[From The Big-Bang to The Present-Epoch]

Improving The Standard Model Of Cosmology (SMoC)

What are we going to cover?

- 1. Present-Epoch Parameters [CMBR-Constrained vs. CMBR-UnConstrained]
- → 2. The Big Picture [CMBR-Constrained vs. CMBR-UnConstrained]
- \rightarrow 3. The Primordial Universe \rightarrow The first 10-21 (s)
- 4. Cosmological Inflation & Accelerated Expansion → The Cosmic Envelope
- → 5. The Cosmic Acceleration Problem → PDG, US-DoE, FermiLab
- 6. The Flatness Problem → What Problem ?
- 7. Presentation Closeout & Appendices [if we have time]

Let's begin with a brief Overview of The Present-Epoch

[From The Big-Bang to The Present-Epoch]

Improving The Standard Model Of Cosmology (SMoC)

[Our CMBR-Constrained Methodology] vs [The CMBR-Unconstrained SMoC]

Comparative Overview of The Present-Epoch

Electro-Gravi-Magnetics (EGM) vs. Standard Model of Cosmology (SMoC)

		EGM	PDG-2022
CMBR Constrained	1	$H_{\Phi} = 67.1181447977434 \text{ (km/s/Mpc)}$	$H_0 = 67.4 \text{ (km/s/Mpc)}$
	2	$t_{\Phi} = 14.5685359530647 \text{ (Gyr)}$	$t_0 = 13.797 \text{ (Gyr)}$
	3	$\Omega_{\Phi} = 0.677345709533812$	$\Omega_{\Lambda}=0.685$
	4	$\Omega_{\rm m} = 0.322654290466188$	$\Omega_{\mathrm{m}} = 0.315$
	5	$\Omega_{\rm c} = 0.262875350332401$	$\Omega_{\rm c}=0.265$
	6	$\Omega_{\rm b} = 0.059778940133786$	$\Omega_{\rm b} = 0.0493$
	7	$\Omega_{\rm K} = 0.000654290466188$	$\Omega_{ m K}=0.0007$
	8	$\rho_{\Phi} = 8.46163851959276 \cdot 10^{-27} (\text{kg/m}^3)$	$\rho_{\rm crit} = 8.53286 \cdot 10^{-27} ({\rm kg/m}^3)$
	9	$\rho_{\Lambda} = 5.73145454687219 \cdot 10^{-30} (\text{gm/cm}^3)$	$\rho_{\Lambda} = 5.83 \cdot 10^{-30} (\text{gm/cm}^3)$
	10	$n_{\gamma} = 410.726847902135 \text{ (cm}^{-3}\text{)}$	$n_{\gamma} = 410.73 \text{ (cm}^{-3})$
	11	$\rho_{\gamma} = 0.260570578238883 \text{ (eV/cm}^3\text{)}$	$\rho_{\gamma} = 0.260 \text{ (eV/cm}^3)$
	12	$\eta = 7.35787809937048 \cdot 10^{-10}$	$\eta = 6.14 \cdot 10^{-10}$
	13	$n_b = 3.02207807900259 \cdot 10^{-7} \text{ (cm}^{-3})$	$n_b = 2.515 \cdot 10^{-7} \text{ (cm}^{-3})$
	14	$\Omega_{\gamma} = 5.48958983118303 \cdot 10^{-5}$	$\Omega_{\gamma} = 5.38 \cdot 10^{-5}$
	15	$R_{\Phi} = 14.5685359530647 \text{ (GLyr)}$	$c/H_0 = 14.502 \text{ (GLyr)}$
	16	$\Lambda_{\rm S} = 6.33200653109817 \cdot 10^{51} (\rm m^2)$	$\Lambda_{\rm S} = 6.28 \cdot 10^{51} ({\rm m}^2)$
	17	$\Lambda_{\Phi} = 0.789639109726698 \cdot 10^{-56} \text{ (cm}^{-2})$	$\Lambda = 1.088 \cdot 10^{-56} \text{ (cm}^{-2})$

