Form factors for $b \to s \ell \ell$ and $b \to c \ell \bar{\nu}$ transitions from lattice QCD

Stefan Meinel

Outline

1 $b ightarrow c \ell ar{ u}$

$2 \quad b \to s\ell\ell$

Example: $\bar{B} \to D\ell\bar{\nu}$

Differential decay rate in the Standard Model:

р

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} = \frac{G_F^2 |V_{cb}|^2}{24\pi^3 m_B^2} \left(1 - \frac{m_\ell^2}{q^2}\right)^2 |\mathbf{p}_D| \left[\left(1 + \frac{m_\ell^2}{2q^2}\right) m_B^2 \mathbf{p}_D^2 |f_+(q^2)|^2 + \frac{3m_\ell^2}{8q^2} (m_B^2 - m_D^2)^2 |f_0(q^2)|^2 \right]$$

where the form factors $f_+(q^2)$ and $f_0(q^2)$ come from the QCD matrix element

$$\langle D|\bar{c}\gamma^{\mu}b|\bar{B}\rangle = \left[(p+p')^{\mu} - \frac{m_B^2 - m_D^2}{q^2}q^{\mu}\right]f_+(q^2) + \frac{m_B^2 - m_D^2}{q^2}q^{\mu}f_0(q^2)$$

 $|V_{cb}|$

Note that, using CKM unitarity, e.g.

 $\mathcal{B}(B_s \to \mu^+ \mu^-)_{SM} \propto V_{cb}^2, \quad \mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})_{SM} \propto V_{cb}^4, \quad (\epsilon_K)_{SM} \propto V_{cb}^{3.4}.$

Tests of lepton-flavor universality

$b ightarrow c \ell ar{ u}$ form factors from lattice QCD: main references

Transition	References
B ightarrow D	FNAL/MILC 1503.07237, HPQCD 1505.03925
$B ightarrow D^*$	FNAL/MILC 1403.0635*, 2105.14019, HPQCD 1711.11013*
$B_s ightarrow D_s$	HPQCD 1906.00701
$B_{s} ightarrow D_{s}^{*}$	HPQCD 1711.11013*, 1904.02046*, 2105.11433
$B_c ightarrow J/\psi$	HPQCD 2007.06957
$\Lambda_b o \Lambda_c$	Detmold, Lehner, Meinel, 1503.01421 (tensor FFs in 1702.02243)
$\Lambda_b ightarrow \Lambda_c^*(2595)$	Meinel and Rendon, 2103.08775 (updated in 2107.13140)
$\Lambda_b ightarrow \Lambda_c^*(2625)$	Meinel and Rendon, 2103.08775 (updated in 2107.13140)

*at zero recoil only

In addition,

- Preliminary results for $B \rightarrow D^*$ at nonzero recoil: JLQCD [link], HPQCD [link]
- Fits to lattice+exp. results for B_(s) → D^(*)_(s)ℓν including dispersive bounds: Martinelli, Naviglio, Simula, Vittorio, 2105.07851, 2105.08674, 2204.05925

$B \rightarrow D^*$ form factors at nonzero recoil [A. Bazavov et al. (FNAL/MILC), 2105.14019]

First calculation at nonzero recoil, "first-generation" lattice methods – asqtad u, d, sand Fermilab-clover c, b

$B \rightarrow D^*$ form factors at nonzero recoil [A. Bazavov et al. (FNAL/MILC), 2105.14019]

 $R(D^{(*)})$

Lattice-QCD-only SM predictions:

 $\begin{aligned} R(D^*)_{\mathsf{FNAL/MILC}\,2021} &= 0.265 \pm 0.013 \\ R(D)_{\mathsf{FNAL/MILC}\,2015} &= 0.284 \pm 0.014 \\ R(D)_{\mathsf{FLAG}\,2021} &= 0.2934 \pm 0.0053 \end{aligned}$

$B_s ightarrow D_s^*$ form factors [J. Harrison and C. Davies (HPQCD), 2105.11433]

First calculation at nonzero recoil, using second-generation MILC configurations, both b and c quarks treated using the same lattice action (HISQ) as the light quarks, which requires extrapolations in m_b but largely eliminates the renormalization uncertainty.

|V_{cb}| result using LHCb measurements [2001.03225/PRD 2020]:

$$|V_{cb}| = 42.2(1.5)_{\mathsf{latt}}(1.7)_{\mathsf{exp}}(0.4)_{\mathsf{EM}} imes 10^{-3}$$

SM prediction for τ -vs.- μ ratio:

$$R(D_s^*)_{\sf SM} = 0.2490(60)_{\sf latt}(35)_{\sf EM}$$

$B_c \rightarrow J/\psi$ form factors

[J. Harrison, C. Davies, A. Lytle (HPQCD), 2007.06957/PRD 2020; 2007.06956/PRL 2020]

First calculation; same lattice methods as discussed on the previous page.

