

Top Properties and Tests in Top Quark Decays

19 May 2022, LHCP 2022

Mark Owen on behalf of the ATLAS & CMS Collaborations The University of Glasgow

Top Quark Properties

Why the top quark?

- In the SM it's the only quark:
 - 1. With a natural mass:

$$m_{top} = y_t v / \sqrt{2} \approx 173 \text{ GeV} \Rightarrow y_t \approx 1$$

- Top quark interacts strongly with the Higgs sector special role in EWSB?
- 2. That decays before hadronizing: $au_{had} \approx 2 \times 10^{-24} s$

$$\tau_{top} \approx 5 \times 10^{-25} s$$

• Copious production rate at the LHC allows for precise tests of SM.

Why top quark properties?

- Many properties well predicted in SM huge LHC statistics allow for precision tests.
 - EFT now frequently used to evaluate BSM sensitivity in modelindependent way.

$$\mathscr{L}_{EFT} = \mathscr{L}_{SM} + \sum_{i,D} \frac{C_i^D}{\Lambda^{D-4}} O_i^D = \mathscr{L}_{SM} + \frac{C_i}{\Lambda^2} O_i^{D=6}$$

Top quark mass is essential probe of SM consistency:

Science 376, 170 (2022)

Outline

- Asymmetry measurements
- $t\overline{t} + Z / photon$
- Top quark mass measurements

Asymmetry measurements

Top Quark Properties

• Observable defined for ttj production, where the energy asymmetry of the top quarks $\Delta E = E_t - E_{\bar{t}}$ is measured in bins of the scattering angle of the additional jet, θ_i :

$$A_{E}(\theta_{j}) \equiv \frac{\sigma^{\text{opt}}(\theta_{j} | \Delta E > 0) - \sigma^{\text{opt}}(\theta_{j} | \Delta E < 0)}{\sigma^{\text{opt}}(\theta_{j} | \Delta E > 0) + \sigma^{\text{opt}}(\theta_{j} | \Delta E < 0)}$$

- QCD asymmetry is closely related to the charge asymmetry in inclusive $t\bar{t}$ production.
- Observable probes for possible new physics in $t\bar{t}j$ events:

• Select I+jets with high p_T hadronic top ($p_T > 350$ GeV):

• Data is unfolded with Fully Bayesian Unfolding method.

- Data is unfolded with Fully Bayesian Unfolding method.
- Then interpreted as limits on EFT four-quark operators.

 In SM, (V-A) structure of Wtb vertex results in production of polarised top-quarks in t-channel single-top production:

- Top quarks are predicted to be polarised (P=0.965±0.004) at NNLO) along the direction of the spectator quark (d).
 - Anti-top quarks $P=-0.957\pm0.01$.

 In SM, (V-A) structure of Wtb vertex results in production of polarised top-quarks in t-channel single-top production:

- Top quarks are predicted to be polarised (P=0.965±0.004) at NNLO) along the direction of the spectator quark (d).
 - Anti-top quarks $P=-0.957\pm0.01$.
- New physics can potentially modify the polarisation parameterise this effect via EFT operator O_{tW}.

- Events are required to have 1 lepton, 2 jets (1 of which is b-tagged). Additional kinematic cuts are used to reduce the background.
- Measure the polarisation along 3 orthogonal axes by fitting the numbers of events in each quadrant of the sign of the cosine of the angle of the lepton in the top-quark rest frame (θ) to each axis.

arXiv:2202.11382

- Events are required to have 1 lepton, 2 jets (1 of which is b-tagged). Additional kinematic cuts are used to reduce the background.
- Measure the polarisation along 3 orthogonal axes by fitting the numbers of events in each quadrant of the sign of the cosine of the angle of the lepton in the top-quark rest frame (θ) to each axis.

• Good agreement with SM predictions, largest systematic JER:

- Good agreement with SM predictions, largest systematic JER:
- Interpretation in EFT:

$t\bar{t} + X$

Top Quark Properties

Boosted $t\bar{t}Z/H$

• New CMS analysis searching for $t\bar{t}Z/H$ at high Z/H pT - allows to use hadronic Z/H decays.

Boosted $t\overline{t}Z/H$

- New CMS analysis searching for $t\bar{t}Z/H$ at high Z/H pT allows to use hadronic Z/H decays.
- Boosted Z/H selected using 0.8 anti-kT jets with a DNN targeting $b\bar{b}$ final states.
- Discrimination of background & signal achieved with another NN.

Boosted $t\overline{t}Z/H$

• Analysis reaches high pT, but does not see significant signal:

<u>TOP-21-003</u>

Boosted $t\bar{t}Z/H$

• Analysis reaches high pT, but does not see significant signal:

• Note, precision not currently competitive with leptonic ttZ channels.

$t\bar{t}\gamma$

- Relatively high production cross-section allows for differential measurements & improved BSM sensitivity.
- Dilepton selection with >= 1 b-jet and >= 1 photon (p_T > 20 GeV) gives pure ttγ sample:

arXiv:2201.07301

- Profile-likelihood fit gives excellent precision on inclusive crosssection of 3.9%.
 - Largest uncertainties from luminosity, MC model & photon ID.

- Profile-likelihood fit gives excellent precision on inclusive crosssection of 3.9%.
 - Largest uncertainties from luminosity, MC model & photon ID.
- Differential measurement of $p_T(\gamma)$ used to set EFT limits:

- Profile-likelihood fit gives excellent precision on inclusive crosssection of 3.9%.
 - Largest uncertainties from luminosity, MC model & photon ID.
- Differential measurement of $p_T(\gamma)$ used to set EFT limits:

Top Quark Properties

- "Standard" measurements reached ~0.5 GeV in run-1.
- Extractions from cross-section observables consistent, but not as precise.