CMBR UnConstrained

 $[\]quad \quad t_{\alpha} = 3.64699500847915 \cdot 10^{-43} \ (s); \ T = 0 \ (K); \ H = 8.46087689814736 \cdot 10^{61} \ (km/s/Mpc); \ \Lambda = 1.25481446197314 \cdot 10^{64} \ (cm^{-2})$

[•] $\sqrt{2} \cdot t_{\alpha} = 5.1576298028982 \cdot 10^{-43}$ (s); T = 1.37954687987071 · 10³¹ (K); H = 5.80641973431186 · 10⁶¹ (km/s/Mpc); $\Lambda = 0$ (cm⁻²)

[•] $\frac{1}{2}$ · $\frac{1}{6}$ = 7.28426797653236 (Gyr); T = 3.98569741894682 (K); H = 134.220589740631 (km/s/Mpc); Λ = 0 (cm⁻²)

[•] $\frac{3}{4}$ · $t_{\Phi} = 10.9264019647985$ (Gyr); T = 3.19119125008962 (K); H = 89.4865230672685 (km/s/Mpc); $\Lambda = 0.935868574490902 \cdot 10^{-56}$ (cm⁻²)

Primordial Evolution of Cosmic Microwave Background Radiation (CMBR)


```
t_{M} = 4.93396766099874 \text{ (Gyr)}

^{3}/_{4} \cdot t_{\Phi} = 10.9264019647985 \text{ (Gyr)}

t_{\Phi} = 14.5685359530647 \text{ (Gyr)}
```

 $t_{\Delta M} = 7.28426797653236 \text{ (Gyr)}$ $t_{\Delta M} = 11.9848686075996 \text{ (Gyr)}$ $\omega_{h} = 7.3998153159224 \cdot 10^{42} \text{ (Hz)}$

 $t_{\Lambda} = 8.45941813429917 \text{ (Gyr)}$ $t_{\Psi} = 12.1015521225654 \text{ (Gyr)}$

The Cosmic Acceleration Problem

When did it start?

- 3rd Event (Maximum Cosmological Temperature)
 - H = 0 (km/s/Mpc)
 - $\Lambda = -1.18624205780952 \cdot 10^{64} \text{ (cm}^{-2}\text{)}$
 - $t_1 = 2.20630341057726 \cdot 10^{-42} (s)$
 - $T_{\text{Max}} = 3.19549736932411 \cdot 10^{31} \text{ (K)}$
 - Actual Cosmological Acceleration Commences

Storti Solution

CMBR Constrained Solution

- $\mathbf{8}^{\text{th}}$ Event $(\Lambda = 0)$
 - $\frac{1}{2} \cdot t_{\Phi} = 7.28426797653236 \text{ (Gyr)}$ Particle Data Group (PDG) ~ 7.7 (Gyr)
 - T = 3.98569741894682 (K)
- Qⁱⁿ Event (Dark Energy Density Parameter = Deceleration Parameter).
 - $\Lambda = 0.650672352266949 \cdot 10^{-56} \text{ (cm}^{-2}\text{)}$
 - $t_{\Lambda} = 8.45941813429917$ (Gyr) US Department of Energy (US-DoE) ~ 9 (Gyr)

Frieman et. al. [FermiLab] ~ 10 (Gyr)

- T = 3.67189222792196 (K)
- 10^{th} Event (q = 0)
 - $\Lambda = 0.880880602181968 \cdot 10^{-56} \text{ (cm}^{-2})$
 - $t_q = 9.63456829206598$ (Gyr)
 - T = 3.41912708997334 (K)

Problem

CMBR UnConstrained Solutions

The Cosmic Acceleration Problem

When did it start?

It started at $[t_1 = 10^{-42} (s)] \rightarrow During$ Cosmic Inflation!

Maximum Hubble Constant

$$H_{Max} = 10^{60} (km/s/Mpc)$$

The Flatness Problem

Does Not Exist! → We show that The Universe is 'Barely Open'!

'Barely Open' $\rightarrow \Omega_{\oplus}$ = -2.59792187762287 •10-14

[From The Big-Bang to The Present-Epoch]

Improving The Standard Model Of Cosmology (SMoC)

What CMBR-Constrained Interpretation of the SMoC have we established so far?

