Mixing and CP violation in charm: Experimental overview

10th Edition of Large Hadron Collider Physics Conference (LHCP 2022)

Mark Williams

· (1) (1) (1) (1) (1) (1) (1)

talk LIVE

from Edinbur

16th May 2022

THE UNIVERSITY of EDINBURGH

THE ROYAL SOCIETY

Outline

- What, why, where, how?
 - Background, motivation, state-of-the-art
- CPV in decay:
 - $D_{(s)}^+ \rightarrow \eta^{(\prime)}\pi^+$ decays (<u>https://arxiv.org/abs/2204.12228</u>)
- CPV in rare charm decays:
 - $D^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$ and $K^+K^-\mu^+\mu^-$ (<u>https://arxiv.org/abs/2111.03327</u>)
- Mixing and mixing-induced CPV:
 - y_{CP} parameter (<u>https://arxiv.org/abs/2202.09106</u>)
 - ΔY in $D^0 \rightarrow h^+h^-$ (<u>https://arxiv.org/abs/2105.09889</u>)
 - $D^0 \rightarrow K_S^0 \pi^+\pi^-$ with 'bin flip' approach (<u>https://arxiv.org/abs/2106.03744</u>)
- Summary and Outlook

Neutral charm meson mixing

Mass states are superposition of flavor states:

$$|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle$$

Oscillations characterized by four parameters:

- Unique up-type quarks
- NP-sensitive CPV very small (~10⁻⁴) in SM
- **Poorly experimentally-constrained** (until recently!)

$$x = (m_1 - m_2)/\Gamma$$

$$y = (\Gamma_1 - \Gamma_2)/2\Gamma$$
meson mixing

$$|q/p|$$
CP violation

 $\phi = \arg(q/p)$

State-of-the-art: mixing

Includes impact of final LHCb result covered today – see later!

Mark Williams

LHCP Conference, May 2022

Snapshot of charm mixing + CPV results

Mixing and CPV in Charm: Experiment

5

CPV in decay

Mark Williams

Mixing + mixing-induced CPV

Two- body	ΔA_{CP}(D⁰→hh) and A_{CP}(hh): PRL 108 (2012) 111602 PLB 723 (2013) 33 JHEP 07 (2014) 041 PRL 116 (2016) 191601 PLB 767 (2017) 177 PRL 122 (2019) 211803	$D_{(s)}^{+} \rightarrow \eta' \pi^{+}$ PLB 771 (2017) 21 arXiv:2204.12228 $D_{(s)}^{+} \rightarrow h^{+} \pi^{0}, h^{+} \eta$ JHEP 06 (2021) 019 $D_{+}^{+} \rightarrow K^{-0} h^{+}$	A _r (D ⁰ →hh) JHEP 1204 (2012) 129 (H PRL 112 (2014) 041801 JHEP 04 (2015) 043 PRL 118 (2017) 261803 PRD 101 (2020) 012005 PRD 104 (2021) 072010	<Κ), +y_{CP} WS D ⁰ →K⁺π⁻
	D⁰→K_sºK_sº JHEP 10 (2015) 055 JHEP 11 (2018) 048 PRD 104 (2021) L031102	JHEP 06 (2013) 112 JHEP 10 (2014) 025 PRL 122 (2019) 191803	<mark>у_{сР}(hh)</mark> PRL 122 (2019) 011802 arXiv:2202.09106	PRL 110 (2013) 101802 PRL 111 (2013) 251801 PRD 95 (2017) 052004 PRD 97 (2018) 031101
Multi- body	D⁰→K⁻K⁺π⁻π⁺ , $\pi^{-}\pi^{+}\pi^{-}\pi^{+}$: PLB 726 (2013) 623 (S _{CP}) JHEP 10 (2014) 005 (T-odd) PLB 769 (2017) 345 (energy test JHEP 02 (2019) 126 (AmAn)	D ⁺ → K ⁻ K ⁺ π ⁺ PRD 84 (2011) 112008 JHEP 06 (2013) 112 t^{t} D ⁺ →π ⁺ π ⁻ π ⁺ : PLB 728 (2014) 585	D ⁰⁻ JHE PRI PRI D ⁰ →K ⁻ π ⁺ π ⁻ π ⁺	→K_s⁰π⁺π⁻ P 04 (2016) 033 . 122 (2019) 231802 . 127 (2021) 111801
Rare D ^o ar	$=_{c}^{+}$ → p K ⁻ π ⁺ (SCP, KNN) PRD 102 (2020) 071101(R) $p \rightarrow h^{+}h^{-}\mu^{+}\mu^{-}$ Xiv:2111.03327 JHEP 0	D⁰→π⁺π⁻π⁰ PLB 740 (2015) 158 h⁺h⁻ 3 (2018) 182	PRL 116 (2016) 241801 https://lhcbproject.we Publications/p/Summa	b.cern.ch/lhcbproject/ ry_Charm.html

