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When the minimal length approach emerging from noncommutative Heisenberg

algebra, generalized uncertainty principle (GUP), and thereby integrating gravita-

tional fields to this fundamental theory of quantum mechanics (QM) is thoughtfully

extended to Einstein field equations, the possible deformation of the metric tensor

could be suggested. This is a complementary term combining the effects of QM

and general relativity (GR) and comprising noncommutative algebra together with

maximal spacelike four–acceleration. This deformation compiles with GR as cur-

vature in relativistic eight–dimensional spacetime tangent bundle, generalization of

Riemannian spacetime, is the recipe applied to derive the deformed metric tensor.

This dictates how the affine connection on Riemannian manifold is straightforwardly

deformed. We have discussed the symmetric property of deformed metric tensor

and affine connection. Also, we have evaluated the dependence of a parallel trans-

ported tangent vector on the spacelike four–acceleration given in units of L, where

L =

√
ℏG
c3

is a universal constant, c is speed of light, and ℏ is Planck constant, and

G is Newton’s gravitational constant.

PACS numbers: 04.50.Kd, 02.40.Gh, 03.65.Ca, 95.30.Sf
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I. Introduction

The general theory of relativity (GR) assumes that the gravitational field has a geometrical

nature. This is a four–dimensional Riemannian manifold having a symmetric metric tensor
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and an affine (linear) connection. The latter is torsion–free and metric compatible and thus

can be determined in terms of the metric tensor, itself. An affine connection is defined as a

geometric object on a smooth manifold connecting nearby tangent spaces. The tangent vector

fields are covariant derivatives on that manifold. An affine connection dictates how to perform

parallel transport of tangent vectors on manifold. In general relativity, the connection plays the

role of the gravitational force field, where the metric tensor is the corresponding gravitational

potential.

The present script introduces a minimal length approach, in which the inherent uncer-

tainties emerging in detecting a quantum state are constrained in noncommutative operators

as governed by Heisenberg uncertainty principle (HUP), which limits these to simultaneous

measurements but obviously doesn’t incorporate the impacts of the gravitational fields. The

extended version of HUP known as generalized uncertainty principle (GUP) is also predicted

in string theory, loop quantum gravity, doubly special relativity, and various gedanken exper-

iments [1, 2]. GUP could be seen as an approach emerging from the gravitational impacts on

the quantum measurements. The latter are essential components of the underlying quantum

theory. In other words, GUP helps explaining the origin of the gravitational field and how a

particle behaves in it [3, 4]. Recently, the effects of the minimal length approach on the line

element, the metric tensor, and the geodesics have been evaluated [3]. While in line element and

metric tensor an additional term of the GUP parameter and squared spacelike four–acceleration

appears in each quantity, multiple terms with higher–order derivatives appear in the geodesics

[3].

Extending the four–dimensional manifold M to an eight-dimentional spacetime tangent bun-

dle TM , the possible deformation of the metric tensor is derived in section II. In section III,

a short review of the minimal measurable length is outlined. The possible deformation of the

affine connection on Riemannian manifold is discussed in section IV. The parallel transport

of a vector on Riemannian manifold is elaborated in section V. The symmetry properties of

the deformed metric tensor and affine connection are discussed in section VI. Section VII is

devoted to the conclusions and outlook.

II. The deformation of metric tensor

Caianiello suggested that the deformed GR can be described by the four dimensional space-

time embedded as a hypersurface in the eight dimensions manifold M8 [5–7]. The eight dimen-
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sions xA is

xA = (xµ, (L/c)ẋµ) (1)

where xµ is the four spacetime dimensions, ẋµ =
dxµ

ds
is the four velocity, A = 0, ..., 7, µ =

0, ..., 3, L is the minimal length. L may be defined according to GUP as a minimal uncertainty

of positions L = ℏ
√
β [8], one can consider the value of minimal length to be the Planck length

L =
√
(ℏG/c3).

