 the prefactor of the WKB wave function is:

µ̃ ∝
√
a

b2
ei

π
4 . (5.42)

Thus to the leading order of WKB approximation the tunneling wave function is given by

ΨT (Hb ≫ 1) ∝
√
a

b2
exp

[
−2iπab2H√

3

]
, (5.43)

where we have kept only the dominant contribution in Hb ≫ 1. It is straightforward to show

that the above solution describes expanding asymptotically de Sitter universes satisfying

ḃ/b ≈ ȧ/a ≈ H/
√
3, (5.44)

just as in the case of fixed initial scale factors. Thus the outgoing wave criterion is satisfied.

To find the probability distribution for the scale factors, we have to include higher order

corrections to the action, as given by Eq.(5.41). Ignoring corrections to the prefactor, we

have

ΨT (Hb ≫ 1) ∝
√
a

b2
exp

[
−2iπab2H√

3
+

√
3iπa

H
+

3
√
3iπa

4H3b2
− 3πa2

4H2b2
.

]
(5.45)

Noticing that the first three terms are the expansion of a square root, we can tidy this result

to

ΨT (Hb ≫ 1) ∝
√
a

b2
exp

[
−2iπab

√
H2b2

3
− 1− 3πa2

4H2b2

]
, (5.46)

which is valid up to order (Hb)−2. This wave function has the same asymptotic form as the

transition amplitude (4.8) that we obtained for fixed initial scale factors, the only difference

being its amplitude, which is controlled by the last term in the bracket. We will show that

this term is responsible for the predictions of the tunneling wave function.

Following the formalism of Section 2.2 we calculate the probability current on surfaces

of constant a. The calculation is simplified if we use the compact form (5.46), but take the

limit Hb ≫ 1 in the final step. The resulting expression is

dP ∝ a2

b3
exp

[
− 3πa2

2H2b2

]
db, (5.47)

which is valid to lowest order in (Hb)−1. Introducing a new variable l which characterizes

the relative size of S1 and S2,

l =
a

b
, (5.48)
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we can express (5.47) as a distribution for l2:

dP ∝ exp

[
−3πl2

2H2

]
dl2. (5.49)

This is a normalizable distribution with the average value

l̄2 =
2H2

3π
. (5.50)

Thus, in the regime of large a and b the tunneling wave function predicts an ensemble of

classical de Sitter-like universes (5.44) with a/b ≲ H ≪ 1. This is in contrast with the HH

state which gives a distribution peaked at the Nariai solution (2.11).

5.4. Small S1 region Ha ≪ 1

In the KS model there is no clear distinction between classically allowed and forbidden

regions, except when Hb ≈ 1. In this part of superspace the point Ha = 1 divides the

classical and quantum regimes. On the contrary, the classical universes (4.11) do not have

a well defined bounce point since ȧ and ḃ do not vanish simultaneously. Thus, we do not

expect the wave function to bear much resemblance to the usual tunneling picture established

in quantum cosmology. A related reason, mentioned in Sec.3, is that the WDW eq. is a

hyperbolic equation, so the kinetic terms in the WDW operator have opposite signs. In

this subsection we will try to obtain some insight into the behavior of the tunneling wave

function close to the superspace boundary at a = 0, without assuming b to be small.

5.4.1. Saddles and contours

We are interested in finding the saddles in the region u ≪ 1. Setting u = 0 in the action

(5.17) and solving for the saddles through (5.18) we obtain

N1,2 ≈ −3±
√

3v

4− v
(5.51)

where we have dropped the tildes. This approximation is valid as long as N2 ≫ 3u and v is

not too close to 3. The first constraint justifies setting u = 0 in the parenthesis of the third

term in the action. The second constraint is imposed so that the first term in the action is

larger than the second, which justifies dropping it for u ≪ 1.
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The rest of the saddles can be approximately found by neglecting the third term in the

action (5.17). Solving for the saddles yields

N3,4 ≈ ±
√

3uv

3− v
. (5.52)

This approximation is valid everywhere in the region u ≪ v, apart from values of v that

approach v ≈ 3, for which N becomes large.

