High- p_T experimental results on QCD

Javier Llorente on behalf of the ATLAS and CMS Collaborations.

Simon Fraser University

LHCP 2022 - May 20, 2022

UNIVERSITY

Introduction

- The QCD cross section can be factorised in three parts: IS, HS, FS.
- ATLAS and CMS have presented important QCD results recently.
- Measurements are exploited to understand these three parts separately.

CMS inclusive jet cross section at $\sqrt{s} = 13$ TeV [JHEP 02, 142 (2022)]

- Differential cross section as a function of (p_T, y) for R = 0.4 and R = 0.7.
- Comparison to NLO+NLL and NNLO pQCD \otimes NP and EW effects.
- Description is well improved at NNLO with respect to NLO.

CMS inclusive jet cross section at $\sqrt{s} = 13$ TeV [JHEP 02, 142 (2022)]

- Full QCD analysis includes HERA DIS and CMS $t\bar{t}$ data.
- PDFs as $xf(x) = A_f x^{B_f} (1-x)^{C_f} (1+D_f x+E_f x^2).$
- Improved uncertainties on PDF by including jet data.
- Wilson coefficient for 4-quark CI obtained for different Λ.
- Limits on CI are set to $\Lambda > 24$ TeV @ 95% CL.

ATLAS global PDF fit at $\sqrt{s} = 7$, 8, 13 TeV [arXiv:2112.11266 (hep-ex)]

- Determination of PDFs from HERA + ATLAS data at different \sqrt{s} .
- PDF parameterisation follows the generic formulation:
 - Quarks: $xq_i(x) = A_i x^{B_i} (1-x)^{C_i} P_i(x)$
 - Gluons: $xg(x) = A_g x^{B_g} (1-x)^{C_g} P_g(x) A'_g x^{B'_g} (1-x)^{C'_g}$
- For all PDFs $P_i(x) = 1 + D_i x + E_i x^2 + F_i x^3$.
- D, E, F are non-zero only if χ^2 decreases significantly \Rightarrow 21 parameters in total.
- χ^2 fit includes full correlation between uncertainties.

Data set	\sqrt{s} [TeV]	Luminosity [fb ⁻¹]	Decay channel	Observables entering the fit
Inclusive $W, Z/\gamma^*$	7	4.6	e, μ combined	$\eta_{\ell}(W), y_{Z}(Z)$
Inclusive Z/γ^*	8	20.2	e, μ combined	$\cos \theta^*$ in bins of $y_{\ell\ell}, m_{\ell\ell}$
Inclusive W	8	20.2	μ	η_{μ}
W^{\pm} + jets	8	20.2	е	p_{T}^{W}
Z + jets	8	20.2	е	$p_{\rm T}^{\rm jet}$ in bins of $ y^{\rm jet} $
tī	8	20.2	lepton + jets, dilepton	$m_{t\bar{t}}, p_{\mathrm{T}}^{t}, y_{t\bar{t}}$
tī	13	36	lepton + jets	$m_{t\bar{t}}, p_{T}^{t}, y_{t}, y_{t\bar{t}}^{b}$
Inclusive isolated γ	8,13	20.2, 3.2	-	$E_{\rm T}^{\gamma}$ in bins of η^{γ}
Inclusive jets	7, 8, 13	4.5, 20.2, 3.2	-	$p_{\rm T}^{\rm jet}$ in bins of $ y^{\rm jet} $

ATLAS global PDF fit at $\sqrt{s} = 7$, 8, 13 TeV [arXiv:2112.11266 (hep-ex)]

- Inclusion of ATLAS data brings ATLAS PDF close MSHT20 than HERAPDE
- Comparison to CT18, NNPDF, MSHT20, ...

хи_V(х,Q²)

0 8

0.6

0.4

0.2

 10^{-3}

TI AS

MSHT20

NNPDF3.1

 10^{-2}

ABMP16

- Measurement of $R_s(x, Q^2) = x(s + \bar{s})/x(\bar{u} + \bar{d})$.
- Uncertainties estimated using different tolerances $\chi^2 = T^2$: T = 1, 3.

