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Motivation

Gauge theories are fundamental to our understanding of interactions between the elementary constituents of
matter as mediated by gauge bosons.

However, simulating the real-time dynamics of gauge theories is a notorious challenge classically

This has recently stimulated effort, using Feynman’s idea of a quantum simulator to devise schemes for
simulating such theories on engineered quantum mechanical devices.

Practical quantum computing holds clear promise in addressing problems not generally tractable with classical
simulation techniques, and some key physically interesting applications are those of real-time dynamics in
strongly coupled lattice gauge theories.

In particular, The QCD conundrum is well known. Due to its running coupling, at high energies, it is
weakly coupled (asymptotically free), enabling perturbative treatment. At low-energy, it is a strongly
interacting, non-perturbative theory leading to the problem of quark confinement.

Other questions and problems of importance include : properties and dynamics of finite-density systems or the
fragmentation of high-energy quarks and gluons into hadrons.

Quantum computers offer potential solutions in these systems that are inaccessible with conventional computing

Existing and near-term quantum hardware is imperfect, with a small number of qubits, sparse qubit connectivity,
and noisy quantum gates—so called NISQ (noisy intermediate-scale quantum) era devices.

These technical imperfections constrain the circuit depth and dimensionality of problems that can be solved on
available quantum computers.

Error mitigation strategies are essential to take advantage of capabilities of current and near term devices
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Simulating Quantum Gauge Fields: Requirements

In the Hamiltonian approach to LGTs, we only discretize space, and time is a continuous,
real coordinate. The lattice sites, hosting the matter fields (usually fermionic, but can be
bosonic too) are labelled by x € 7, {e;}9._; are unit vectors in the positive directions.

The links, which hosts the gauge field degrees of freedom, are denoted by pairs of a
starting site and a direction, (x, 7).

This fulfils the first requirement from quantum simulation of LGTs: must include two
different types of degrees of freedom —gauge field and matter, residing on the links and
the sites, respectively.

The second requirement is: quantum simulators of lattice gauge theories should be
gauge-invariant—that is, manifest a local symmetry parametrized by the gauge group G.
Gauge transformations 0g(x) should be well defined on each site x € Z, and for any g € G;

The system has to be prepared initially in a gauge-invariant state and the dynamics
should include gauge-invariant interactions.

In more than 1 + 1d, the gauge field cannot be eliminated, and has to implement the complicated

four-body plaquette interactions.



Prototype Z(2) Lattice Gauge Theory
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Learning Based Quantum Error Mitigation Method & Advantages
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Theorems (Proofs Omitted)

* Theorem 1: Variable Noise Clifford Data Regression (vnCDR) perfectly
mitigates global depolarizing noise

* Note that while there are many distinct noise channels, the
depolarizing noise model often appropriately describes average
noise for large circuits involving many qubits and gates.

* Theorem 2: The Clifford circuit set is sufficient to estimate zero
error expectation values of arbitrary circuits.

* In essence, we formulate classical simulation to enble Quantum
Simulation!

o Cf: A. Lowe et al. Phys. Rev. Research3, 033098



Error Mitigation Results
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Future work: U(1) Model

* For single square plaquette we obtain the Hamiltonian: s ) theory (square plaquette), g—=2.0
1 1 1 ! 1 | === | Simy l|1|
Lo I— Ornginal
- r __r __T __T yoow _uw_u r o Y U 1 I L | 4 Readout
Hp = _5[51025354 T 01020304 — 07109030, N ' ¥ Readout + ZNE
—ojojojoy +oiosoio] +oiosolo] :_:':i_.”'J
+oiojo50; +ofoj050]]. I o
D
Gauss law: 0051 _
! ! 0001 II": L -IIII II";
G.T — Z (E:I.‘.,u — EJ:—,LL,H) . o . . . . . .
0. 02 04 G 08 1.0
H gt
This operator G.generates the gauge transformations, which
can be expressed as V' =[], exp (—ia.Gy), Estlmatlﬂg Quantum Volume:
Where a is the (local) parameter associated with the local =d*m
unitary transformation. Ch —
with m —5 and d = 80, V, =400

If a processor can use eight qubits to successfully run a circuit with eight-time steps worth of
gates, then we say it has a Quantum Volume of 256 — we raise 2 to the power of the number of
qubits (2")

Note that *n* from Quantum Volume does not limit you to only *n* qubits with *m* time
layers


https://research.ibm.com/blog/quantum-volume-256#note-id-0
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