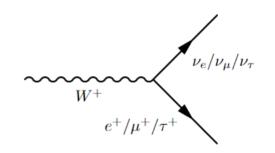
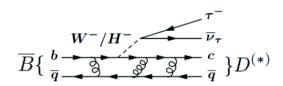
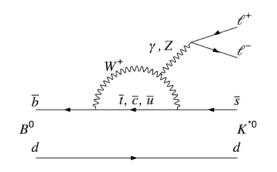

Tests of Lepton Flavor Universality

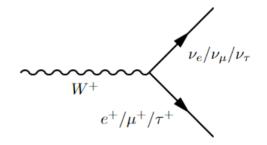


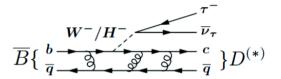


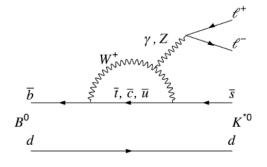


Lepton Flavor Universality in the SM

- In the Standard Model couplings of leptons to W,Z, γ are independent of flavor by axiom
- •Different masses generate calculable phase space differences
- •Hadronic form factors largely cancel out in ratios of branching fractions
 - Measurement of a violation of LFU would be a clear sign of new physics
- •Some SM extensions include particles that can cause LFU violation (e.g. LQ, Z')
- •Experimental investigation of LFU has been pioneered at LEP $(W \to l^+ \nu)$ and at the Bfactories $(R(D^{(*)}))$ [PRL 109, 101802] showed hints of a tension with the SM

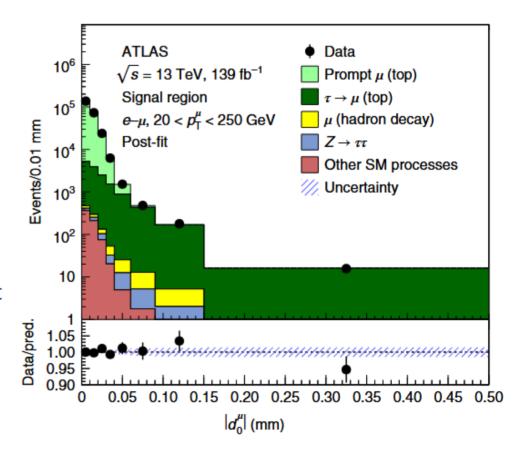





Overview

In this report I will present recent results from LHCb, ATLAS and CMS in four different classes of measurements

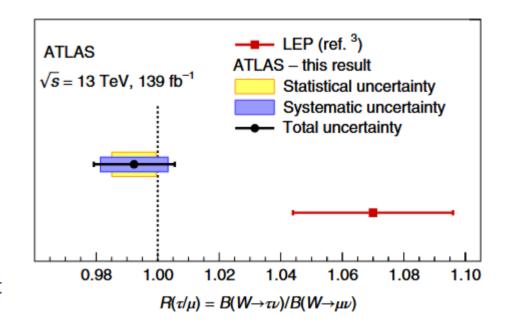
- W → lv [ATLAS, CMS]
- $b \rightarrow cl\nu$ [LHCb],
- *b* → *sll* [LHCb],
- $-q \bar{q}
 ightarrow l^+ l^-$ at high mass [CMS]


 $W \rightarrow l\nu$

ATLAS test of LFU in W boson decay

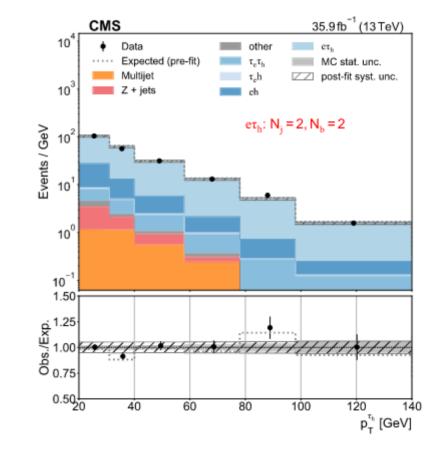
•LEP measured BF($W \to \tau \nu$) consistently higher w.r.t. $BF(W \to e\nu, \mu\nu)$ [Phys. Rep. 532 (2013) 119]:

- $R(\tau/\mu)$ =1.070 \pm 0.026, 2.7σ different from unity
- •ATLAS improved this using a pure sample of W (500k) from dileptonic $t\bar{t}$ events where $t\to Wb$ and $W\to l\nu$ with tag and probe on lepton (unbiased)
- •Background from $Z \to \mu\mu$ with lost μ and probe not from W: calibrated on control regions
- •Muon P_T and impact parameter are used to separate prompt and secondary μ and to extract yields



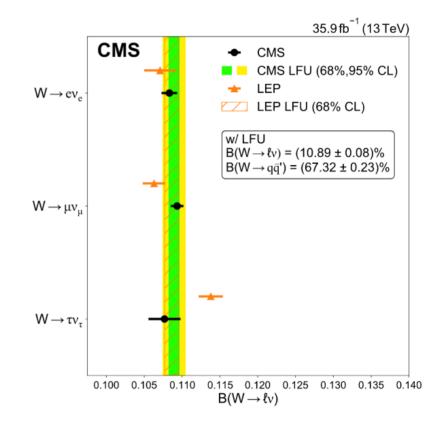
18/5/2022 G. Simi - LHCP 2022 5

ATLAS test of LFU in W boson decay


- •LEP measured BF($W \to \tau \nu$) consistently higher w.r.t. $BF(W \to e\nu, \mu\nu)$ [Phys. Rep. 532 (2013) 119]:
 - $R(\tau/\mu)$ =1.070 \pm 0.026, 2.7σ different from unity
- •ATLAS improved this using a pure sample of W (500k) from dileptonic $t\bar{t}$ events where $t\to Wb$ and $W\to l\nu$ with tag and probe on lepton (unbiased)
- •Background from $Z \to \mu\mu$ with lost μ and probe not from W: calibrated on control regions
- •Muon P_T and impact parameter are used to separate prompt and secondary μ and to extract yields
- $R(\tau/\mu) = 0.992 \pm 0.013$ agreement with LFU