CMS Inclusive jet cross section at $\sqrt{s} = 5.02$ TeV [CMS-PAS-SMP-21-009]

- Double-differential inclusive jet cross section as a function of (p_T, y) .
- Comparison to theoretical pQCD predictions at NLO and NNLO.

CMS Inclusive jet cross section at $\sqrt{s} = 5.02$ TeV [CMS-PAS-SMP-21-009]

NNLO scale uncertainties reduced with respect to NLO. $\mu_R = \mu_F = \hat{H}_T$. Best agreement is observed for NNPDF31 with $\alpha_s(m_Z) = 0.120$.

CMS Z+jets sensitivity to DPS at $\sqrt{s} = 13$ TeV [JHEP 10, 176 (2021)]

- Measurement of $Z + \ge 1$ jet and $Z + \ge 2$ jets in $\mu\mu$ channel.
- Azimuthal separation $\Delta \phi(Z, j_1)$ and $\Delta \phi(Z, dijet)$.
- p_T -balance $\Delta_{\mathrm{rel}} p_T(Z, j_1) = \frac{|\vec{p}_T(Z) + \vec{p}_T(j_1)|}{|\vec{p}_T(Z)| + |\vec{p}_T(j_1)|}$ and $\Delta_{\mathrm{rel}} p_T(Z, \mathrm{dijet})$.

Javier Llorente

CMS Z+jets sensitivity to DPS at $\sqrt{s} = 13$ TeV [JHEP 10, 176 (2021)]

- Measurements are compared to different predictions at different orders.
- MG5_aMC with different MPI and fragmentation tunes (and without MPI!).
- Sherpa merged NLO samples with up to 2 partons in final state.
- The effect of DPS is clearly seen when setting MPI off.

Javier Llorente

ATLAS Z-boson + high- p_T jets at $\sqrt{s} = 13$ TeV [arXiv:2205.02597]

- Characterized in different topologies (collinear, back-to-back) using ΔR_{Zj} .
- Comparison to different ME+PS and fixed-order predictions.

ATLAS Z-boson + high- p_T jets at $\sqrt{s} = 13$ TeV [arXiv:2205.02597]

• Measurement of
$$r_{Zj} = \frac{p_{T,\ell\ell}}{p_T(\text{closest jet})}$$
 in ΔR bins.

- Excellent description by NNLO QCD + NLO EW.
- Sherpa 2.2.1 and MG5_aMC+Py8 overestimate the cross section at high p_T.
- Sherpa 2.2.11 and FxFx merging for MG5_aMC+Py8 provide an improved description.

Javier Llorente

dσ / dr_{z,j} [pb]

10

10-

Pred. / data

0.5

CMS ΔR -distance and p_T -ratios at $\sqrt{s} = 8$, 13 TeV [EPJC 81, 852 (2021)]

- Collinear/large-angle and soft/hard radiation in different final states.
- Measurement of ΔR_{23} and p_{T3}/p_{T2} in three-jet and Z+2-jet events.
- **Z**+2-jet measurement at $\sqrt{s} = 8$ TeV, 3-jets at $\sqrt{s} = 8$ and 13 TeV.
- Multi-let MG5_aMC describes better the wide-angle region.

Javier Llorente Expe

CMS ΔR -distance and p_T -ratios at $\sqrt{s} = 8$, 13 TeV [EPJC 81, 852 (2021)]

- Measurement of ΔR_{23} for soft and hard emissions.
- In general, ME+PS describe the data better for soft regions.
- Hard-emission regions underestimated by theoretical predictions.