LHCP Conference, May 2022

The discovery of CPV in charm: in decay

Mark Williams

- More (and more precise) measurements of CPV in decay
 ⇒ add new channels, including ones more challenging to reconstruct
- More (and more precise) time-dependent analyses to search for mixing-induced CPV
- Exploit multibody final states sensitive to 'local' CPV through interference effects

 $A_{CP}(D^+_{(s)} \rightarrow \eta^{(l)}\pi^+)$

$$\mathcal{A}^{CP}(D_s^+ \to \eta' \pi^+) = (0.49 \pm 0.18 \pm 0.08) \pm 0.08),$$
$$\mathcal{A}^{CP}(D_s^+ \to \eta' \pi^+) = (0.01 \pm 0.12 \pm 0.08)\%,$$

Consistent with CP symmetry, statistically limited, world's best for 3/4 channels

 $m(\gamma \pi^+ \pi^-)$ [MeV]

Mixing and CPV in Charm: Experiment Mark Williams LHCP Conference, May 2022

+ Other recent studies

$A_{CP}(D_{(s)}^{+} \rightarrow h^{+}h^{0})$ with $h^{0} \rightarrow e^{+}e^{-}\gamma$

$$\begin{split} \mathcal{A}_{CP}(D^+ &\to \pi^+ \pi^0) = (-1.3 \pm 0.9 \pm 0.6)\% \ \ \text{SCS} \ ^* \\ \mathcal{A}_{CP}(D^+ &\to K^+ \pi^0) = (-3.2 \pm 4.7 \pm 2.1)\% \ \ \text{DCS} \ ^* \\ \mathcal{A}_{CP}(D^+ &\to \pi^+ \eta) = (-0.2 \pm 0.8 \pm 0.4)\% \ \ \text{SCS} \ ^* \\ \mathcal{A}_{CP}(D^+ &\to K^+ \eta) = (-6 \ \pm 10 \ \pm 4 \)\% \ \ \text{DCS} \ ^* \\ \mathcal{A}_{CP}(D_s^+ &\to K^+ \pi^0) = (-0.8 \pm 3.9 \pm 1.2)\% \ \ \text{SCS} \ ^* \\ \mathcal{A}_{CP}(D_s^+ &\to \pi^+ \eta) = (\ \ 0.8 \pm 0.7 \pm 0.5)\% \ \ \text{CF} \\ \mathcal{A}_{CP}(D_s^+ &\to K^+ \eta) = (\ \ 0.9 \pm 3.7 \pm 1.1)\% \ \ \text{SCS} \end{split}$$

- Probe range of processes
- No evidence for CPV
- Several world-leading measurements (*)

 $\mathsf{A}_{\mathsf{CP}}(\mathsf{D}^{\mathsf{0}}\to\mathsf{K}^{\mathsf{0}}_{\mathsf{S}}\mathsf{K}^{\mathsf{0}}_{\mathsf{S}})$

$$\mathcal{A}^{CP}(D^0 \to K^0_{\rm S} K^0_{\rm S}) = (-3.1 \pm 1.2 \pm 0.4 \pm 0.2)\%$$
stat
stat
syst
control
mode

Most precise measurement (as precise as WA)

$D^0 \rightarrow h^+h^-\mu^+\mu^-$ angular analysis

(submitted to PRL)

arXiv:2111.03327

 $D^0 \rightarrow K^+K^-\mu^+\mu^-$ and $D^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$ proceed via $c \rightarrow u \ \mu^+\mu^-$ FCNC processes

⇒ Sensitive to BSM physics through interference of short- (SD) and long-distance (LD) contributions