CMS test of LFU in in W boson decay

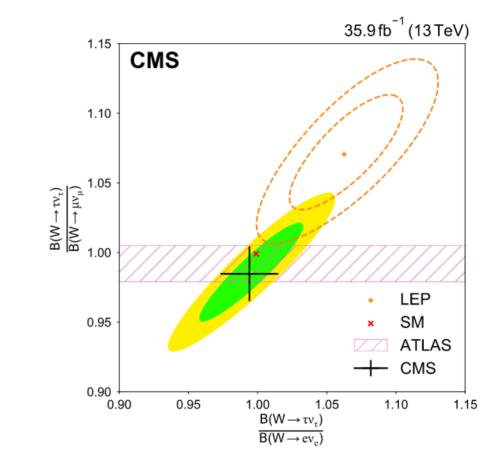
- Select events with WW, tW, tt and W+jets
- •Search for all W decays $W \to e \bar{\nu}_e$, $\mu \bar{\nu}_\mu$, $\tau \bar{\nu}_\tau$, hadronic.
- Split analysis depending on event category
- •Does not use impact parameter to separate prompt from secondary muons but only kinematic variables
- •Simultaneous extraction of all BF in all event categories by ML fit to P_T distribution



CMS test of LFU in in W boson decay

- Select events with WW, tW, tt and W+jets
- •Search for all W decays $W \to e \bar{\nu}_e$, $\mu \bar{\nu}_\mu$, $\tau \bar{\nu}_\tau$, hadronic
- Split analysis depending on event category
- •Does not use impact parameter to separate prompt from secondary muons but only kinematic variables
- •Simultaneous extraction of all BF in all event categories by ML fit to P_T distribution

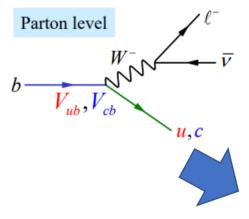
	CMS	LEP	ATLAS
$R_{\mu/e}$	1.009 ± 0.009	0.993 ± 0.019	1.003 ± 0.010
$R_{\tau/e}$	0.994 ± 0.021	1.063 ± 0.027	
$R_{ au/\mu}$	0.985 ± 0.020	1.070 ± 0.026	0.992 ± 0.013
$R_{ au/\ell}$	1.002 ± 0.019	1.066 ± 0.025	• • •

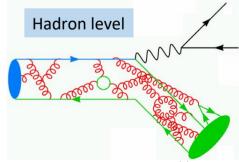


CMS test of LFU in in W boson decay

- •Select events with WW, tW, tt and W+jets
- •Search for all W decays $W \to e \bar{\nu}_e$, $\mu \bar{\nu}_\mu$, $\tau \bar{\nu}_\tau$, hadronic
- Split analysis depending on event category
- •Does not use impact parameter to separate prompt from secondary muons but only kinematic variables
- •Simultaneous extraction of all BF in all event categories by ML fit to P_T distribution

	CMS	LEP	ATLAS
$R_{\mu/e}$	1.009 ± 0.009	0.993 ± 0.019	1.003 ± 0.010
$R_{\tau/e}$	0.994 ± 0.021	1.063 ± 0.027	
$R_{ au/\mu}$	0.985 ± 0.020	1.070 ± 0.026	0.992 ± 0.013
$R_{ au/\ell}$	1.002 ± 0.019	1.066 ± 0.025	• • •

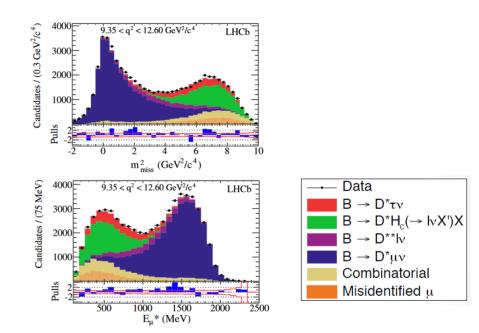

$b \rightarrow cl\nu$


LFU in semileptonic B-hadron decays

•LFU can be tested comparing BF for different leptons in the final state

- Hadronic current
 - form factors from lattice, HQET largely cancel out in the ratio
- •For au lepton the available space makes $R(H_c) < 1$
- Tree level process
 - large data samples
- Missing neutrino
 - Partially reconstructed decays
 - Background
- •Measurements with mesons done by LHCb and B-Factories [PRL 109, 101802 (2012), PRD 88, 072012 (2013), PRD92,072014(2015), [PRL124,161803 (2020)]

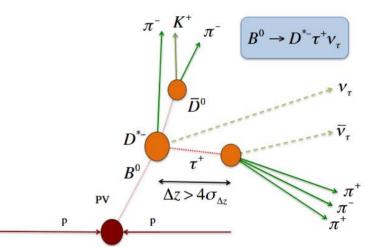
$$R(H_c) = \frac{\mathcal{B}(H_b \to H_c \tau \overline{\nu}_{\tau})}{\mathcal{B}(H_b \to H_c \ell' \overline{\nu}_{\ell'})}$$



18/5/2022 G. Simi - LHCP 2022

$$\frac{LHCb}{\Gamma HCD}R(D^*) = B(B^0 \to D^{*+}\tau^-\bar{\nu}_{\tau})/B(\bar{B}^0 \to D^{*+}\mu^-\bar{\nu}_{\mu})$$

- • τ reconstructed in one prong $\tau^- \to \mu^- \nu_\mu \bar{\nu}_\tau$
- •B momentum estimated using the visible Pz
- Difficult backgrounds from partially reconstructed semileptonic decays $B \to D^{**+} \mu^- \nu$ modeled using a control sample $B \to D^{*+}\mu^-\pi^+\pi^-$
- Corrections for double charm from simulation. corrected with control sample $D^{*+}\mu^-K^{\pm}$
- Prompt and secondary muons from ML fit to m²_{miss}, E_{μ} , q² distributions with 3D templates representing signal, normalization and background sources

