

Top quark precision measurements

Juan R. González Fernández University of Oviedo - ICTEA on behalf of the CMS and ATLAS Collaborations

2022

LHCP

The 10th Annual Large Hadron Collider Physics Conference May 16-21, 2022

Why top quarks?

- The top quark is the most massive known particle.
 - Largest coupling to Higgs boson
 Sensitive to many BSM physics
- Sensitive to different QCD parameters:

 *α*_s, proton PDFs, color reconnection...
- A key to new physics:
 - → Crucial in many BSM searches
 - → Allows us to test EFT interpretations

- Multiple final states. Key to understand b-tagging
 - → Used to calibrate the detector

Top quark and precision

Precision era for top quark measurements

- Probe SM calculations with high precision
 - Beyond NLO calculations
- Check the agreement with different generators
 - Precision beyond theory
- Detect very rare processes
 - Associated production (see also talk from Mark)
 - Four tops (see talk from Nuno)
 - Exclusive production (see talk from Nuno)
- Explore corners of the kinematic phase space
 - Boosted regime
 - Multi-differential measurements
- New physics through top quarks
 - EFT interpretations
 - · FCNC searches (see talk from Nuno)

Top quark at the LHC

Huge amount of data: ~138 fb⁻¹ in the Run 2 at 13 TeV. Top quarks in a wide range of \sqrt{s} : from 5.02 TeV to 13 TeV.

Most precise $t\bar{t}$ inclusive cross section at 13 TeV

For the first time, a combination of **boosted** + resolved topologies is used \rightarrow provides constraints to systematic uncertainties.

Phys. Rev D 104 (2021) 092013

 $\sigma_{t\bar{t}}$ = 791 ± 1 (stat) ± 21 (syst) ± 14 (lumi) pb

 $\sigma_{_{MATRIX}} = 797_{-51}^{+39}$ (scale) ± 39 (PDF) pb

- Total relative uncertainty of 3.2%
- Dominant systematic: JES (1.38%)

tt cross section at 5 TeV in the eµ final state 3HEP 04 (2022) 144

Special energy – sensitive to high-x gluon in proton PDFs!

eµ final state, $302pb^{-1}$ of low-pu data at 5.02 TeV in pp collisions.

- eµ pair, at least 2 jets. No b-tagging requirement
- Cut-and-count method to extract the cross section
- Result combined with a <u>previous measurement</u> in I+jets final state

$\sigma_{t\bar{t}}$ = 63.0 ± 4.1 (stat) ± 3.0 (syst+lumi) pb

19 May 2022

Juan R. González – University of Oviedo / ICTEA

CMS

Measurement with Special conditions! tt cross section at 5 TeV in I+jets + dileptons ATLAS-CONF-2022-031

Very precise result even with a small amount of events (257 pb⁻¹).

- Relaxed selection
- Optimized analysis using multivariate techniques
- Combination of different final states (dilepton, e/μ + jets)

NEW

Measured cross section with a total uncertainty of about 3.9%.

 $\sigma_{t\bar{t}}$ = 67.5 ± 0.9 (stat) ± 2.3 (syst) ± 1.1(lumi) pb

Summary of inclusive cross sections

Differential cross section in the dilepton channel

Exploiting full Run 2 data to explore top kinematics with high precision.

tt differential cross section is measured in the dilepton final state as a function of different kinematic observables. NEW

CMS-PAS-TOP-20-006

10

19 May 2022

Juan R. González - University of Oviedo / ICTEA

$t\bar{t}$ +jets differential cross section

- New distributions ratios such as $p_{\tau}(t)/m(tt)$ • shown for the first time
- Factor ~2 improvement on uncertainties w.r.t. • previous results
- Up to 3D differential cross sections •

CMS-PAS-TOP-20-006

ا/م do/dp_T(t)/m(tī)

CMS Preliminary

dilepton, parton level

Data, dof=4

 POW+PYT, χ²=33 MATRIX (NNLO), χ²=3

> Total unc. Stat unc.

STRIPPER (NNLO), x2=4

MINNLOPS (NNLOPS), χ²=5

Boosted differential $t\bar{t}$ cross section in the I+jets channel

Boosted regime, 1D and 2D differential cross sections are measured.