The deformed line element in eight dimensions manifold M8 [9, 10] is,

ds̃2 = gABdx
AdxB (2)

where gAB is a result of outer product as the following gAB = gµν ⊗ gµν . In Eq.(2), substitute

dxA, and dxB by Eq.(1),

ds̃2 =

(
1 + Lgµν

dxµ

ds

dẋν

ds
+ Lgµν

dẋµ

ds

dxν

ds
+ L2gµν

dẋµ

ds

dẋν

ds

)
ds2 (3)

where c = 1, ds2 = gµνdx
µdxν is the classical line element,

ds̃2 = ds2 + L2gµν ẍ
µẍνds2 (4)

where ẍµ =
dẋµ

ds
is the acceleration, µ, ν are dummy indices, and ⃗̇x.⃗̇x = −1, then ⃗̇x.⃗̈x = 0,

ds̃2 = (1 + L2ẍ2)ds2 (5)

where ẍ2 = gµν ẍ
µẍν . The deformed line element in four dimensions spacetime, as a projection

from eight dimensions into four dimensions, will be

ds̃2 = g̃µνdx
µdxν (6)

where g̃µν is an assumed deformed metric tensor, which will be calculated by equating Eqs.(5),

and (6),

g̃µν = (1 + L2ẍ2)gµν (7)

where ẍ2 = gαβẍ
αẍβ, β, α are dummy indices, µ, and ν are free indices.

For flat spacetime,

η̃µν = (1 + L2ẍ2)ηµν (8)

The correction factor of deformed metric tensor can be redefined by the maximal acceleration

Amax, where Amax = (c2/L) =
√

(c7/ℏG) [11], the deformed metric tensor will be

g̃µν =

(
1 +

1

A2
max

ẍ2

)
gµν (9)

where c = 1.
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III. Minimal measurable length

The parameter β introduced in section II emerged from the assumption that a minimal

length uncertainty that was predicted in various theories of quantum gravity, string theory, for

instance, as a consequence of the gravitational fields on the uncertainty principle suggests that

[8],

∆x∆p ≥ ℏ
2

[
1 + β (∆p)2 + β⟨p⟩2

]
, (10)

where ⟨p⟩ is the momentum expectation value and ∆x and ∆p, respectively, represent the

length and momentum uncertainties. The GUP parameter, β = β0G/(c3ℏ), with β0 is a dimen-

sionless parameter to be determined from recent cosmological observations [12, 13] introduces

the consequences of gravity to the uncertainty principle, the fundamental theory of quantum

mechanics. The commutation relation between length and momentum operators,

[x̂, p̂] = iℏ
(
1 + βp̂2

)
. (11)

The minimum uncertainty of position ∆xmin for all values of expectation values of momen-

tum ⟨p⟩ will be

∆xmin(⟨p⟩) = ℏ
√

β
√

1 + β⟨p⟩2 (12)

then the absolute minimum uncertainty of position is at ⟨p⟩2 = 0,

∆x0 = ℏ
√

β (13)

One can consider the value of ∆x0 as the possible minimal length according to the GUP, which

represents the effect of gravitational field on the QM, then the minimal length will be

L = ℏ
√
β (14)

The minimal length may be assumed as a fundamental physical quantity obtained from

a combination of fundamental physical quantities, gravitational constant (G) from gravity,

reduced Planck constant (ℏ) from quantum mechanics, and speed of light (c) from spacial

relativity [14]. The minimal length will be

L = lp

=

√
ℏG
c3

(15)
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where lp is called Planck length.

The existence of maximal acceleration can be assumed by the existence of minimal length as a

combination of fundamental physical quantities [11],

Amax =
c2

lp

=

√
c7

ℏG
(16)

According to the GUP definition of minimal length stated in Eq. (14), the maximal acceleration

will be

Amax =
c2

L

=

√
c4

ℏ2β
(17)

IV. The deformation of affine connection in Riemannian manifold

The minimal length approach, suggests deformation of the metric tensor as follows

• For curved space,

g̃µν = gµν + L2ẍ2 gµν = gµν + qµν . (18)

With Eq. (14), the qµν can be suggested as GUP contributed part, which reads

qµν = βℏ2ẍ2 gµν (19)

• For flat space,

η̃µν = ηµν + βℏ2ẍ2 ηµν = ηµν + hµν , (20)

where hµν = βℏ2ẍ2 ηµν .

Both gµν and g̃µν share common properties. They turn the covariant tensor into contravariant

tensor and vice versa. The symmetry property of deformed metric tensor is

g̃µν =
1

2
(g̃µν + g̃νµ), (21)

the L.H.S of Eq. (21) will be

g̃µν = gµν + L2ẍ2gµν , (22)
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and the R.H.S of Eq. (21) is

1

2
(g̃µν + g̃νµ) =

1

2
(gµν + L2ẍ2gµν + gνµ + L2ẍ2gνµ) (23)

we know that gµν in classical GR is symmetric in its indices, then we will replace gνµ in third

and fourth terms by gµν ,

1

2
(g̃µν + g̃νµ) =

1

2
(gµν + L2ẍ2gµν + gµν + L2ẍ2gµν) (24)

1

2
(g̃µν + g̃νµ) =

1

2
(2gµν + 2L2ẍ2gµν) (25)

1

2
(g̃µν + g̃νµ) = gµν + L2ẍ2gµν (26)

we find that Eq. (22) and Eq. (26) are equal, then R.H.S = L.H.S of Eq. (21). The deformed

metric tensor is symmetric under interchange of its indices µ and ν.