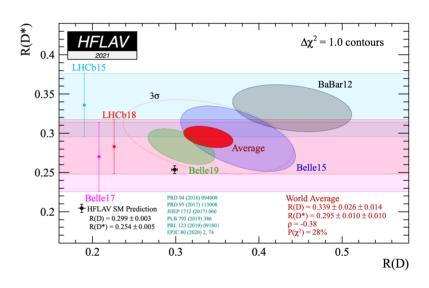

 $R(D^*) = 0.336 \pm 0.027 \pm 0.030$ 2.1σ from theoretical prediction

G. Simi - LHCP 2022 18/5/2022

$$R(D^*) = B(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau}) / B(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})$$

- •au reconstructed in one prong $au^- o \mu^- v_\mu \bar{v}_ au$
- •B momentum estimated using the visible Pz
- Difficult backgrounds from partially reconstructed semileptonic decays $B \to D^{**+} \mu^- \nu$ modeled using a control sample $B \to D^{*+}\mu^-\pi^+\pi^-$
- Corrections for double charm from simulation. corrected with control sample $D^{*+}\mu^-K^{\pm}$
- •Prompt and secondary muons from ML fit to m²_{miss}, E_{μ} , q² distributions with 3D templates representing signal, normalization and background sources

Result also obtained using hadronic τ decays [PRL 120, 171802 (2018)] (3fb⁻¹)



$$R(D^*) = 0.291 \pm 0.019 \pm 0.026 \pm 0.013$$

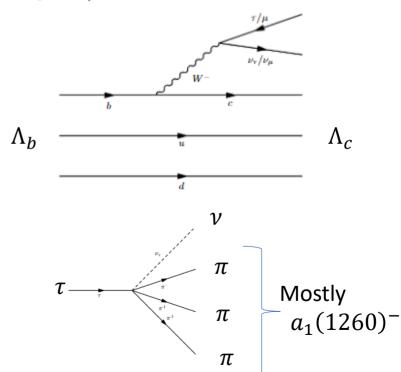
18/5/2022 G. Simi - LHCP 2022

$$\frac{LHCb}{\Gamma HCb}R(D^*) = B(B^0 \to D^{*+}\tau^-\bar{\nu}_{\tau})/B(\bar{B}^0 \to D^{*+}\mu^-\bar{\nu}_{\mu})$$

- •au reconstructed in one prong $au^- o \mu^- v_\mu ar{v}_ au$
- •B momentum estimated using the visible Pz
- •Difficult backgrounds from partially reconstructed semileptonic decays $B \to D^{**+} \mu^- \nu$ modeled using a control sample $B \to D^{*+} \mu^- \pi^+ \pi^-$
- •Corrections for double charm from simulation corrected with control sample $D^{*+}\mu^-K^\pm$
- •Prompt and secondary muons from ML fit to ${\rm m^2_{miss}}$, E_μ , ${\rm q^2}$ distributions with 3D templates representing signal, normalization and background sources

Combined with hadronic tau reco and other measurements: 3.4σ from theo.

18/5/2022 G. Simi - LHCP 2022

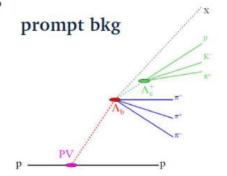


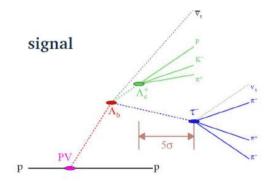
LHCb Test of LFU in B Baryon decays

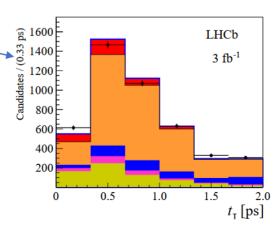
•Measurement of
$$\mathcal{R}(\Lambda_c^+) \equiv \mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \tau^- \overline{\nu}_{\tau})/\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu}_{\mu})$$

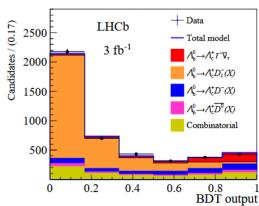
First LFU test in semi-lept. baryon decays

- •Precise SM prediction $R(\Lambda_c) = 0.324 \pm 0.004$ [PRD 99 (2019) 055008]
- •Different form factors involved w.r.t $B \rightarrow D$ transitions
 - Complementary constraints on NP
- •Half integer spin → can help in distinguishing different NP operators [PRD 99 (2019) 055008, JHEP 08 (2017) 131]
- • τ reconstructed using hadronic decays $\tau^+ \to \pi^+ \pi^+ \pi^- (\pi^0)$



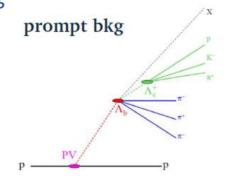

18/5/2022

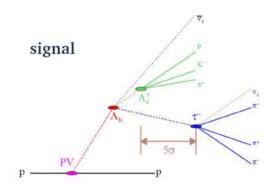


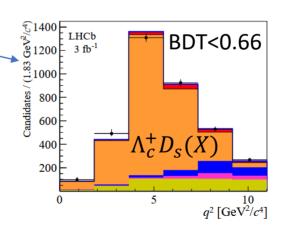

$R(\Lambda_c)$ Analysis method

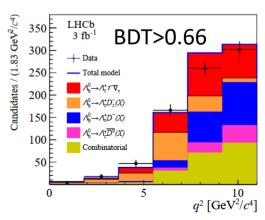
- •Background from $\Lambda_b \to \Lambda_c D_s^{(*)}$ suppressed using resonant structure of τ decay
- •Reconstruction of τ decay vertex allows suppression of prompt background
 - $\Delta z = z(3\pi) z(\Lambda_c) > 5\sigma_{VTX}$
- Only one neutrino missing
 - $q^2 = (p_\tau + p_\nu)^2$ of the τl pair can be reconstructed
 - Used to suppress background and extract signal yield
- •Signal extracted from 3D ML fit to BDT, $t_{ au}$, q^2