- Hadronic (boosted) top, $p_{\tau} > 355 \text{ GeV}$
- Leptonic top quark reconstructed from lepton, MET and associated b-tagged jet
- Cross sections for multiple observables related to kinematics of the top quarks and tt system

Boosted differential $t\bar{t}$ cross section in the I+jets channel

- m^{t,h} distribution used to reduce JES unc.
- Top p_{τ} softer than predictions
- Perfect agreement is not reached with any of the MC simulations
 - EFT interpretations for $C_{tq}^{(8)}$ and $C_{tG}^{(8)}$ WCs using the $p_{T}^{t,h}$ distribution

Juan R. González – University of Oviedo / ICTEA

14

Boosted differential $\ensuremath{t\bar{t}}\xspace$ cross section in the all had channel

Fiducial cross section ~20% below nominal prediction, but compatible within the uncertainties.

Submitted to JHEP arXiv:2205.02817

Comparison to different generators. NNLO reweighting improves the agreement of POWHEG+Pythia8 prediction.

EFT operators are constrained using the differential measurements.

19 May 2022

Juan R. González – University of Oviedo / ICTEA

19 May 2022

Juan R. González – University of Oviedo / ICTEA

ttW cross section measurement

- Precise measurement of the ttw process: understanding W association production in detail
- Test the newest NLO predictions

16

CMS

tTW cross section and tTW⁺/tTW⁻

CMS-PAS-TOP-21-011

•

٠

First steps towards a precise

measurement of the W⁺/W⁻

asymmetry in ttW production

The results are compatible

• 50% improvement on the uncertainty w.r.t. the previous CMS (2016) result

Measurement above NLO predictions

- Improved lepton uncertainties, control of background events
- 138 fb⁻¹ (13 TeV) within 2 sigma with predictions 138 fb⁻¹ (13 TeV) CMS EPJC 80 (2020) 428 Measurement 2d InN Preliminary CMS JHEP 11 (2021) 29 Preliminary Stat. unc. JHEP 08 (2019) 039Total unc. Nominal ± Stat. ± Syst. 95% CL 845 ± 117 ± 111 ee 996 ± 61 ± 68 eμ 868 ± 63 ± 64 $\mu\mu$ Dilepton 905 ± 42 ± 51 68% CL Trilepton 649 ± 104 ± 96 0.8 1.2 1.4 1.6 1.8 2 2.2 1 2.4Combined $868~\pm~40~\pm~51$ $\sigma_{t\bar{t}W}/\sigma_{t\bar{t}W}$ 1600 1000 1200 1400 200 400 600 800 $\sigma_{\rm t\bar{t}W}\,[\rm fb]$

•

19 May 2022

tW cross section in lepton+jets

- Top quark + W: EWK sector of top quark production
- First observation of tW in I+jets channel

Result:

JHEP 11 (2021) 111

 $\sigma_{t\bar{t}}$ = 89 ± 4 (stat) ± 12 (syst) pb

 σ_{annlo} = 71.7 ± 1.8 (scale) ± 3.4 (PDF) pb

 Measured cross section in agreement with predictions, with a total uncertainty of 15%

18

production

tW cross section in the dilepton final state CMS-PAS-TOP-21-010

CMS

CMS-PAS-TOP-21-010

Normalized differential cross sections are also measured.

- Comparison to predictions with multiple generators
- Overall agreement within the uncertainties (10-50%)

Summary

- Run 2 has provided a huge amount of data to explore top quark production in phase space corners and inclusively with unprecedented precision:
 - Boosted and resolved topologies
 - Multidifferential cross sections
 - Comparison to beyond NLO predictions
- Associated production cross section measurements with improved uncertainties
- New precision measurement at a center-of-mass energy of 5.02 TeV
- In general, agreement with the SM, favoring higher-order predictions Experimental precision beyond theory in inclusive cross sections!
- Wide top physics program by ATLAS and CMS stay tuned!

More top quark physics results: http://cms-results.web.cern.ch/cms-results/ http://atlasresults.web.cern.ch/atlasresults/

CMS Experiment at the LHC, CERN Data recorded: 2016-Aug-17 08:01:23.065024 GMT Run / Event / LS: 278969 / 229126383 / 184

Thanks for your attention!!

Back up

23

• Invariant mass of the top-tagged hadronic jet.