- Recent measurement in lepton+jets channel at 13 TeV.
- 1 lepton, >=4 jets, >= 2 b-jets and kinematic fit is used to reconstruct the top-quarks from the decay products:

Top Quark Properties

• Five fit variables used to help constrain uncertainties:

histogram		set label				
observable	category	1D	2D	3D	4D	5D
$m_{ m t}^{ m fit}$	$P_{\rm gof} \ge 0.2$	х	х	х	х	x
$m_{\mathrm{W}}^{\mathrm{reco}}$	$P_{\rm gof} \ge 0.2$		х	х	х	х
$m_{\ell \mathrm{b}}^{\mathrm{reco}}$	$P_{\rm gof} < 0.2$			х	х	х
$m_{\ell \mathrm{b}}^{\mathrm{reco}}/m_{\mathrm{t}}^{\mathrm{fit}}$	$P_{\rm gof} \ge 0.2$				x	x
R_{bq}^{reco}	$P_{\rm gof} \ge 0.2$					x

- Systematic uncertainties are constrained in the profile-likelihood fit.
 - mt^{fit} distribution is parameterised by Voigt profile + Chebyshev polynomials - important assumption of the fit is this function can capture all systematic effects.
 - Statistical uncertainties from the parameterisation are also included essential to avoid underestimate of the uncertainty.

TOP-20-008

Top Quark Properties

• Most precise m_t to date: $m_t = 171.77 \pm 0.38 \text{ GeV}$

• Most precise m_t to date:

$m_t = 171.77 \pm 0.38 \text{ GeV}$

- FSR shower scales & JER uncertainties significantly constrained in the fit.
- Largest systematics are b-jet energy scale & FSR scales.

TOP-20-008

Top Quark Properties

• Most precise m_t to date: $m_t = 171.77 \pm 0.38$ GeV

Top Quark Properties

• New measurement measuring top mass in events with a boosted hadronically decaying top quark.

TOP-21-012

- Use of XCone algorithm means each boosted large-R top-quark jet has exactly 3 sub-jets.
- Invariant mass of 2 non-b sub-jets is used to calibrate the energy scale of the jets & hence the mass scale of the large-R jet:

TOP-21-012

Top Quark Properties

- Use of XCone algorithm means each boosted large-R top-quark jet has exactly 3 sub-jets.
- Invariant mass of 2 non-b sub-jets is used to calibrate the energy scale of the jets & hence the mass scale of the large-R jet:
- Mass of top-quark jet is unfolded to particle-level:

- Top mass is extracted from unfolded distribution.
 - Use of unfolded distribution means in future data can be compared to improved theoretical calculations.

```
m_t = 172.76 \pm 0.81 \text{ GeV}
```

• More than factor 3 improvement from first measurement with boosted top-quarks!

- Top mass is extracted from unfolded distribution.
 - Use of unfolded distribution means in future data can be compared to improved theoretical calculations.

 $m_t = 172.76 \pm 0.81 \text{ GeV}$

• More than factor 3 improvement from first measurement with boosted top-quarks!

Source	Uncertainty [GeV]
Total	0.81
Statistical	0.22
Experimental total	0.57
Jet energy resolution	0.40
Jet mass scale	0.27
Jet mass scale flavour	0.27
Jet energy scale	0.09
Pileup	0.08
MC statistics	0.07
Additional XCone corrections	0.03
Backgrounds	0.01
Model total	0.48
Choice of $m_{\rm t}$	0.37
h _{damp}	0.19
Colour reconnection	0.19
Underlying event tune	0.12
$\mu_{\rm F}, \mu_{\rm R}$ scales	0.07
ISR	0.06
FSR	0.03
Theory total	0.24
FSR	0.14
Underlying event tune	0.13
Colour reconnection	0.10
$\mu_{\rm F}, \mu_{\rm R}$ scales	0.06
h _{damp}	0.06
ISR	0.06

Summary

- LHC delivers as a top factory ATLAS & CMS now make precise measurements of top-quark properties and interesting ttX processes.
- No new physics seen in the data, EFT providing nice way to interpret the measurements.
- Latest CMS top-quark mass results with impressive precision demonstrates the possibilities for continuing to improve our measurements through run-3.

Backup

Top Quark Properties

• Pre-fit mW and mlb distributions and dependence of m(t) on correlation between FSR nuisance parameters.

 Dilepton channel with >= 1 jet (p_T > 30 GeV) is used to measure:

$$\frac{d\sigma}{d\rho}; \rho = \frac{2m_0}{m_{t\bar{t}+jet}}$$

- Two kinematic reconstruction techniques are used, one assuming mt = 172.5 GeV and the other with no mt assumption.
- The ρ variable from each reconstruction technique, plus 8 additional variables are used as input to a regression NN to provide an improved estimate of ρ.
- An additional NN is used to separated tt+jet, Z+jets and tt+0 jet events.

- Cross-section is measured from a fit to multiple regions / observables.
- Fit includes m_t(MC) as free parameter to remove dependence from the measured cross-section.

Top Quark Properties

 Measured cross-section is used to extract mt by comparison with NLO prediction:

 $m_{\rm t}^{\rm pole} = 172.94 \pm 1.27({
m fit}+{
m PDF}+{
m extr}) \pm_{0.43}^{0.51}({
m scale})\,{
m GeV}$ ABMP16NLO PDF $m_{\rm t}^{\rm pole} = 172.16 \pm 1.35({
m fit}+{
m PDF}+{
m extr}) \pm_{0.40}^{0.50}({
m scale})\,{
m GeV}.$ CT18NLO PDF

Boosted $t\overline{t}Z/H$

• Fitted distribution (2018 data) and EFT limits:

95% CL interval [TeV⁻²]