18/5/2022 G. Simi - LHCP 2022




$R(\Lambda_c)$ Analysis method


- •Background from $\Lambda_b \to \Lambda_c D_s^{(*)}$ suppressed using resonant structure of τ decay
- •Reconstruction of τ decay vertex allows suppression of prompt background

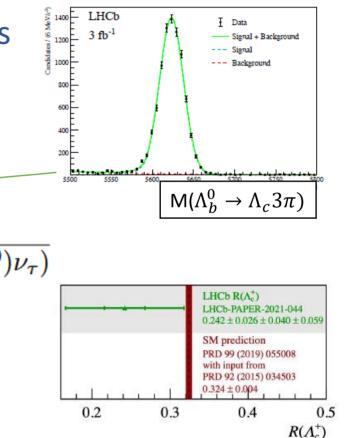

-
$$\Delta z = z(3\pi) - z(\Lambda_c) > 5\sigma_{VTX}$$

- Only one neutrino missing
 - $q^2 = (p_\tau + p_\nu)^2$ of the τl pair can be reconstructed
 - Used to suppress background and extract signal yield
- •Signal extracted from 3D ML fit to BDT, t_{τ} , q^2

18/5/2022 G. Simi - LHCP 2022

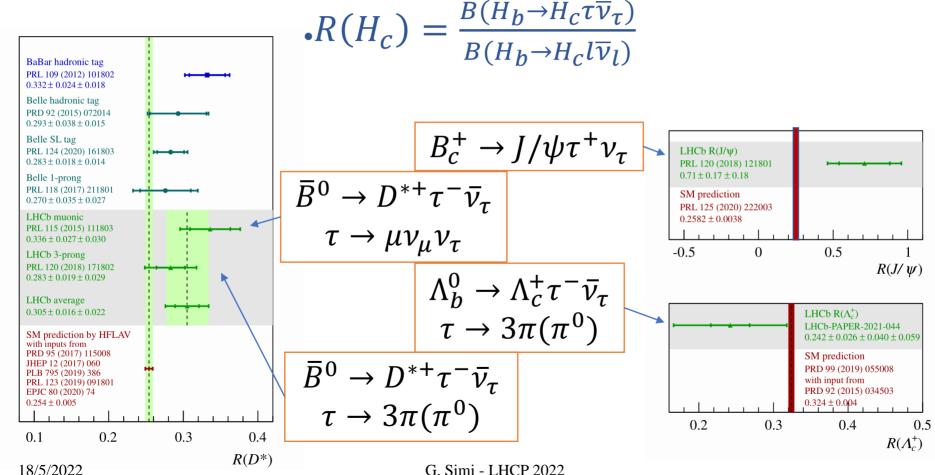
Normalization and result on $R(\Lambda_c)$

Simulation


•Normalization to $\Lambda_c^+3\pi$ to reduce systematics

$$-R(\Lambda_c^+) = \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \tau^- \nu_\tau)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c 3\pi)} \times \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c 3\pi)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \nu_\mu)}$$

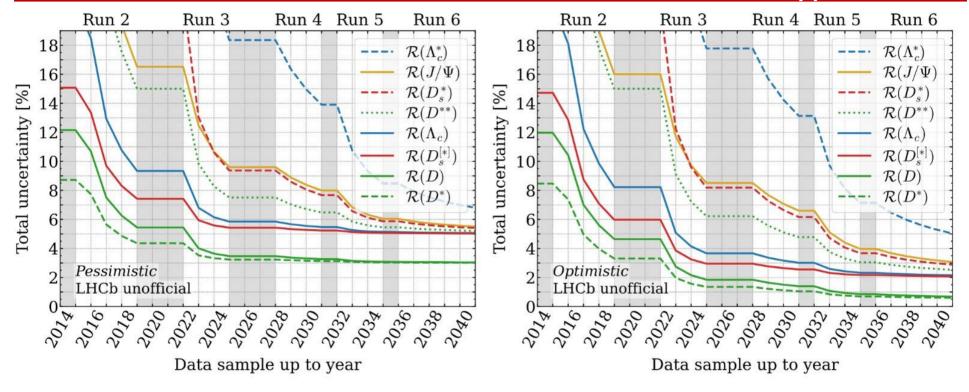
$$K(\Lambda_c^+) \text{ measured} \qquad \text{external}$$


$$\mathcal{K}(\Lambda_c^+) \equiv \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \tau^- \overline{\nu}_\tau)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ 3\pi)} = N_{\text{sig}} \frac{\varepsilon_{\text{norm}}}{N_{\text{norm}}} \frac{1}{\varepsilon_{\text{sig}}} \frac{1}{\mathcal{B}(\tau^- \to 3\pi(\pi^0)\nu_\tau)}$$

- $K(\Lambda_c^+) = 2.46 \pm 0.27 \text{(stat)} \pm 0.40 \text{(sys)}$
- $R(\Lambda_c^+) = 0.242 \pm 0.026(\text{stat}) \pm 0.040(\text{sys}) \pm 0.059(\text{ext})$

Pattern of LFU in $b \rightarrow cl\nu$ at LHCb

G. Simi - LHCP 2022

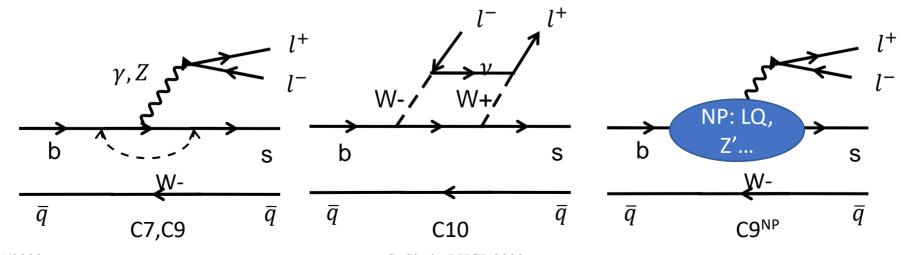


Prospects for $b \rightarrow cl\nu$

- •Combined measurement of R_{D^0} , R_{D^*} with leptonic tag and on run1 data (3 fb⁻¹)
 - Extension of 2015 analysis
- •Updated R_{D^*} with hadronic tag of τ and $D^{*+} \to D^0 \pi^+$ on 2015-2016 data
 - Update
- •New combined R_{D^+} , R_{D^*} measurement with leptonic tag on run2 data
 - New