$t\bar{t}$ cross section at 5 TeV in I+jets + dileptons ATLAS-CONF-2022-031

19 May 2022

Juan R. González - University of Oviedo / ICTEA

25

N_{b-tag}

Data 2017

tt

Wt

Z+jets

Diboson

2

Mis-ID lepton Systematic unc.

tt cross section at 5 TeV in I+jets + dileptons ATLAS-CONF-2022-031

Category		$\delta\sigma_{t\bar{t}}$ [%]	the second states	
	Dilepton	Single lepton	Combination	Uncertainties
$tar{t}$ generator [†]	1.2	1.0	0.8	
$t\bar{t}$ parton-shower/hadronisation ^{*,†}	0.3	0.9	0.7	
$t\bar{t} h_{\rm damp}$ and scale variations [†]	1.0	1.1	0.8	
$t\bar{t}$ parton-distribution functions [†]	0.2	0.2	0.2	
Single-top background	1.1	0.8	0.6	
W/Z+jets background*	0.8	2.4	1.8	
Diboson background	0.3	0.1	< 0.1	
Misidentified leptons [*]	0.7	0.3	0.3	
Electron identification/isolation	0.8	1.2	0.8	
Electron energy scale/resolution	0.1	0.1	< 0.1	
Muon identification/isolation	0.6	0.2	0.3	
Muon momentum scale/resolution	0.1	0.1	0.1	
Lepton-trigger efficiency	0.2	0.9	0.7	
Jet-energy scale/resolution	0.1	1.1	0.8	
$\sqrt{s} = 5.02 \mathrm{TeV}$ JES correction	0.1	0.6	0.5	
Jet-vertex tagging	< 0.1	0.2	0.2	
Flavour tagging	0.1	1.1	0.8	
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.1	0.4	0.3	
Simulation statistical uncertainty*	0.2	0.6	0.5	
Data statistical uncertainty [*]	6.8	1.3	1.3	
Total systematic uncertainty	3.1	4.2	3.7	
Integrated luminosity	1.8	1.6	1.6	
Beam energy	0.3	0.3	0.3	
Total uncertainty	7.5	4.5	3.9	

tTW cross section measurement

<u>CMS-PAS-TOP-21-011</u>

					Uncertainty type	Relative value (%)	
			Experimental				
						Integrated luminosity	1.9
						Charge misidentification	1.6
						bjet identification	1.6
						Nonprompt lepton background	1.3
						Trigger efficiencies	1.2
						Pileup	1.0
						Trigger prefiring	0.7
						Jet energy scale	0.6
						Jet energy resolution	0.4
						Lepton efficiencies	0.4
						Normalizations	
						tīH	2.6
						VVV	1.2
<u>Yields</u>						tĪVV	1.2
						Conversions	0.7
Process	$\rho + \rho +$	$\rho - \rho -$	$\rho \pm \rho \mp \rho +$	$\rho \pm \rho \mp \rho -$	Postfit/Prefit	$tar{t}\gamma$	0.6
					1.40	ZZ	0.6
ttVV	677 ± 21	355 ± 12	119 ± 9	65 ± 5	1.49	Others	0.5
Nonprompt	2486 ± 598	2364 ± 570	325 ± 75	298 ± 71	0.91	ttZ	0.3
Charge misID	521 ± 110	523 ± 111			0.91	WZ	0.2
tĪH	167 ± 34	169 ± 34	56 ± 12	57 ± 12	1.35	tZq	0.2
+ T Z/~*	225 ± 26	322 ± 26	145 ± 12	147 ± 12	1 10 -	tHq	0.2
	333 ± 20	333 ± 20	143 ± 13	147 ± 13	1.10 -	Modelling	1.0
Diboson	382 ± 88	285 ± 65	47 ± 9	38 ± 8	1.07	ttW scale	1.8
Others	178 ± 34	126 ± 27	43 ± 8	34 ± 7	1.20	ttW colour reconnection	1.0
Conversions	177 ± 54	192 ± 59	23 ± 7	24 ± 7	1.01	ISR/FSR for ttW	0.8
Total backgrounds	4246 ± 621	3993 ± 591	639 ± 80	597 ± 76	1.03	ttγ scale VVV scale	0.4
Total prediction	4922 + 623	4348 + 591	758 + 81	663 ± 76	1.05	tīH scale	0.2
					1.00	Conversions	0.2
Data	5143	4486	834	744		Statistical uncertainty	1.8

19 May 2022

Juan R. González – University of Oviedo / ICTEA

27

tTW cross section measurement

CMS-PAS-TOP-21-011

tW differential cross section

CMS-PAS-TOP-21-010

Juan R. González - University of Oviedo / ICTEA