First full angular analysis of rare charm decay (see talk from C. Agapopoulou tomorrow)

Measure overall CP asymmetry A_{CP} , in bins of q^2 , and also CP asymmetries in angular observables

LHCb Run 1-2 data sample (9fb⁻¹)

$D^0 \rightarrow h^+h^-\mu^+\mu^-$ angular analysis

arXiv:2111.03327 (submitted to PRL)

Nuisance asymmetries corrected with $D^0 \rightarrow K^+K^-$ control mode

Validated with $D^0 \rightarrow \pi^+ K^- \mu^+ \mu^-$ channel \Rightarrow dominated by SM decay $\rho^0 / \omega \rightarrow \mu \mu$

No evidence of CPV from angular asymmetries, or integrated A_{CP}

Statistically dominated

Largest systematic uncertainty from angular efficiency

$m(\mu^+\mu^-)$	$A_{C\!P}$ [%]		
$[MeV/c^2]$			
$D^0 ightarrow$	$\pi^+\pi^-\mu^+\mu^-$		
< 525	$28\pm13\pm1$		
525 - 565	_		
565 - 780	$-2.7 \pm 4.1 \pm 0.4$		
780 - 950	$-1.9 \pm 5.8 \pm 0.4$		
950 - 1020	$0.5 \pm 3.7 \pm 0.4$		
1020 - 1100	$4.2 \pm 3.4 \pm 0.4$		
> 1100	_		
Full range	$2.9 \pm 2.1 \pm 0.4$		
$D^0 \rightarrow K^+ K^- \mu^+ \mu^-$			
< 525	$4\pm15\pm1$		
525 - 565	—		
> 565	$-2.5 \pm 6.8 \pm 0.6$		
Full range	$-2.3 \pm 6.3 \pm 0.6$		

- More (and more precise) measurements of CPV in decay
 ⇒ add new channels, including ones more challenging to reconstruct
- More (and more precise) time-dependent analyses to precisely measure mixing and search for mixing-induced CPV
- Exploit multibody final states sensitive to 'local' CPV through interference effects

y_{CP} in $D^0 \rightarrow h^+h^-$ decays

What? Why?

$$y^f_{CP} = rac{\hat{\Gamma}(D^0 o f) + \hat{\Gamma}(\overline{D}{}^0 o f)}{2\Gamma} - 1$$
 In absence of CP violation $\mathbf{y}_{CP} = \mathbf{y}$

Important input for global fits of charm mixing and CPV parameters Main challenge – requires precise knowledge of time-acceptance for different final states

Use average of flavor eigenstates $K\pi$ in denominator \Rightarrow introduces small shift $\approx -0.04\%$

$$\begin{aligned} & \hat{\Gamma}(D^0 \to f) + \hat{\Gamma}(\overline{D}{}^0 \to f) \\ & \hat{\Gamma}(D^0 \to K^-\pi^+) + \hat{\Gamma}(\overline{D}{}^0 \to K^+\pi^-) - 1 \approx y_{CP}^f - y_{CP}^{K\pi} \\ & (\approx 0.7 \pm 0.1)\% \\ & \text{Measure separately for } f = \text{K}^+\text{K}^-, \pi^+\pi^- \text{ final states.} \\ & \text{Flavour-tag D}^0 \text{ at production using } \text{D}^{*\pm} \to \text{D}^0\pi^{\pm} \text{ decays} \end{aligned}$$

\mathbf{y}_{CP} in $\mathbf{D}^0 \rightarrow \mathbf{h}^+ \mathbf{h}^-$ decays

and real data

y_{CP} in $D^0 \rightarrow h^+h^-$ decays

arXiv:2202.09106 (accepted by PRD)

Results

$$y_{CP}^{\pi\pi} - y_{CP}^{K\pi} = (6.57 \pm 0.53 \pm 0.16) \times 10^{-3}$$

$$y_{CP}^{KK} - y_{CP}^{K\pi} = (7.08 \pm 0.30 \pm 0.14) \times 10^{-3}$$

Statistically limited. Main systematic uncertainties from background treatment.

Combining channels:

$$y_{CP} - y_{CP}^{K\pi} = (6.96 \pm 0.26 \pm 0.13) \times 10^{-3}$$

4x more precise than existing world-average.