1. Cosmological Inflation [Start]: t = 0

2. Cold Big-Bang [T = 0]: t = 10⁻⁴³ (s)
3. Maximum Cosmological Temperature [T_{Max}]: t = 10⁻⁴² (s)

4. Cosmological Acceleration [Start]: t = 10-42 (s)

5. Maximum Hubble Constant [H_{Max}]: t = 10⁻⁴² (s)

6. Cosmological Inflation [End]: $t = 10^{-23}$ (s)

7. Cosmological Acceleration Problem = Resolved

8. Flatness Problem = Does Not Exist [The Universe is Open]

Events encapsulated by **Cosmological Inflation**

Significant Conclusions

[From The Big-Bang to The Present-Epoch]

Improving The Standard Model Of Cosmology (SMoC)

Governing Equations

$$\Lambda(t) = \frac{3}{c^2t^2} \Big(1 - \frac{1}{2} \Omega_{\Sigma}(t) \Big)$$
 Cosmological Constant (1)
$$\Omega_{\Lambda}(t) = 1 - \frac{1}{2} \Omega_{\Sigma}(t)$$
 Dark Energy Density Parameter (2)
$$\Omega_{M}(t) = \Omega_{m} \Omega_{\Sigma}(t)$$
 Pressureless Matter Parameter (3)
$$q(t) = \frac{1}{2} \Omega_{\Sigma}(t) (\Omega_{m} + 1) - 1$$
 Deceleration Parameter (4)
$$\Omega_{\Sigma}(t) = \frac{t^2}{(t + t_{\Phi\rho})^3} t_{\Phi}$$
 EGM Total Density Parameter (5)
$$\rho_{m}(t) = \frac{3M_{\Phi}}{4\pi c^3 (t + t_{\Phi\rho})^3}$$
 Cosmological Mass Density (6)

[From The Big-Bang to The Present-Epoch]

Improving The Standard Model Of Cosmology (SMoC)

Supporting Equations

Cosmological Mass (Total) [14]: [pg. 7] $M_{\Phi} = \frac{c^3}{2GH_{\Phi}}$ $M_{\Phi} = 4.66692747982406 \cdot 10^{22} (M_{\odot})$

 $1^{st} \ EGM \ Constant \ (assigned \ value)$ $\mu = \frac{1}{3}$ • $2^{nd} \ EGM \ Constant \ [15]: [pg. 327-328]$ $\lambda_x = 4\sqrt{\frac{2\mu}{\pi^{\mu}}} \qquad \lambda_x = 2.69870895208366$

$$\lambda_{\rm x} = 4\sqrt{\frac{2\mu}{\pi^{\mu}}}$$
 $\lambda_{\rm x} = 2.69870895208366$

Physical Constants
Big-Bang Hubble Constant [15]: [pg. 343-344] $H_{\alpha} = \frac{\omega_{h}}{\lambda_{x}} = \frac{1}{t_{\alpha}} \quad H_{\alpha} = 8.46087689814736 \cdot 10^{61} \text{ (km/s/Mpc)}$ • Cosmological Time Constant [14]: [pg. 58] $t_{\Phi\rho} = \sqrt[3]{\frac{1}{H_{\Phi}H_{\alpha}^{2}}} \quad t_{\Phi\rho} = 3.93967424292145 \cdot 10^{-23} \text{ (s)}$

$$t_{\Phi\rho} = \sqrt[3]{\frac{1}{H_{\Phi}H_{\alpha}^2}}$$
 $t_{\Phi\rho} = 3.93967424292145 \cdot 10^{-23} \text{ (s)}$

[From The Big-Bang to The Present-Epoch]

Improving The Standard Model Of Cosmology (SMoC)

Thanks for watching this presentation!

This Research Article:

https://www.researchgate.net/publication/
 363860392 The History of The Cosmos From The Big-Bang to The Present-Epoch

Solution Algorithm (Calculations & Mathematical Model for this Research Article):

https://www.researchgate.net/publication/
 345236498 Quinta Essentia Part 52 History of The Cosmos Solution Algorithm

Literature Supporting This Research Article (Cosmological Age):

https://www.hindawi.com/journals/aa/2020/2436965/