ATLAS diphoton cross section at $\sqrt{s} = 13$ TeV [JHEP 11, 169 (2021)]

- Measurement of γγ production for p_T(γ₁) > 40 GeV, p_T(γ₂) > 30 GeV.
- Background estimated from (ID, iso) sidebands for 2 photons (16 regions).
- Signal includes direct and fragmented γ, against non-prompt background.
- Poisson likelihood fit performed separately on each bin of each observable.

ATLAS diphoton cross section at $\sqrt{s} = 13$ TeV [JHEP 11, 169 (2021)]

- Comparison to ME+PS and fixed-order pQCD predictions.
- Sherpa (NLO) and NNLOJet give a good description.
- NNLOJet provides improved scale precision wrt NLO.
- DiPhox (NLO) fails to describe the data.

ATLAS *b*-fragmentation to B^{\pm} at $\sqrt{s} = 13$ TeV [JHEP 12, 131 (2021)]

- Fragmentation observables for jets containing $B^{\pm} \rightarrow J/\psi K^{\pm}$ at $\Delta R < 0.4$
- Fully reconstructed decay from $\mu\mu K$ tracks.
- Longitudinal and transverse profiles of B^{\pm} :

$$z = rac{ec{p}_J \cdot ec{p}_B}{ec{p}_J ec{q}^2}; \qquad p_T^{
m rel} = rac{ec{p}_J imes ec{p}_B ec{q}}{ec{p}_J ec{q}}$$

Jets / GeV

10

ATLAS vs = 13 TeV, 139 fb

Pythia 8.240 (A14) Pythia 8.240 (A14-rb)

Stat. uncertainty only Data Sherpa 2.2.5 (Lund)

ATLAS *b*-fragmentation to B^{\pm} at $\sqrt{s} = 13$ TeV [JHEP 12, 131 (2021)]

- Comparison to different ME+PS+fragmentation models.
- Pythia, Sherpa, H7 with different fragmentation/PS.
- Sensitivity to $g \rightarrow b\bar{b}$ splitting is investigated.
- Discrepancies observed with H7 dipole shower $(g \rightarrow b\bar{b})$.
- Sherpa cluster model shows discrepancies at high z.

ATLAS *b*-fragmentation in $t\bar{t}$ at $\sqrt{s} = 13$ TeV [arXiv:2202.13901 (hep-ex)]

- Event selection in $t\bar{t} \rightarrow b\bar{b}e^{\pm}\mu^{\mp}$ dileptonic events.
- Exactly two jets: tag one jet, use the other as probe.
 - Probe jet should contain SV with at least 3 tracks.
 - If both jets are tagged, both jets are measured.
- Tracks from secondary vertex used to reconstruct \vec{p}_b^{ch} .
- All ghost-associated tracks used to reconstruct \vec{p}_{jet}^{ch} .

Javier Llorente

beam

ATLAS *b*-fragmentation in $t\bar{t}$ at $\sqrt{s} = 13$ TeV [arXiv:2202.13901 (hep-ex)]

- Results are in reasonable agreement with MC expectations.
- Powheg + Pythia 8 gives a good description of the data.
- Powheg + Herwig 7.1.3 shows large differences at low z.
- Sherpa 2.2.10 provides the best overall description.

Javier Llorente Experimental QCD at high-p_T

Summary and conclusions

- Wide variety of QCD measurements recently released at the LHC.
- Different analyses sensitive to different aspects of the QCD modelling.
- PDF fits have been performed by ATLAS and CMS.
- Inclusive jet cross sections at different values of \sqrt{s} .
- *Z*+jets and multijet final states are thoroughly explored.
 - *Z*+jets measurement in different topologies.
 - Three-jet events in different angular and momentum phase spaces.
- Diphoton cross section compared to theoretical predictions up to NNLO.
- b-quark fragmentation explored by ATLAS in two different final states.
 - In dijets with B^{\pm} production, with explicit sensitivity to $g \rightarrow b\bar{b}$.
 - In $t\bar{t}$ using charged momentum of *B*-hadrons.
- Stay tuned for more interesting results!