Finally, in order to find the 5th saddle we will use the insight obtained from numerical

results. The 5 saddles in the region u ≪ 1 and v ∼ 1 have the following characteristics.

Two of them are O(1), the other two are O(
√
u), while the 5th is O(u). In fact, we observe

that when v is not too small, the 5th saddle is given approximately by

N5 ≈ −u

2
, (5.53)

which is in agreement with the lowest order expansion for Ñ1 given by Eq.(5.25). It is

reassuring that all our saddle points can be matched in the appropriate limits in the different

regions of KS superspace.

Overall, we expect the above saddles to be valid when u ≪ 1, u ≪ v, v ̸= {3, 4}. We

must also note that a consequence of these restrictions is that b is not allowed to approach

zero.

The analytic expressions for the saddles in the region u ≪ 1 suggest that there exist

three qualitatively different steepest descent contour configurations depending on the value

of v. In this subsection we are mostly interested in investigating the behavior of the wave

function at small overall volume, so we will focus on the region u ≪ 1 and v < 3.

In this case all five saddles are placed on the real-N axis. The steepest descent contours

are similar to the ones in Fig.4. The only difference is that when u ≪ 1, the loop surrounding

the singularity N = 0 and the loop passing through N = 0 are shrunk to a very small size.

These loops are defined by the saddles O(
√
u) and O(u) respectively, N3,4 and N5. The loop

encircling the singularity N = −3 does not shrink, since it is defined by the saddles of zero

order in u, N1,2.

The steepest descent/ascent lines for u ≪ 1 and v < 3 are illustrated in Fig.4 . In this

case the nearly Lorentzian contour can be distorted into a contour running from N = 0

along the upper arc to the saddle N5, then along the real axis through the saddle N4 until

the saddle N1. At that point it takes a turn and follows the upper arc to N2, and runs from

there to N → −∞. This contour is dominated by the saddle point N4.
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FIG. 4: The steepest descent contours for Ha ≪ Hb <
√
3. In this case, all the saddles are

real. The tunneling contour corresponds to the solid curve starting from the singularity

N = 0 and dominated by saddle N4.

5.4.2. WKB tunneling wave function

The WKB wave function corresponding to this saddle can be found along the same lines

as previously demonstrated:

ΨT (Ha ≪ 1, Hb <
√
3) ∝ exp

(
−2πab

√
1− H2b2

3

)
, (5.54)

where we have omitted the pre-exponential factor. This expression is valid in the region

of superspace where Ha ≪ 1 and Ha ≪ Hb ̸=
√
3. We notice that for a =const, ΨT is

a decreasing function of Hb until it reaches a minimum at Hb =
√

3/2. For larger values

of Hb the wave function increases until it approaches Hb ≈
√
3 where our approximation

breaks down.

In the case of 4 > v > 3, the saddles N1,2 become a complex conjugate pair, while the rest

of the saddles remain real. Steepest descent analysis shows that the path integral receives

dominant contributions from the saddles N1 and N5. Thus this region can be thought of as a

transition from a fully quantum regime v < 3 to a hybrid one, in which classical trajectories

do penetrate, however they are accompanied by Euclidean components.

Finally, the case for which u ≪ 1, v > 4 is qualitatively similar to the region v ≫ 1
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discussed in section 5.3. So as long as u ≪ v the character of the steepest descent contours

will not change and we are able to define a nearly-Lorentzian contour picking a contribution

from the saddleN1 as defined in Sec. 5.3 The WKB wavefunction will then be approximatelly

given by the analytic continuation of (5.54) to Hb >
√
3 and will be valid for as long as

a ≪ b.