For the affine connection, Eq. (A3), with the deformed metric tensor in curved and flat

spacetime g̃µν , Eq. (18) and η̃µν , Eq. (20), the partial derivatives are obviously commutative,

as well. The deformed metric tensor is compatible, see appendix B. Thus, the deformation of

the affine connection, Eq. (A3), can be expressed as

Γ̃γ
βµ =

1

2
g̃αγ(g̃αβ,µ + g̃αµ,β − g̃βµ,α). (27)

For curved space, by substituting Eqs. (18), and (B.9) into Eq. (27), we get

Γ̃γ
βµ =

1 + 2L2ẍ2

1 + L2ẍ2

1

2
gαγ (gαβ,µ + gαµ,β − gβµ,α) =

1 + 2L2ẍ2

1 + L2ẍ2
Γγ
βµ. (28)

where g̃αγ =
gαγ

(1 + L2ẍ2)
.

It is obvious that vanishing L2ẍ2 straightforwardly retrieves the undeformed affine connection

Γγ
βµ. This is also the case, at vanishing L2, no minimal length uncertainty, and/or at vanishing

ẍ2, cancellation of the GUP effect on GR. We have shown in Eq. (18) that both deformation

ingredients are interdependent. The parameterization of the four–coordinates on M in eight–

coordinates on TM emerges spacelike four-acceleration ẍ2 and creates additional geometric

structure. Eq. (28) reveals that the deformation of the affine connection is exclusively localized

in its coefficient: while undeformed Γγ
βµ possesses unity as a coefficient, its deformed version

gets the coefficient (1 + 2L2ẍ2)/(1 + L2ẍ2). This means that the affine (linear) connection

preserves, on one hand, its geometric nature as in GR, for instance. On the other hand, the

deformation via additional curvature on higher–dimensional manifold, especially at the energy

scale, in which L2ẍ2 becomes significant.
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V. Parallel transport on Riemannian manifold

In flat space, the covariant derivatives, where the vector components and the basis vectors

are also differentiated, are just the ordinary derivatives. In curved space, the differentiation of

the basis vectors can be expressed by the Christoffel symbols. In both flat and curved spaces,

the covariant derivatives can be defined as the rates of change of the tangent vector fields (ordi-

nary derivatives, for instance) with the normal component subtracted, i.e., parallel transport.

Vanishing covariant derivatives of a vector v⃗ = vαeα means that v⃗ is parallel transported, i.e.,

keeping v⃗ as constant as possible,

d

dλ
vα + Γα

σρ

dxσ

dλ
vρ = 0, (29)

where the dependence of the parallel transport on the connection Γα
σρ is obvious. With the

deformation, Γα
σρ is to be replaced by Γ̃α

σρ, Eq. (28), i.e., Eq. (29) can then be rewritten as

d

dλ
vα +

(1 + 2L2ẍ2)

(1 + L2ẍ2)
Γα
σρ

dxσ

dλ
vρ = 0 (30)

d

dλ
vα = − 1

1 + L2ẍ2
Γα
σρ

dxσ

dλ
vρ − 2L2ẍ2

1 + L2ẍ2
Γα
σρ

dxσ

dλ
vρ. (31)

The Fig. 1 draws the affine connection between the vector v⃗ parameterized in λ; v⃗(λ) and its

parallel transported counterpart, at λ+ dλ; v⃗(λ+ dλ).

The parallel transport can define the curvature of a manifold by take the parallel transport

of a vector over a closed loop then it will give the definition of curvature tensor [15, 16]. The

equation of parallel transport of the vector vα around a loop with the deformed connection will

be

δvα = δaδb[Γ̃α
µσ,λ − Γ̃α

µλ,σ + Γ̃α
νλΓ̃

ν
µσ − Γ̃α

νσΓ̃
ν
µλ]v

µ (32)

where δvα is the changing of vα by the transport around the loop and δaδb is the area of the

loop. According to Eq. (32), the deformed curvature tensor is

R̃α
βµν = Γ̃α

µσ,λ − Γ̃α
µλ,σ + Γ̃α

νλΓ̃
ν
µσ − Γ̃α

νσΓ̃
ν
µλ (33)

The more investigation and discussion of deformed Curvature tensor Eq. (33) will be in a future

research.
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Fig. 1: In vector form, the affine connection and parallel transport are depicted.