Consistent between data-taking years and magnet polarities

Time-dep. CPV: ΔY (≈−A_Γ)

Same channels as ΔA_{CP} discovery \Rightarrow **Time-dependent asymmetry**

Full Run 2 sample

Careful correction of detector effects (e.g. trigger-induced correlations)

Data-driven validation with CF $D^0 {\rightarrow} K^- \pi^+$

arXiv:2105.09889

PRD 104 072010

Time-dep. CPV: ΔY (≈−A_Γ)

Same channels as ΔA_{CP} discovery \Rightarrow **Time-dependent asymmetry**

Full Run 2 sample

Careful correction of detector effects (e.g. trigger-induced correlations)

Data-driven validation with CF $D^0 \rightarrow K^-\pi^+$

>2x more precise than existing best measurement

Combine with previous LHCb results:

$$\Delta Y_{K^+K^-} = (-0.3 \pm 1.3 \pm 0.3) \times 10^{-4}$$
$$\Delta Y_{\pi^+\pi^-} = (-3.6 \pm 2.4 \pm 0.4) \times 10^{-4}$$
$$\Delta Y = (-1.0 \pm 1.1 \pm 0.3) \times 10^{-4}$$
$$\Delta Y_{K^+K^-} - \Delta Y_{\pi^+\pi^-} = (+3.3 \pm 2.7 \pm 0.2) \times 10^{-4}$$

No CPV observed, constrained at 10⁻⁴ level

arXiv:2105.09889

PRD 104 072010

- More (and more precise) measurements of CPV in decay
 ⇒ add new channels, including ones more challenging to reconstruct
- More (and more precise) time-dependent analyses to search for mixing-induced CPV
- Exploit multibody final states sensitive to 'local' CPV through interference effects

The Golden Mode: $D^0 \rightarrow K_S^0 \pi^+ \pi^-$

Requires time and phase-space dependent analysis

$D^0 \rightarrow K_S^0 \pi^+ \pi^-$ "bin-flip" analysis PRL 127 (2021) 111801

Significant improvements in WA for both mixing and CPV parameters

Summary and outlook

- CPV discovery the start of a new adventure in charm
 ⇒ More experimental input essential to interpret this result
- Squeezing the most out of available data
 ⇒ New channels, new techniques
- Large gains in precision on CPV and mixing parameters
 ⇒ reaching 10⁻⁴ level dominated by statistical precision
- Exciting times ahead with LHCb Run 3–4, Belle-II, BES-III, ...

Belle-II ramping up physics programme in this area e.g. most precise measurements of charm meson lifetimes:

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.211801

Extra Slides

CP Violation

Mark Williams

LHCP Conference, May 2022

Charm physics at LHCb

arXiv:1412.6352 Int. J. Mod. Phys. A 30 (2015) 07

Solution: Turbo triggers, fast (and accurate!) simulation, high-yield control modes (+ excellent vertexing, tracking, PID, magnet polarity reversal, ...)

Run 3 and beyond

Mark Williams

LHCP Conference, May 2022

26

Charm flavour tagging

Lifetime-biasing trigger

High signal yield & purity

Lifetime unbiased trigger

Higher backgrounds, lower yields

Contributes important background to prompt analyses!

Extra material: $A_{CP}(D^+_{(s)} \rightarrow \eta^{(')}\pi^+)$

 $A_{CP}(D^+_{(s)} \rightarrow \eta^{(\prime)}\pi^+)$

2D plots for η' (left) and η (right) channels, showing signal and background contributions

 $A_{CP}(D^+_{(s)} \rightarrow \eta^{(\prime)}\pi^+)$

Mixing and CPV in Charm: Experiment Mark Williams

 $A_{CP}(D^+_{(s)} \rightarrow \eta^{(\prime)}\pi^+)$

Control mode mass fits

 $A_{CP}(D^+_{(s)} \rightarrow \eta^{(\prime)}\pi^+)$

32

LHCP Conference, May 2022

Extra material: y_{CP} in $D^0 \rightarrow h^+h^-$ decays

 y_{CP} in $D^0 \rightarrow h^+h^-$ decays

Full LHCb Run 2 (6/fb)

- 95% 98% purity
- 6M 70M candidates

Fit D⁰ and D⁰ samples separately, in 22 bins of decay time (+ split by year and polarity)

