LHCb Highlights and Perspectives

Matteo Palutan
on behalf of the LHCb Collaboration

- Selected recent physics results
- Upgrade I at the starting line!

LHCP, 16th May 2022
Celebrating “LHCb-original”!

LHCb was originally for CP violation and b- c-hadron rare decays…

… but it achieved also much more: exotic spectroscopy, heavy ions, fixed target programme, EW precision physics

Today recent results on

- CP violation in B decays and D^0 mixing, Lepton Flavour Universality
- Spectroscopy, Heavy ions and fixed target
CKM angle γ

- $B^{\pm} \to DK^{\pm}$ decays, with $D \to K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{\mp}$

 CP asymmetry measured in 4 bins of D phase space, D decay params. from CLEO-c/BESIII

- **Result from Run1/2 data (9 fb$^{-1}$):**

 $$\gamma = (54.8^{+6.0}_{-5.8} \text{ (stat)} \pm 0.6 \text{ (syst)}^{+6.7}_{-4.3} \text{(ext)})^\circ$$

 2nd best result from single mode

 (best result from $D \to K_S^0\pi^+\pi^-$, unc. $\pm 5.2^\circ$ [JHEP 02 (2021) 169])

- **In good agreement with latest LHCb average**

 $$\gamma = (65.4^{+3.8}_{-4.2})^\circ$$

 [JHEP 12 (2021) 141]

Run 2 target of 4° being surpassed!
B^0_{sL} and B^0_{sH} mass (and \simCP) eigenstates: direct measurement of their lifetimes can be compared with SM expectation and/or what is obtained from direct measurement of $\Delta\Gamma_s = \Gamma_L - \Gamma_H$ in $B^0_s \to J/\psi\phi$ decays.

New lifetime measurement of $B^0_s \to J/\psi\eta$ CP-even final state, hence pure “short”-living B^0_{sL}, on full Run 1+2:

$$\tau_L = (1.452 \pm 0.014_{\text{stat}} \pm 0.007_{\text{syst-uncorr}} \pm 0.002_{\text{syst-corr}})$$

- Precision comparable with best results available
- Overall coherent picture!

LHCb-PAPER-2022-010 in preparation
Mixing parameter $y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma}$ related to the lifetime difference between D^0 mass eigenstates

y is accessible via the lifetime difference btw $D^0 \to K^-\pi^+$ and $D^0 \to f$ ($f = \pi^+\pi^-, K^+K^-$)

$$\frac{\tau(D^0 \to K^-\pi^+)}{\tau(D^0 \to f)} - 1 = y_f^CP - y_{K\pi}^CP \simeq y(1 + \sqrt{R_D})$$

100M events available on Run 2

Combining $\pi^+\pi^-$ and K^+K^- we get:

$$y_{CP}^{} - y_{K\pi}^{} = (6.96 \pm 0.26_{\text{stat}} \pm 0.13_{\text{syst}}) \times 10^{-3}$$

four times better than previous world average (already dominated by LHCb)

2202.09106
LFU in \(b \rightarrow c \ell \nu \)

Intriguing tension in

\[
R(D^{(*)}) = \frac{\mathcal{B}(B^0 \rightarrow D^{(*)} - \tau^+ \nu_\tau)}{\mathcal{B}(B^0 \rightarrow D^{(*)} - \mu^+ \nu_\mu)}
\]

- Tree-level process, sensitive to NP coupling preferentially to 3\(^{\text{rd}}\) generation
- Possible connection with \(b \rightarrow s l^+ l^- \) anomalies

LHCb can access also baryonic modes \(\rightarrow 1^{\text{st}} \) observation of

\(\Lambda_b^0 \rightarrow \Lambda_c^+ \tau \nu \)

using Run 1 data

Ratio \(R(\Lambda_c) \) with muonic mode:

\[
R(\Lambda_c) = 0.242 \pm 0.026_{\text{stat}} \pm 0.040_{\text{syst}} \pm 0.059_{\text{ext}}
\]