VI. Symmetry properties of deformed affine connection

The symmetric property of the affine connection depends on a) the symmetric property of

the metric tensor, and b) the commutation of the partial derivatives. The deformed affine

connection, Eq. (28), fulfills both conditions:

1. In any coordinate the deformed affine connection can be expressed in the deformed metric

tensor and its derivatives,

Γ̃γ
βµ =

1

2
g̃αγ(g̃αβ,µ + g̃αµ,β − g̃βµ,α), (34)

where the deformed metric g̃ is symmetric, then the deformed affine connection is sym-

metric, as well.

2. The affine connection can be expressed as [17]

Γ̃γ
βµ =

∂xγ

∂Xα

∂2Xα

∂xβ∂xµ
, (35)

where xλ and Xα represent different coordinates in curved space, the commutation of

the partial derivatives is still satisfied in the deformed affine connection, Eq. (28). This

is also valid even when Xα is deformed to encounter the existence of a minimal length

uncertainty.
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Therefore, we conclude that the deformed affine connection is symmetric in its lower indices

Γ̃γ
(βµ), so that

Γ̃γ
(βµ) = Γ̃γ

βµ = Γ̃γ
µβ. (36)

Also, because the deformed affine connection on Riemannian manifold is torsion–free, then

T γ
βµ = Γ̃γ

βµ − Γ̃γ
µβ = 2Γ̃γ

[βµ] = 0, (37)

where Γ̃γ
[βµ] = 0.

VII. Conclusions and outlook

The minimal length approach emerging from noncommutative Heisenberg algebra, gener-

alized uncertainty principle (GUP), is conjectured to integrate gravity in quantum mechanics

through generalizing Heisenberg uncertainty principle to encounter impacts of gravitational

fields [1, 2]. When applying this recipe on general relativity, the metric tensor becomes de-

formed, by gaining an additional term, which is related to the GUP parameter, undeformed

metric tensor, and squared maximal four–acceleration ẍ2.

To achieve the deformation on spacetime monifold M , we have followed the same recipe for

the curvature in relativistic eight–dimentional spacetime tangent bundle TM in Riemannian

manifold. This is a differential manifold M equipped with tangent bundle manifold TM , in

which the restriction on the nonquadratic length measure for vectors is relaxed. The local

coordinates xµ on M are combined with the tangent vectors ẋµ = dxµ/ds on TM .

The present script focuses on the possible deformation of the affine connection, which can

exclusively be expressed in the metric tensor and its derivatives. We have discussed on its sym-

metric property and evaluated the dependence of a normalized parallel transported vector on

the spacelike four–acceleration. This observation manifests that the minimal length uncertainty

and the deformed recipe are significant, especially at the energy scale in which L2ẍ2 becomes

finite.

We conclude that the quantization of the affine connection is exclusively factorized in the

coefficient (1 + 2L2ẍ2)/(1 + L2ẍ2), which combines minimal length uncertainty (GUP effect),

geometric structural, noncommutative algebraic, and gravitational ingredients. On one hand,

this means that the affine connection preserves all properties of its undeformed counterpart,

such as torsion–free and metric compatibility. On the other hand, its geometric nature as

connecting nearby tangent spaces on a smooth manifold is also preserved on discrete spaces.
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The deformation via additional curvature on higher–dimensional manifold likely reveals fine

geometric structure, similar to radiation beam in classical and quantum mechanics.

We have studied how the deformed affine connection performs parallel transport of a tangent

vector on Riemannian manifold.

A. Differential geometry and affine connection

An affine (linear) connection is defined as a geometric object connecting nearby tangent

(curved) spaces, i.e., permitting differentiability of the tangent vector fields or assuring them

a restrict dependence on the manifold in a fixed vector space [17]. This is a function assigning

to each tangent vector and each vector field a covariant derivative or a new tangent vector. In

differential geometry, the generic form of the affine connection was suggested as [18]

Γµ
λν =

{µ

λν

}
+Kµ

λν +
1

2
(Qµ

λν. +Qµ
νλ. −Qµ

.νλ) (A1)

where dot in lower indices refers to the position of upper index,
{µ

λν

}
is the Christoffel symbol,

and Qµνλ = −Dµ(Γ)gνλ is the covariant derivative of the metric tensor. Kµ
λν =

1

2
(T µ

.λ ν − T µ
λ.ν −

T µ
ν.λ) is contortion, and T µ

λν = Γµ
λν − Γµ

νλ = 2Γµ
[λν] is the torsion. The latter represents the

anti–symmetric part of the connection.