Subtract combinatorial BG

Correct for secondary contamination:

$$R^{f}(t) = (1 - f_{\text{sec}}(t))R^{f}_{\text{prompt}}(t) + f_{\text{sec}}(t)R^{f}_{\text{sec}}(t)$$

where
$$R^f_{
m sec}(t) \propto e^{-(y^f_{CP}-y^{K\pi}_{CP})\langle t_D(t)
angle/ au_{D^0}}$$

and $\langle t_D(t) \rangle$ reflects biased measurement of D⁰ decay time from this source

34

 y_{CP} in $D^0 \rightarrow h^+h^-$ decays

Example of kinematic matching requirement:

Red line shows cut on transformed pT(K⁻) which ensures all candidates would pass requirements for both channels in ratio measurement

35

 y_{CP} in $D^0 \rightarrow h^+h^-$ decays

Kinematic matching & reweighting results

Example of D⁰ decay angle for two channels before (left) and after (right) kinematic matching and reweighting

 y_{CP} in $D^0 \rightarrow h^+h^-$ decays

Data-driven validation

Measure ratio for KK vs $\pi\pi$ final states – should give 'pseudo-y_{CP}' value consistent with zero:

$$y_{CP}^{CC} = (-0.44 \pm 0.53) \times 10^{-3}$$

Consistent across data-taking years and between magnet polarities

Mixing and CPV in Charm: Experiment Mark Williams LHCP Conference, May 2022

 y_{CP} in $D^0 \rightarrow h^+h^-$ decays

Comparison between disjoint sub-samples

Mark Williams

 y_{CP} in $D^0 \rightarrow h^+h^-$ decays

Breakdown of results and corrections

Table 1: Results of the χ^2 fits of Fig. 6 for each correction procedure. The results are shown in units of 10^{-3} , while the values in parenthesis correspond to the χ^2 of the fits, where the number of degrees of freedom is 7 for all measurements.

	y_{CP}^{CC}	$y_{C\!P}^{KK}-y_{C\!P}^{K\pi}$	$y^{KK}_{C\!P}-y^{K\pi}_{C\!P}$
Raw	0.68 ± 0.47 (7.9)	$7.48 \pm 0.48 \ (5.5)$	$6.64 \pm 0.27 \ (6.6)$
Matching	-0.28 ± 0.52 (8.3)	6.80 ± 0.52 (2.9)	$7.14 \pm 0.29 \ (5.5)$
Matching + Weighting	$-0.43 \pm 0.52 \ (9.0)$	6.44 ± 0.52 (2.8)	6.94 ± 0.29 (5.9)
Matching + Weighting + Fit with secondaries	-0.44 ± 0.53 (9.0)	6.57 ± 0.53 (2.8)	$7.08 \pm 0.30 \ (5.9)$

 y_{CP} in $D^0 \rightarrow h^+h^-$ decays

Systematic uncertainties

	$\sigma(y_{C\!P}^{\pi\pi}-y_{C\!P}^{K\pi})$	$\sigma(y_{CP}^{KK} - y_{CP}^{K\pi})$
	$[10^{-3}]$	$[10^{-3}]$
Combinatorial background	0.12	0.07
Treatment of secondary decays	0.03	0.03
Kinematic weighting procedure	0.08	0.02
Input D^0 lifetime	0.03	0.03
Residual nuisance asymmetries	0.03	< 0.01
Peaking background	0.02	0.11
Fit bias	0.03	0.03
Total	0.16	0.14
(Stat uncertainty:	0.53	0.30)

Mixing and CPV in Charm: Experiment Mark Williams LHCP Conference, May 2022

Extra material: Time-dep. CPV: $\Delta Y (\approx -A_r)$

Time-dep. CPV: $\Delta Y (\approx -A_{\Gamma})$

Time-integrated mass fits (D*+)

Mixing and CPV in Charm: Experiment Mark Williams

LHCP Conference, May 2022

Time-dep. CPV: $\Delta Y (\approx -A_{\Gamma})$

Time-integrated mass distributions (D⁰)

Mixing and CPV in Charm: Experiment Mark Williams

Time-dep. CPV: $\Delta Y (\approx -A_{\Gamma})$

Nuisance asymmetries (tagging pion)