PRL 128 (2022) 191803
LFU in $b \rightarrow s\ell\ell$

\[R_K = \frac{\mathcal{B}(B^+ \rightarrow K^+\mu^+\mu^-)}{\mathcal{B}(B^+ \rightarrow K^+\mu^+\mu^-)} \]

3.1σ below SM

Nat. Phys. 18 (2022) 277

Update with full Run 2 ongoing

More modes, including $D_{(s)}^+ \rightarrow \pi^+\phi(\ell^+\ell^-)$, and more q^2 bins will be also added

Most recent measurements with full Run 2 on $B^0 \rightarrow K_S^0\ell^+\ell^-$ and $B^0 \rightarrow K^+(K_S^0\pi^+)\ell^+\ell^-$

Results in agreement with SM (≈ 1.5σ below) and previous results from Belle

[2110.09501](https://arxiv.org/abs/2110.09501) (in memory of S. Stone)

Run 3 data will be crucial to clarify the picture on $b \rightarrow s\ell\ell$ anomalies

\[R_H = \frac{\mathcal{B}(H_s\mu\mu)}{\mathcal{B}(H_see)} \]
LHCb is a general purpose detector in the forward region!

First measurement of the $Z \rightarrow \mu^+\mu^-$ angular coefficients and differential cross section in the forward region with Run 2 data

2203.01602

2112.07458

First measurement of m_W in the forward region with 1.7 fb$^{-1}$

$m_W = 80354 \pm 23_{\text{stat}} \pm 10_{\text{exp}} \pm 17_{\text{theo}} \pm 9_{\text{PDF}}$ MeV

$JHEP 01 (2022) 36$

Great potential for reducing the systematic uncertainty for an LHC combination (and compare with CDF)
First observation of a doubly charmed tetraquark T_{cc}^+ in $D^0 D^0 \pi^+$ mass spectrum, consistent with $c c \bar{u} \bar{d}$

Very narrow state, slightly below D^*+D^0 threshold

$$\delta m_{BW} = -273 \pm 61 \pm 5^{+11}_{-14} \text{keV}/c^2,$$
$$\Gamma_{BW} = 410 \pm 165 \pm 43^{+18}_{-38} \text{keV},$$

Increased interest for T_{bc}, T_{bb} as possible first stable exotic states!

need Run 3&4 statistics
Heavy ions and QCD

1) Nuclear PDFs: LHCb probes unprecedented x range in pPb collisions with its forward coverage

Charged particle nuclear modification factor in pPb collisions at 5 TeV

LHCb: R_{pPb}

Constraints on the nuclear PDFs from LHCb measurements on charm production

2205.03936

2) Hadronization mechanisms:

Strangeness enhancement at high multiplicity observed by ALICE

Nat. Phys. 13 (2017) 535

LHCb: B_s^0/B^0 ratio vs multiplicity \rightarrow evidence of an increasing trend at low p_T (coalescence?)

2204.13042
Interpretation of \bar{p}/p **data from PAMELA and AMS-02 requires precise knowledge of** \bar{p} **cross-section in cosmic rays collisions with interstellar medium.**

First measurement of prompt \bar{p} production in pHe collisions at 110 GeV using SMOG injection system performed during Run 2

New: measurement of detached \bar{p} component from anti-hyperons decays

\[R_H = \frac{\sigma(pHe \rightarrow \bar{H}X \rightarrow \bar{p}X)}{\sigma(pHe \rightarrow \bar{p}_{\text{prompt}}X)} \]

Predictions underestimate this ratio
LHCb Upgrade I at the starting line!

Major upgrade of all subdetectors, target $L_{\text{peak}} = 2 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$, pile-up ~ 5

- Pixel detector VELO with silicon microchannel cooling 5 mm from the beam
- New RICH mechanics, optics and photodetectors
- New silicon strip upstream tracker UT detector
- New SciFi tracker with 11,000 km of scintillating fibres
- New electronics for Muon and Calorimeters

This is a NEW detector at the LHC!