18/5/2022 G. Simi - LHCP 2022 20

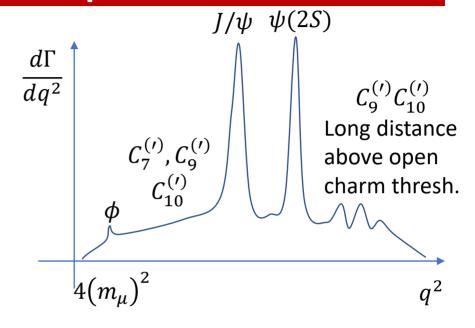
Summary of evolution of R_H



$b \rightarrow sll$

LFU in $b \rightarrow sll$

- $b \rightarrow sll$ are FCNC, forbidden at tree level and therefore very rare
- •NP contributions can be significant with small SM "background"
- •Loop dominated diagrams: sensitive to the effect of virtual unobserved particles above reach of direct searches, affect short distance physics C7,C9,C10 Wilson coefficients
- •It is possible to reconstruct the q² of the lepton pair and study angular observables

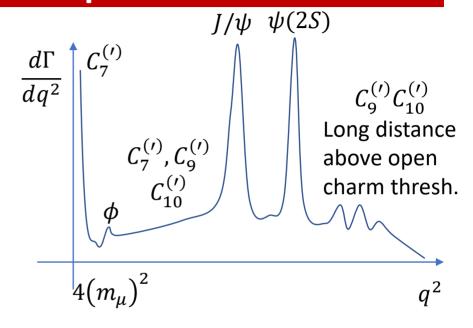

18/5/2022 G. Simi - LHCP 2022 23

Choice of q²

•Different bins in q² are sensitive to different diagrams and Wilson coefficients

• $B \to K^* ll$ decays have a pole at low q² due to the photon propagator

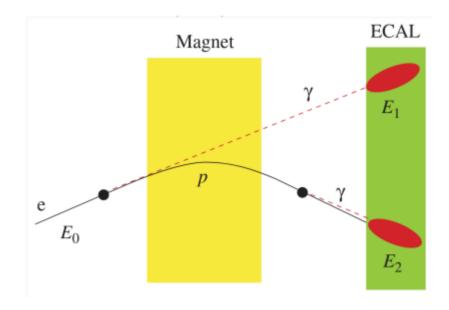
Low q²region gives a significant increase in statistics



Choice of q²

•Different bins in q² are sensitive to different diagrams and Wilson coefficients

• $B \to K^* ll$ decays have a pole at low q² due to the photon propagator


Low q²region gives a significant increase in statistics

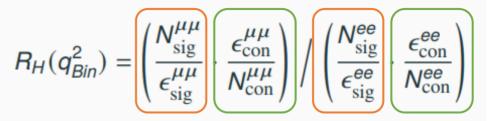
Testing LFU in $b \rightarrow sll$

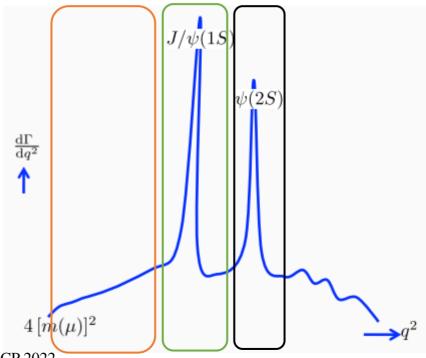
- •Measure the ratio R_H
- Theoretically very clean
- •Electron reconstruction different w.r.t to muons due to bremsstrahlung
 - Energy and momentum resolution is degraded due to bremsstrahlung
- •Bremsstrahlung recovery by adding photons compatible with the direction of the electron track

$$R_{H} = \frac{\int_{q_{min}^{2}}^{q_{max}^{2}} \frac{d\mathcal{B}(B \to H\mu^{+}\mu^{-})}{dq^{2}} dq^{2}}{\int_{q_{min}^{2}}^{q_{max}^{2}} \frac{d\mathcal{B}(B \to He^{+}e^{-})}{dq^{2}} dq^{2}} \cong 1$$

Testing LFU in $b \rightarrow sll$

- •Measure the ratio R_H
- Theoretically very clean
- •Electron reconstruction different w.r.t to muons due to bremsstrahlung
 - Bremsstrahlung recovery
- Double ratio to reduce systematic uncertainty on efficiencies
 - Normalization channel $B \to HI/\psi(l^+l^-)$
 - Does not account for background differences
- Numerous checks can be performed
- •LHCb has investigated R_{K^+} , $R_{K^{*0}}$, R_{pK} , $R_{K^{*+}}$, R_{K_S}

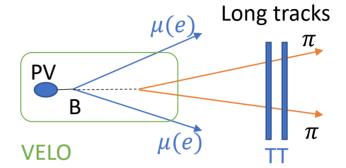

$$R_{H} = \frac{\int_{q_{min}^{2}}^{q_{max}^{2}} \frac{\mathrm{d}\mathcal{B}(B \to H\mu^{+}\mu^{-})}{\mathrm{d}q^{2}} \mathrm{d}q^{2}}{\int_{q_{min}^{2}}^{q_{max}^{2}} \frac{\mathrm{d}\mathcal{B}(B \to He^{+}e^{-})}{\mathrm{d}q^{2}} \mathrm{d}q^{2}} \cong 1$$

