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Motivation
• Gauge theories are fundamental to our understanding of interactions between the elementary constituents of 

matter as mediated by gauge bosons.

• However, simulating the real-time dynamics of gauge theories is a notorious challenge classically 

• This has recently stimulated effort, using Feynman’s idea of a quantum simulator to devise schemes for 
simulating such theories on engineered quantum mechanical devices. 

• Practical quantum computing holds clear promise in addressing problems not generally tractable with classical 
simulation techniques, and some key physically interesting applications are those of real-time dynamics in 
strongly coupled lattice gauge theories.

• In particular, The QCD conundrum is well known. Due to its running coupling, at high energies, it is 
weakly coupled (asymptotically free), enabling perturbative treatment. At low-energy, it is a strongly 
interacting, non-perturbative theory leading to the problem of quark confinement.

• Other questions and problems of importance include : properties and dynamics of finite-density systems or the 
fragmentation of high-energy quarks and gluons into hadrons. 

• Quantum computers offer potential solutions in these systems that are inaccessible with conventional computing 

• Existing and near-term quantum hardware is imperfect, with a small number of qubits, sparse qubit connectivity, 
and noisy quantum gates—so called NISQ (noisy intermediate-scale quantum) era devices.

• These technical imperfections constrain the circuit depth and dimensionality of problems that can be solved on 
available quantum computers.

• Error mitigation strategies are essential to take advantage of capabilities of current and near term devices
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Simulating Quantum Gauge Fields: Requirements
• In the Hamiltonian approach to LGTs, we only discretize space, and time is a continuous, 

real coordinate. The lattice sites, hosting the matter fields (usually fermionic, but can be 
bosonic too) are labelled by x ∈ Zd {ei} 

d
i=1 are unit vectors in the positive directions. 

• The links, which hosts the gauge field degrees of freedom, are denoted by pairs of a 
starting site and a direction, (x, i).

• This fulfils the first requirement from quantum simulation of LGTs: must include two 
different types of degrees of freedom—gauge field and matter, residing on the links and 
the sites, respectively.

• The second requirement is: quantum simulators of lattice gauge theories should be 
gauge-invariant—that is, manifest a local symmetry parametrized by the gauge group G. 
Gauge transformations Θg(x) should be well defined on each site x ∈ Zd and for any g ∈ G; 

• The system has to be prepared initially in a gauge-invariant state  and the dynamics 
should include gauge-invariant interactions.

• In more than 1 + 1d, the gauge field cannot be eliminated, and has to implement the complicated 
four-body plaquette interactions.



Prototype: Z(2) Lattice Gauge Theory
Z(2) Gauge Theory

On a square lattice, we can define a lattice gauge theory

through a four-spin interaction that defines a loop around a unit

square.

Subject to Gauge symmetry

Consider the sector spanned by

(4)

Fig. 1

Four-spin interaction that 
defines the Hamiltonian

Quantum simulation of coherent real-time 
dynamics of particle–antiparticle creation by 
in the Schwinger model (one-dimensional 
quantum electrodynamics) on a lattice



Time Evolution and The
Noise Problems

The unitary evolution 

e-iHt is implemented by the

equivalent to the circuit



Learning Based Quantum Error Mitigation Method & Advantages

The Magic: Use the fitted ansatz
to correct the noisy expectation

The Goal: Learn a function which takes noisy 
expectation values to their unmitigated values 

The Motivation: Lowe et al in [1] proved that
we achieve zero loss on all arbitrary circuits if

we obtain zero loss on training data composed

of all possible Clifford circuits.

Method: For each training circuit ρi
train evaluate

classically a noiseless expectation value of E, yi =
Tr(ρiE) and its noisy expectation values xi,l using a
quantum computer with several noise rates

The Gist: Fit the expectation values of the
training circuits with a linear ansatz given by
y = f(x1, x2, . . . , xm). Where f(x1, x2, . . . , xm)
= σ𝑙=1

𝑚 𝑥𝑙𝑎𝑙



Theorems (Proofs Omitted)

• Theorem 1: Variable Noise Clifford Data Regression (vnCDR) perfectly 
mitigates global depolarizing noise

• Note that while there are many distinct noise channels, the 
depolarizing noise model often appropriately describes average 
noise for large circuits involving many qubits and gates.

• Theorem 2: The Clifford circuit set is sufficient to estimate zero
error expectation values of arbitrary circuits.

• In essence, we formulate classical simulation to enble Quantum
Simulation!

• Cf: A. Lowe et al. Phys. Rev. Research3, 033098



Error Mitigation Results



Future work: U(1) Model

• For single square plaquette we obtain the Hamiltonian:

This operator Gx generates the gauge transformations, which 
can be expressed as
Where α is the (local) parameter associated with the local 
unitary transformation.

Estimating Quantum Volume: 
VQ = d*m 

with m = 5 and d = 80, VQ =400

If a processor can use eight qubits to successfully run a circuit with eight-time steps worth of 
gates, then we say it has a Quantum Volume of 256 — we raise 2 to the power of the number of 
qubits (2n) 
Note that *n* from Quantum Volume does not limit you to only *n* qubits with *m* time 

layers

https://research.ibm.com/blog/quantum-volume-256#note-id-0
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