The theory of general relativity assumes metric compatibility of the connection, which im-

plies linear independence of the partial derivative tangent vectors and accordingly leads to

vanishing Dµ(Γ)gνλ. Also, the metric compatibility of the connection naturally arises, if the

covariant derivative is tensor applying the Leibniz rule [19].

The metric compatibility means that a flat space can be found locally in a suitable frame

(Minkowski space). In free falling frame, for example, gνλ = ηνλ, then Dµ(Γ)gνλ vanishes for

gνλ = ηνλ [17]. In such a frame, the covariant derivative of a tensor is the same for all observers

and frames, i.e., Dµ(Γ)gνλ = 0 [15, 18–20].

The theory of general relativity also assumes1, that the affine geodesics matches with the

metrical geodesics. The latter is obviously given by extremizing ds2, the spacetime interval

[3, 4]. For the torsion–free assumption, Kµ
λν vanishes, entirely, the metric plays the role of

the gravitational field potential, and the Riemann geometry is symmetric (also the energy–

1 Other assumptions, i.e., nonsymmetric energy–momentum tensor or finite torque density, are also possible,

e.g., Einstein–Cartan–Sciama–Kibble theory [21]
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momentum tensor is symmetric). Then, the affine connection reduces to

Γµ
λν =

{µ

λν

}
. (A2)

The assumption of symmetric connection coefficients leads to commutative partial derivatives,

Eq. (35).

Under the conditions of the metric compatibility, the symmetry of the metric tensor in-

dices, and the partial derivative commutation, there is one particular version of the connection

coefficients (Levi–Civita connection). Then, the Christoffel symbols can be expressed as [15]

Γγ
βµ =

1

2
gαγ(gαβ,µ + gαµ,β − gβµ,α), (A3)

where Γµ
αβ = Γµ

βα.

B. The metric tensor compatibility

The covariant derivative of deformed metric tensor can be defined as a partial derivative in

free falling frame (Minkowski space),

∇σg̃µν = ∂σg̃µν , (B.1)

∂σg̃µν =
(
1 + L2ẍ2

)
∂σgµν + gµνL

2(ẍ2),σ (B.2)

where g̃µν = (1 + L2ẍ2)gµν , and L is a constant. Use the following definition ẍ2 = gµν ẍ
µẍν ,

then Eq. (B.2) will be

∂σg̃µν =
(
1 + L2ẍ2

)
∂σgµν

+ L2(gµν,σẍ
µẍν + gµν ẍ

µ
,σẍ

ν + gµν ẍ
µẍν

,σ)gµν (B.3)

The derivative of ẍµ with respect to the space-time coordinates,

ẍµ
,σ =

∂

∂xσ

∂2xµ

∂s2
(B.4)

by using the commutation property of partial derivatives,

ẍµ
,σ =

∂2

∂s2
∂xµ

∂xσ
(B.5)

ẍµ
,σ =

∂2

∂s2
δµσ = 0 (B.6)
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where δµσ =
∂xµ

∂xσ
[15]. Also, the same thing for ẍν

,σ,

ẍν
,σ = 0 (B.7)

Substitute ẍµ
,σ and ẍν

,σ in Eq. (B.3) by Eqs. (B.6) and (B.7) respectively,

∂σg̃µν =
(
1 + L2ẍ2

)
gµν,σ + (gµν,σẍ

µẍν)L2gµν , (B.8)

take gµν,σ as a common factor,

∂σg̃µν =
(
1 + 2L2ẍ2

)
gµν,σ (B.9)

The metric tensor gµν in free falling frame is Minkowski metric tensor ηµν , then Eq. (B.9) will

be

∂ση̃µν =
(
1 + 2L2ẍ2

)
ηµν,σ = 0 (B.10)

where ηµν,σ = 0. According to Eq. (B.10), the covariant derivative of deformed metric tensor

is vanishing in free falling frame, then the covariant derivative will vanish for all frames,

∇σg̃µν = 0 (B.11)
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