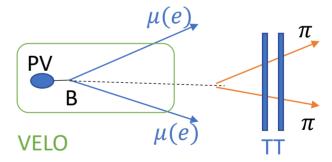

To a good approximation $\frac{\mathcal{B}(B \to HJ/\psi(e^+e^-)}{\mathcal{B}(B \to HJ/\psi(e^+e^-)} = 1$

$$\begin{split} R_{H}(q_{Bin}^{2}) &= \frac{\int_{q_{Bin}^{2}} \frac{d\mathcal{B}(B \to H\mu^{+}\mu^{-})}{dq^{2}} dq^{2}}{\int_{q_{Bin}^{2}} \frac{d\mathcal{B}(B \to He^{+}e^{-})}{dq^{2}} dq^{2}} \cdot \frac{\mathcal{B}(B \to HJ/\psi(e^{+}e^{-}))}{\mathcal{B}(B \to HJ/\psi(\mu^{+}\mu^{-}))} \\ &= \left(\frac{N_{\text{sig}}^{\mu\mu}}{\epsilon_{\text{sig}}^{\mu\mu}} \cdot \frac{\epsilon_{\text{con}}^{\mu\mu}}{N_{\text{con}}^{\mu\mu}}\right) / \left(\frac{N_{\text{sig}}^{ee}}{\epsilon_{\text{sig}}^{ee}} \cdot \frac{\epsilon_{\text{con}}^{ee}}{N_{\text{con}}^{ee}}\right) \end{split}$$

Testing LFU in $b \rightarrow sll$

- •Signal extracted in bins of q²
- • J/ψ resonance control sample used in the double ratio to reduce sys effects in electron reconstruction efficiency
- • ψ_{2S} resonance control sample used to check efficiency corrections
- •Precise calculation of reconstruction efficiencies crucial point of the analysis
 - Simulation is corrected using data-driven approach including
 - PID, Tracking, kinematics, multiplicity, fraction of K_S downstream, trigger , BDT, q^2


18/5/2022 G. Simi - LHCP 2022


Testing LFU in $B^0 \to K_S^0 ll$, $B^+ \to K^{*+} ll$

Ks reconstruction

Reduced efficiency due decays after the VELO, PID cuts, trigger thresholds

$$K^{*+} \rightarrow K_S \pi^+$$

Downstream tracks

ll opening angle

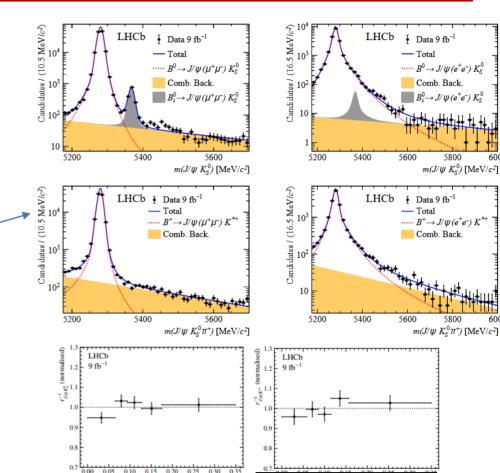
Yield extraction and Control checks

Ks reconstruction

Reduced efficiency due decays after the VELO, PID cuts, trigger thresholds

$$K^{*+} \rightarrow K_S \pi^+$$

Yield extraction

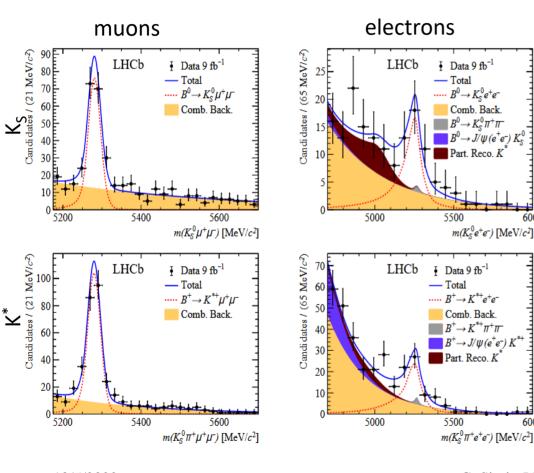

- ML Fit to B meson invariant mass distribution

•Various Checks using I/ψ control sample

$$\begin{split} r_{J/\psi K^{(*)}}^{-1} &\equiv \frac{\mathcal{B}\left(B \to J/\psi\left(e^+e^-\right)K^{(*)}\right)}{\mathcal{B}\left(B \to J/\psi\left(\mu^+\mu^-\right)K^{(*)}\right)} = \frac{N_{\rm con}^{ee}}{N_{\rm con}^{\mu\mu}} \frac{\epsilon_{\rm con}^{\mu\mu}}{\epsilon_{\rm con}^{ee}}, \\ r_{J/\psi K_{\rm S}^0}^{-1} &= 0.977 \pm 0.008 \, ({\rm stat.}) \pm 0.027 \, ({\rm syst.}) \\ r_{J/\psi K^{*+}}^{-1} &= 0.965 \pm 0.011 \, ({\rm stat.}) \pm 0.034 \, ({\rm syst.}) \end{split} \quad \text{Stringent}$$

$$R_{\psi(2S)K_{\rm S}^0}^{-1} = 1.014 \pm 0.030 \, ({\rm stat.}) \pm 0.020 \, ({\rm syst.})$$

$$R_{\psi(2S)K^{*+}}^{-1} = 1.017 \pm 0.045 \,(\text{stat.}) \pm 0.023 \,(\text{syst.})$$



18/5/2022

G. Simi - LHCP 2022

Results

•First observation of
$$B^0 \to K_S e^+ e^-$$
 (5.3 σ) and $B^+ \to K^+ e^+ e^-$ (6.0 σ)
$$\frac{\mathrm{d}\mathcal{B}(B^0 \to K^0 e^+ e^-)}{\mathrm{d}q^2} = (2.6 \pm 0.6 \, (\mathrm{stat.}) \pm 0.1 \, (\mathrm{syst.})) \times 10^{-8} \, \, \mathrm{GeV}^{-2} c^4,$$

$$\frac{\mathrm{d}\mathcal{B}(B^+ \to K^{*+} e^+ e^-)}{\mathrm{d}q^2} = \left(9.2^{+1.9}_{-1.8} \, (\mathrm{stat.})^{+0.8}_{-0.6} \, (\mathrm{syst.})\right) \times 10^{-8} \, \, \mathrm{GeV}^{-2} c^4,$$