Overall, the behavior of ΨT that we have found is not in line with the familiar quantum

tunneling through a barrier. We note especially that the nucleation of a universe with b ≫ a

is not exponentially suppressed. This can be seen from∣∣∣∣ ΨT (Hb ≫ Ha ≫ 1)

ΨT (Ha ≪ Hb <
√
3)

∣∣∣∣ ∼ 1. (5.55)

On the other hand, exponential suppression is present in the narrow region Hb ≈ 1, where

there is a clear bounce point at Ha = 1 and∣∣∣∣ΨT (Ha > 1)

ΨT (a ≈ 0)

∣∣∣∣ ≈ exp(− π

H2
) ≪ 1. (5.56)

5.5. Total nucleation probability

The total nucleation probability of an S1 × S2 universe can be found by integrating the

distribution (5.49) over l2. We obtain

P ∝ H2. (5.57)

As in the de Sitter model, this probability is maximized at large values of H. But the

dependence on H in (5.57) is a power law, while in de Sitter model it is exponential [5],

PdS ∼ exp

(
− 3π

H2

)
. (5.58)

If one adopts a minisuperspace framework that allows both S1 × S2 and S3 topologies,

then Eqs.(5.57),(5.58) suggest that for H ≪ 1 nucleation of S1 × S2 universes is exponen-

tially favored. However, if different topologies are allowed, one can also consider adding a

topological Gauss-Bonnet term to the action,

SGB =
α

16π

∫
d4x

√
−g
(
RµνστR

µνστ − 4RµνR
µν +R2

)
+ Sboundary, (5.59)

where α is a constant of dimension (length)2 and Sboundary is a boundary term which gener-

alizes the Gibbons-Hawking term [25]. The addition of this term is necessary to make the

boundary value problem well defined.
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In (3 + 1) dimensions the variation of the integrand in Eq.(5.59) is a total derivative, so

the Gauss-Bonnet term has no effect on dynamics. This term is a topological invariant,

SGB = −2παχ, (5.60)

where χ is the Euler character. It can nevertheless have physical implications (see, e.g.,

[26] and references therein). In the context of quantum cosmology, the extra term (5.59)

adds only a constant factor to the wave function, fGB = exp(−2παχ), if the topology of the

universe is fixed. But if the topology is allowed to vary, different topologies will be weighted

with different factors. The Euler character is χ = 2 for a de Sitter universe and χ = 4 for

the S1 × S2 universe4. Hence the nucleation probabilities of such universes are

PdS ∼ exp
(
− π

H2
− 4πα

)
, (5.61)

PS1×S2 ∼ H2 exp (−8πα) . (5.62)

This shows that de Sitter universes may dominate if α is sufficiently large,5

α > 1/4H2 ≫ 1. (5.63)

6. CONCLUSIONS

In this project we applied the tunneling proposal for the wave function of the universe

to the Kantowski-Sachs (KS) minisuperspace model of spatial topology S1 × S2. The path

integral version of this proposal defines the wave function ΨT (g) as a path integral over

histories interpolating between a vanishing 3-geometry (”nothing”) and a given configuration

g, with the lapse integration taken over semi-infinite Lorentzian contour. It turns out,

however, that all histories with vanishing initial radii of S1 and S2 in KS model necessarily

have an initial curvature singularity, even after Euclidean continuation [20]. It follows that

the wave function defined in this way does not describe a non-singular origin of the universe,

even at the semiclassical level.

4 These are the Euler characters for S4 and S2 × S2 instantons, respectively.
5 A Gauss-Bonnet term (5.59) appears in the low-energy effective action of heterotic string theory [27],

together with an infinite series of higher-order curvature corrections ∼ (αR)n. However, the higher-order

terms can be neglected only if αR ≪ 1 [26], which is in conflict with (5.63). Thus the Gauss-Bonnet term

should have a different origin if it is to play a role in suppressing S1 × S2 universes.
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The conclusion could be that the tunneling wave function cannot be defined in the KS

model. This could mean that a universe of topology S1×S2 cannot originate out of nothing

– assuming that the tunneling approach to the wave function of the universe is on the right

track.