Being completed on-budget and near schedule

All subdetectors readout at 40 MHz, fully software trigger
The new VELO

- Pixel detector 5 mm from the beam, with innovative micro channel cooling
- Test of first-half disrupted by omicron wave in December 2021, installed in March and now being commissioned
- Cooling leak delayed second half, transported at CERN end of April and installed last Friday, in time for 2022 data taking

FULL VELO IN: critical milestone!!!
RICH1 and RICH2

Unique particle identification system, key for success of physics programme

- **RICH1**: new mirrors with increased focal length, to halve the occupancy
- **RICH1/2**: new photodetectors MaPMTs with increased granularity and 40 MHz readout

Installation successfully completed in February, detector commissioned and now in data taking

RICH1: MaPMTs installed upper side

RICH2: first rings acquired during LHC october test

RICH1: pixel map
Scintillating Fibre Tracker

Cost-effective large scale downstream tracker based on 12 large planes equipped with scintillating fibres

Installation successfully completed in February

• All electronics and services connected

• Commissioning being finalised
Present detectors are capable to stand the increased luminosity of Run3/4

Shashlik calorimeters

- PMT gain reduced to stand the higher occupancy
- new front-end electronics with improved S/N and 40 MHz readout

Muon stations

- 4 walls equipped with MWPCs, and interleaved with iron filters
- front-end electronics upgraded for 40 MHz readout, granularity increased on first station to reduce occupancy

Detectors in global data taking
Luminometer and SMOG2

Crucial systems are also ready to operate just at the entrance of the VELO

PLUME luminometer

- quartz tablets + PMTs for online+offline per-bunch luminosity measurement

Detector installed and included in DAQ

SMOG2 gas target

- New storage cell for the gas upstream of the nominal IP
- Gas density increased by up to two orders of magnitude → much higher luminosity
- Gas targets: He, Ne, Ar + possibly H₂, D₂, N₂, Kr, Xe

Simultaneous p-p and p-gas data taking possible!
68 staves with silicon strips and integrated cooling, arranged in 4 planes

- fast p_T determination for track extrapolation → reduce ghost track, and improve trigger bandwidth
- long-lived particles decaying after VELO (K_S, Λ)

Detector assembly ongoing at surface, to be ready for detector installation later in year

- services in the cavern completed, first stave mounted

Not essential for early physics operation
Run 3 trigger revolution

L0 hardware has been removed, a full software trigger will process 30 MHz of inelastic collisions → factor of ~10 expected in hadronic yields at Run 3

30 MHz of inelastic collisions will be reduced to ~1 MHz by the HLT1 (tracking/vertexing and muon ID) running on GPUs

- achieved with ~200 cards
- room to expand to ~500 cards when porting more reco/selection functionalities into HLT1
Planning for Upgrade II

Upgrade II

- $L_{\text{peak}} = 1.5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- $L_{\text{int}} = \sim 300 \text{ fb}^{-1}$ during Run 5 & 6
- Fully exploit the HL-LHC for flavour physics

Framework TDR approved by LHCC

- Targeting same detector performance as in Run 3, but with pile-up $\sim 40!$
- New detector technologies (e.g. precision timing, low-cost monolithic pixels) pathfinder for future projects beyond the LHC
- Subdetector TDRs at beginning of LS3

New collaborators welcomed!
Summary

LHCb Upgrade I: largest CERN particle physics detector project since LHC completion

Despite pandemic, is being completed on-budget and near schedule

Significant physics results: world-best measurements on CKM angle γ and D^0 mixing, LFU measurements under-way, world-class measurements in spectroscopy, EW precision physics and QCD

Farewell to “LHCb-original" detector: more than 600 papers published so far, many more to come with ongoing analyses on Run 2 data!

LHCb Upgrade II project is taking shape: Framework TDR delivered, R&D setting the path to detector TDRs