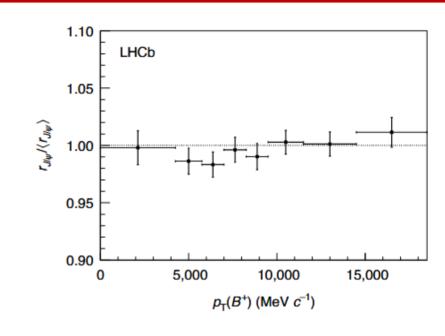
 ${}_{\bullet}R_{K_S}$ and $R_{K^{*+}}$

$$\begin{split} R_{K_{\rm S}^0} &= 0.66^{\,+0.20}_{\,-0.14}\,({\rm stat.})^{+0.02}_{\,-0.04}\,({\rm syst.})\,,\\ R_{K^{*+}} &= 0.70^{\,+0.18}_{\,-0.13}\,({\rm stat.})^{+0.03}_{\,-0.04}\,({\rm syst.})\,. \end{split}$$

- •Consistency with SM 1.5 σ and 1.4 σ respectively
- •Systematics: statistical error on efficiency (2-3%), MC model for background (1-2%)
- •NP: fit for $C_9^{NP} = -C_{10}^{NP}$ with "Flavio" yields 2σ significance

Testing LFU in $B^+ \to K^+ ll$

Very similar analysis and reconstruction technique

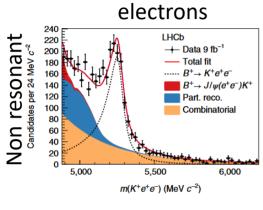

- R_K^+ extracted from a double ratio of resonant and non resonant decays

Yield extraction

ML Fit to B meson invariant mass distribution

•Various Checks using J/ψ and $\psi(2S)$ control samples

- $-R_{I/\psi} = 0.981 \pm 0.020$ (single ratio)
- $-R_{\psi(2S)} = 0.997 \pm 0.011$ (double ratio)



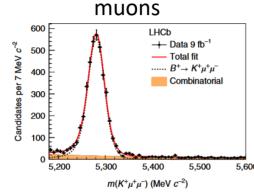
$$R_{\psi(2S)} = \frac{\mathcal{B}(B^+ \to \psi(2S)(\to \mu^+ \mu^-)K^+)}{\mathcal{B}(B^+ \to J/\psi(\to \mu^+ \mu^-)K^+)} / \frac{\mathcal{B}(B^+ \to \psi(2S)(\to e^+ e^-)K^+)}{\mathcal{B}(B^+ \to J/\psi(\to e^+ e^-)K^+)}$$

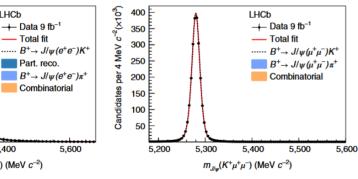
18/5/2022 G. Simi - LHCP 2022 32

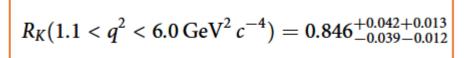
Results of LFU in $B^+ \rightarrow K^+ ll$

LHCb

5.400

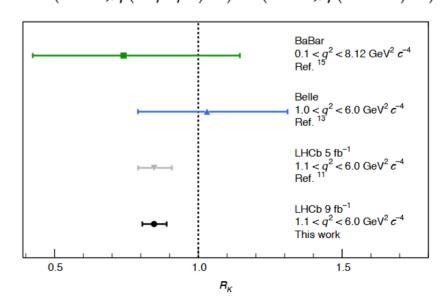

 $m_{I/...}(K^+e^+e^-)$ (MeV c^{-2})


→ Data 9 fb⁻¹ — Total fit


 $B^+ \rightarrow J/\psi (e^+e^-)\pi^+$

5.600

Combinatorial

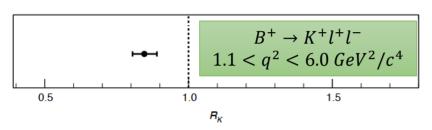


Combined ML fit to invariant mass.

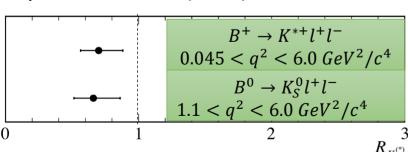
I FU violation at 3.1σ

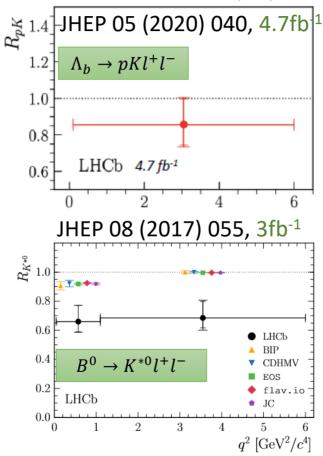
•Comparison between R_κ measurements

18/5/2022


5.200

resonant Candidates per 12 MeV o




LFU tests in $b \rightarrow sll$

Nat. Phys. 18, 277 282 (2022) 9fb⁻¹

Phys.Rev.Lett. 128 (2022) 9fb⁻¹

 $R_H \equiv \frac{\int_{q_{\min}^2} \frac{dq^2}{dq^2} dq^2}{\int_{q_{\min}^2}^{q_{\max}^2} \frac{d\mathcal{B} (B \to He^+e^-)}{dq^2} dq^2}$

 Intriguing hints of a pattern of suppression of muons vs electrons

•Difficult measurements yet statistically limited

 More data and more measurements will help in clarifying the situation

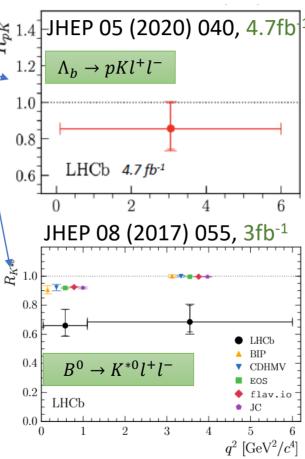
 Improved analyses and more control checks