Here we have explored an alternative possibility, introduced in Ref.[20] by Halliwell and

Louko. They suggested that the boundary condition of vanishing 3-geometry should be

replaced by the condition of a vanishing 3-volume. That is, only one of the initial scale

factors should be set equal to zero. The interpretation of such a degenerate but non-vanishing

3-geometry as ”nothing” may be found objectionable. On the other hand, such geometries

can be obtained as limiting slices of regular Euclidean 4-geometries of topology S2 × S2,

which may be regarded as instantons describing a non-singular origin of the universe. We

took an agnostic attitude to this issue and pursued the HL proposal in this paper, to see

where it leads.

With one of the scale factors set to zero, the other one can be set at a nonzero value that

is consistent with a non-singular 4-geometry. Alternatively, leaving the other scale factor

unspecified one can impose a regularity condition excluding conical singularities. We have

studied both of these approaches.

In the first approach, when the path integral is taken between fixed values of the scale

factors with one of them set to zero, we found that the resulting wave function diverges at a

finite value of the radius of S2, b = H−1
√
3. Hence it is not a solution of the WDW equation

in the entire superspace and is not a suitable choice for the tunneling wave function of the

universe.

The main body of the paper is devoted to the second approach. Here we found that

the choice of b = 0 cannot be supplemented by a regularity condition that would give

an acceptable wave function. One always gets the same singular wave function that was

obtained for fixed initial scale factors. The only option is then to set a = 0 and impose a

regularity condition of smooth closure on S1. We found that the resulting wave function is

normalizable, with a probability distribution peaked at b ≳ a/H ≫ a. It predicts a highly

anisotropic initial universe. However, the universe expands exponentially in all directions,

and after a large amount of inflation observers will see an isotropic local universe. In contrast,

the Hartle-Hawking wave function gives a probability distribution peaked at Nariai-type

universes with b ≈ 1/H, which remain locally anisotropic until late times.
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We have emphasized that the wave function we obtained here is rather different from

wave functions describing tunneling in quantum mechanics. The reason is that the WDW

equation of the KS model is a hyperbolic equation, with the two kinetic terms having

opposite signs. There is therefore no clear division of superspace into classically allowed

and forbidden regions. In particular, there is no exponential suppression of the probability

distribution in the region of b ≫ a.

We find that the total nucleation probability is P ∝ H2. As in de Sitter model, it is

maximized at large values of H, but unlike de Sitter the dependence on H is a power law,

not exponential. It follows that for H ≪ 1 the nucleation probability is much higher for

S1 × S2 than for de Sitter universes. We noted that this situation can be reversed if the

gravitational action is supplemented with a Gauss-Bonnet term with a sufficiently large

coefficient.

It would be interesting to extend our analysis by including a homogeneous scalar field

ϕ, replacing the cosmological constant with a slowly varying potential V (ϕ). Another in-

teresting extension would be to study a ”midi-superspace” model, including perturbatively

an infinite number of inhomogeneous modes of a quantum field. In the de Sitter model one

finds that the universe nucleates with the field in a de Sitter invariant Bunch-Davies state,

and in a more realistic model this initial state may lead to a nearly scale-invariant spectrum

of density fluctuations, in agreement with observations. On the other hand, in the KS model

the initial quantum state will not have de Sitter, and not even rotational symmetry. It is

possible however that the field will approach the Bunch-Davies state at late times in the

course of inflation, due to the no-hair ”theorem” (e.g., [28]).

We finally mention that KS model is closely related to the 2D Jackiw-Teitelboim gravity,

which has recently attracted much attention. This relation has been discussed in Ref.[14] in

the case of the HH wave function, and it would be interesting to explore it for the tunneling

wave function.
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