Mark Williams

44

Time-dep. CPV: $\Delta Y (\approx -A_{\Gamma})$

Mark Williams

LHCP Conference, May 2022

Time-dep. CPV: $\Delta Y (\approx -A_{\Gamma})$

Results per subsample

Red: before weighting Black: after weighting

Mark Williams

46

Time-dep. CPV: $\Delta Y (\approx -A_{\Gamma})$

Time-dep. CPV: $\Delta Y (\approx -A_{\Gamma})$

Asymmetry from secondaries

$$A(t) = A_{\rm sig}(t) + f_B(t)[A_B(t) - A_{\rm sig}(t)]$$

Measured in pure secondary sample:

$$A_B - A_{sig} = (2.2 \pm 0.4) \times 10^{-3}$$

Time-dep. CPV: ΔY (≈−A_Γ)

Systematic uncertainties

Source	$\Delta Y_{K^+K^-}[10^{-4}]$	$\Delta Y_{\pi^+\pi^-}[10^{-4}]$
Subtraction of the $m(D^0\pi^+_{\text{tag}})$ background	0.2	0.3
Flavour-dependent shift of D^* -mass peak	0.1	0.1
D^{*+} from B-meson decays	0.1	0.1
$m(h^+h^-)$ background	0.1	0.1
Kinematic weighting	0.1	0.1
Total systematic uncertainty Statistical uncertainty	$\begin{array}{c} 0.3 \\ 1.5 \end{array}$	$\begin{array}{c} 0.4 \\ 2.8 \end{array}$

Extra material: $D^0 \rightarrow K_s^0 \pi^+ \pi^-$ "bin-flip" analysis

$D^0 \rightarrow K_S^0 \pi^+ \pi^-$ "bin-flip" analysis

$D^0 \rightarrow K_s^0 \pi^+ \pi^-$ "bin-flip" analysis

Exploit symmetry in final state:

(1) Oscillated contributions mainly in upper half
 ⇒ Ratio of yields in upper/lower versus time is sensitive to mixing parameters

(2) Divide into 8 bins per half
 ⇒ boosts sensitivity, reducing dilution from strong phase variation

Strong phases constrained from CLEO & BESIII

$D^0 \rightarrow K_s^0 \pi^+ \pi^-$ "bin-flip" analysis

Exploit symmetry in final state:

(1) Oscillated contributions mainly in upper half
 ⇒ Ratio of yields in upper/lower versus time is sensitive to mixing parameters

(2) Divide into 8 bins per half
 ⇒ boosts sensitivity, reducing dilution from strong phase variation

Strong phases constrained from CLEO & BESIII

(3) Most detector effects ~cancel in the ratio

Careful data-driven reweighting to remove residual nuisance effects

Mark Williams

'Bin-flip' analysis: details

~31M signal candidates (>10x larger than LHCb Run 1 sample)

Fit Δm distribution in bins of Dalitz plane and decay time to get R_i values ⇒ Remains **statistically limited** (including strong-phase inputs)

Mixing and CPV in Charm: Experiment Mark Williams LHCP Conference, May 2022

'Bin-flip' analysis: details

~31M signal candidates (>10x larger than LHCb Run 1 sample)

Fit Δm distribution in bins of Dalitz plane and decay time to get R_i values ⇒ Remains **statistically limited** (including strong-phase inputs)

Correct for experimental effects:

- (1) Correlations between time and PhSp
- (2) Charge detection asymmetries

Main systematics from:

- Treatment of experimental effects
- 'Secondary' charm background
- Mass fit procedure, ...

Source	x_{CP}	y_{CP}	Δx	Δy
Reconstruction and selection	0.199	0.757	0.009	0.044
Secondary charm decays	0.208	0.154	0.001	0.002
Detection asymmetry	0.000	0.001	0.004	0.102
Mass-fit model	0.045	0.361	0.003	0.009
Total systematic uncertainty	0.291	0.852	0.010	0.110
Strong phase inputs	0.23	0.66	0.02	0.04
Detection asymmetry inputs	0.00	0.00	0.04	0.08
Statistical (w/o inputs)	0.40	1.00	0.18	0.35
Total statistical uncertainty	0.46	1.20	0.18	0.36