18/5/2022

G. Simi - LHCP 2022

34

LFU tests in $b \rightarrow sll$


 $R_{H} \equiv \frac{\int_{q_{\min}^{2}}^{q_{\max}} \frac{\mathrm{d}\mathcal{B} \left(B \to H\mu^{+}\mu^{-}\right)}{\mathrm{d}q^{2}} \mathrm{d}q^{2}}{\int_{e^{2}}^{q_{\max}^{2}} \frac{\mathrm{d}\mathcal{B} \left(B \to He^{+}e^{-}\right)}{\mathrm{d}q^{2}} \mathrm{d}q^{2}},$

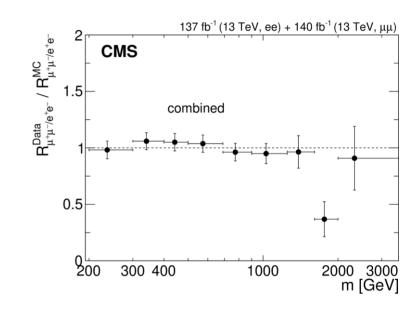
•An update to the full run2 statistics 1.4 is in preparation

•Measurement of $D_s \rightarrow \phi(l^+l^-)\pi$

 a stringent test of the control on electron reconstruction at low q²

•Run3 will be crucial to clarify the picture on $b \rightarrow sll$ anomalies

18/5/2022 G. Simi - LHCP 2022 35

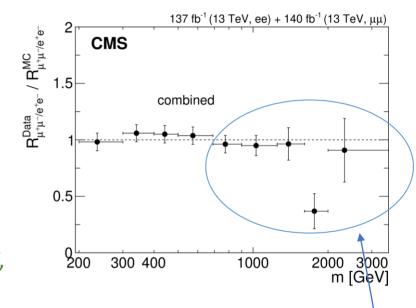

LFU test with di-leptons at high mass

- •The hits of LFU violation presented have sparked interest in models that could explain them
 - E.g. leptoquarks[JHEP 11 (2016) 035], heavy neutral gauge bosons [Rev. Mod. Phys. 81 (2009) 1199]

•Some models result in
$$R_{\mu^+\mu^-/e^+e^-}=rac{rac{d\sigma(q\overline{q}
ightarrow\mu^+\mu^-)}{dm_{ll}}}{rac{d\sigma(q\overline{q}
ightarrow e^+e^-)}{dm_{ll}}}$$

being different form 1 at high m_{ll}

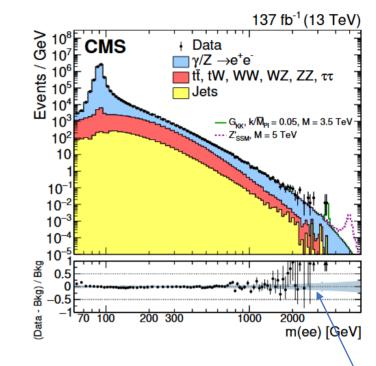
- •CMS tested LFU by measuring $R_{\mu^+\mu^-/e^+e^-}$ with 137(140) fb⁻¹ in the $e^+e^-(\mu^+\mu^-)$ channel
 - First test of LFU in these final states at CMS



LFU test with di-leptons at high mass

$$\cdot R_{\mu^{+}\mu^{-}/e^{+}e^{-}} = \frac{\frac{d\sigma(q\overline{q} \to \mu^{+}\mu^{-})}{dm_{ll}}}{\frac{d\sigma(q\overline{q} \to e^{+}e^{-})}{dm_{ll}}}$$

- Subtract all background except for DY
- Correct for resolution, acceptance and efficiency
- •To correct for differences between electrons and muons
 - Normalize R to 1 in the mass region 200–400 GeV, assuming departures from 1 are negligible in this region [EPJC 77 (2017) 548]
 - Correct for remaining differences using simulated
 DY events (up to 20% for forward leptons)
 - Uncertainties from PDF cancel out in the ratio


Good agreement up to 1.5TeV
Some deviations at high masses
point to an excess of electrons
w.r.t. muons (stat limited)

LFU test with di-leptons at high mass

$$R_{\mu^{+}\mu^{-}/e^{+}e^{-}} = \frac{\frac{d\sigma(q\overline{q} \rightarrow \mu^{+}\mu^{-})}{dm_{ll}}}{\frac{d\sigma(q\overline{q} \rightarrow e^{+}e^{-})}{dm_{ll}}}$$

- Subtract all background except for DY
- Correct for resolution, acceptance and efficiency
- •To correct for differences between electrons and muons
 - Normalize R to 1 in the mass region 200–400 GeV, assuming departures from 1 are negligible in this region [EPJC 77 (2017) 548]
 - Correct for remaining differences using simulated
 DY events (up to 20% for forward leptons)
 - Uncertainties from PDF cancel out in the ratio

Good agreement up to 1.5TeV Some deviations at high masses point to an excess of electrons w.r.t. muons (stat limited)

Conclusions, Summary, Outlook

- •ATLAS and CMS tested LFU in W boson decays addressing a long-standing tension observed at LEP
 - Found results consistent with the SM.
- •LHCb tested LFU in semi-leptonic decays of baryons for the first time.
 - Found a result consistent with the SM at the 1σ level, with decay involving τ suppressed w.r.t μ
 - Could give complementary information w.r.t. mesons
- •LHCb tested LFU in $B^0 \to K_S ll$ and $B^+ \to K^{*+} ll$ with the full dataset
 - Consistent with SM at 1.5 σ and 1.4 σ level
 - Most precise single measurement
- •LHCb tested LFU $B^+ \to K^+ l l$ with the full dataset
 - Observed a tension in LFU with SM at 3.1 σ level
 - Same pattern as other $b \rightarrow sll$ tests: muons are suppressed w.r.t electrons
- •More R_H measurements ongoing, including angular analysis
- •CMS Tested LFU with dileptons at high mass for the first time
 - found hints of excess of electrons w.r.t. muons at high masses
- More data coming soon with upgraded detectors in run3
- I ook forward also at Belle II results

Backup