'Bin-flip' analysis: cross-checks

Repeat analysis in many disjoint samples (e.g. split by kinematics, magnet polarity, etc)

Pull distribution of measured parameters consistent with unit Gaussian

'Bin-flip' analysis: Formalism

Ratio of signal decays in upper/lower **Dalitz bin** *b*, and **time bin** *j*, given by:

$$R_{bj}^{\pm} \approx \frac{r_b + \frac{1}{4} r_b \langle t^2 \rangle_j \operatorname{Re}(z_{CP}^2 - \Delta z^2) + \frac{1}{4} \langle t^2 \rangle_j \left| z_{CP} \pm \Delta z \right|^2 + \sqrt{r_b} \langle t \rangle_j \operatorname{Re}[X_b^*(z_{CP} \pm \Delta z)]}{1 + \frac{1}{4} \langle t^2 \rangle_j \operatorname{Re}(z_{CP}^2 - \Delta z^2) + r_b \frac{1}{4} \langle t^2 \rangle_j \left| z_{CP} \pm \Delta z \right|^2 + \sqrt{r_b} \langle t \rangle_j \operatorname{Re}[X_b(z_{CP} \pm \Delta z)]}$$

Where:

- ± denotes the case for D⁰ (+) and D⁰ (-)
- r_b: value of ratio at t = 0
- X_b: amplitude-weighted average strong phase difference between 'flipped' bins ⇒ Use external constraints from quantum correlated charm production (CLEO, BESIII) ⇒ c_b ≡ Re(X_b), s_b ≡ -Im(X_b)
- $z_{CP} \pm \Delta z = -(q/p)^{\pm 1}(y + ix)$
- $<t>_{j}(<t^{2}>_{j})$: average (squared) decay time of unmixed decays in each Dalitz plot bin, in units of D⁰ lifetime $\tau \equiv 1/\Gamma$

'Bin-flip' analysis: CP violation results

No significant differences D^0 vs \overline{D}^0

 $\Delta x = [-0.027 \pm 0.018 \pm 0.001]\%$ $\Delta y = [+0.020 \pm 0.036 \pm 0.013]\%$

Mark Williams

LHCP Conference, May 2022

'Bin-flip' analysis: Correlations

Example of correlations between decay time and phase-space $m^2(\pi^+\pi^-)$

'Bin-flip' analysis: Corrections

Example of correction map (for Dalitz bin b=1, decay time bin j=1)

Correction is applied to symmetrise the decay-time efficiency as a function of $m^2(\pi\pi)$

 \Rightarrow No impact on x (which preserves m²(ππ) distribution)

⇒ Small impact on y and strong phases, so correction depends on these values

 \Rightarrow So, correction depends on values of y and $c_{\rm b}$ in fit

'Bin-flip' analysis: Efficiencies

Efficiency vs decay time and Dalitz plane

Mark Williams

LHCP Conference, May 2022

'Bin-flip' analysis: Strong phases

Initial and final values of strong phase inputs (Gaussian constrained in fit)

	Initial	Final
c_1	0.699 ± 0.020	0.702 ± 0.020
c_2	0.643 ± 0.036	0.641 ± 0.036
c_3	0.001 ± 0.047	0.006 ± 0.047
c_4	-0.608 ± 0.052	-0.613 ± 0.052
c_5	-0.955 ± 0.023	-0.955 ± 0.023
c_6	-0.578 ± 0.058	-0.568 ± 0.058
c_7	0.057 ± 0.057	0.047 ± 0.055
c_8	0.411 ± 0.036	0.413 ± 0.036
s_1	0.091 ± 0.063	0.014 ± 0.054
s_2	0.300 ± 0.110	0.341 ± 0.094
s_3	1.000 ± 0.075	0.956 ± 0.069
s_4	0.660 ± 0.123	0.767 ± 0.112
s_5	-0.032 ± 0.069	-0.073 ± 0.063
s_6	-0.545 ± 0.122	-0.627 ± 0.106
s_7	-0.854 ± 0.095	-0.828 ± 0.081
s_8	-0.433 ± 0.083	-0.449 ± 0.072

'Bin-flip' analysis: Contours

2D contours

Mark Williams

LHCP Conference, May 2022

'Bin-flip' analysis: New WA Combo

Mixing and CPV in Charm: Experiment

LHCP Conference, May 2022