SM prediction for τ -vs.- μ ratio:

 $R(J/\psi)_{\rm SM} = 0.2582(38)$

For comparison, the LHCb result is

 $R(J/\psi)_{
m expt.} = 0.71(17)(18)$

[1711.05623/PRL 2018]

 $\Lambda_b \rightarrow \Lambda_c$ form factors

$\Lambda_b \to \Lambda_c$ form factors

The third and dominant uncertainty of the LHCb $R(\Lambda_c)_{expt.}$ is from the DELPHI result $\mathcal{B}(\Lambda_b \to \Lambda_c \mu \bar{\nu})_{DELPHI} = 6.2(1.4)$ %. When fitting a model that has no new physics in the muon mode, one may replace the DELPHI measurement by the SM prediction using lattice QCD,

$${\cal B}(\Lambda_b o \Lambda_c \mu ar
u)_{\sf SM} = 5.26(49)$$
 %

(using $\tau_{\Lambda_b} = 1.471(9)$ ps and $|V_{cb}| = 40.8(1.4) \cdot 10^{-3}$). Then

$$\Lambda_c^*$$
 baryons ($C = +1$, $S = 0$, $I = 0$)

Λ_c^+	$1/2^+$	****	
$\Lambda_{c}(2595)^{+}$	$1/2^{-}$	***	$\Gamma_{\Lambda_c^*(2595)}pprox 2.6$ MeV
$\Lambda_{c}(2625)^{+}$	$3/2^{-}$	***	$\Gamma_{\Lambda_{*}^{*}(2625)} < 1.0 \text{ MeV}$
$arLambda_{c}(2765)^{+}$ or $arLambda_{c}(2765)$		*	
$\Lambda_{c}(2860)^{+}$	$3/2^+$	***	
$\Lambda_{c}(2880)^{+}$	$5/2^+$	***	
$\Lambda_c(2940)^+$	3/2-	***	[PDG]

Note: for $m_c \to \infty$ the $\Lambda_c^*(2595)$ and $\Lambda_c^*(2625)$ baryons become mass-degenerate heavy-quark spin-symmetry partners. However, they are NOT related to the Λ_c by heavy-quark spin symmetry (the light degrees of freedom have different angular momentum).

$\Lambda_b \rightarrow \Lambda_c^*(2595)$ and $\Lambda_b \rightarrow \Lambda_c^*(2625)$ form factors

[S. Meinel and G. Rendon, 2103.08775/PRD 2021 and 2107.13140/PRD 2022].

One of the 14 form factors for $\Lambda_b \to \Lambda_c^*(2625)$ is show below:

 $\Lambda_b o \Lambda_c^{(*)} \mu^- ar{
u}_\mu$ differential decay rates near $q^2_{
m max}$ from lattice QCD

The relative size of $\frac{1}{2}^-$ and $\frac{3}{2}^-$ differential decay rates is opposite to the expectation from LO HQET.

Outline

$2 \quad b \to s\ell\ell$

Effective weak Hamiltonian for $b \rightarrow s \ell^+ \ell^-$ decays

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i C_i O_i$$

with

In the Standard Model, $\overline{\rm MS}$ scheme, at $\mu=$ 4.2 GeV,

. . .

<i>C</i> ₁	<i>C</i> ₂	C ₇	C9	<i>C</i> ₁₀	
-0.288	1.010	-0.336	4.275	-4.160	

[Computed using EOS, https://eos.github.io/]

Hadronic matrix elements for exclusive $b \rightarrow s \ell^+ \ell^-$ decays

For a generic decay $H_b \to H_s \ell^+ \ell^-$:

Contributions from O_7 , O_9 , O_{10} : $\langle H_s(p') | \bar{s} \Gamma b | H_b(p) \rangle$. These local matrix elements can be calculated straightforwardly in lattice QCD.

Contributions from $O_{1,...,6}$, O_8 : $\int d^4 x \ e^{iq \cdot x} \langle H_s(p') | T \ O_i(0) \ J^{\mu}_{e.m.}(x) | H_b(p) \rangle$. Calculating these nonlocal matrix elements directly in lattice QCD is extremely difficult because of the use of imaginary time (see [K. Nakayama, T. Ishikawa, S. Hashimoto, 2001.10911] for first steps). The state of the art is to use a local OPE at high q^2 , and QCDF/light-cone OPE at low q^2 .

Example of a recent global fit of $b \rightarrow s \mu^+ \mu^-$ Wilson coefficients

[W. Altmannshofer, P. Stangl, 2103.13370/EPJC 2021]

$b \rightarrow s \ell \ell$ form factors from lattice QCD: main references

Transition	References
B ightarrow K	HPQCD 1306.2384, FNAL/MILC 1509.06235
$B ightarrow K^*$	Horgan, Liu, Meinel, Wingate, 1310.3722 (upd. in 1501.00367)
$B_s o \phi$	Horgan, Liu, Meinel, Wingate, 1310.3722 (upd. in 1501.00367)
$B_c ightarrow D_s$	HPQCD, 2108.11242
$\Lambda_b ightarrow \Lambda$	Detmold and Meinel, 1602.01399
$\Lambda_b ightarrow \Lambda^*(1520)$	Meinel and Rendon, 2009.09313 (updated in 2107.13140)

In addition,

• Fits to $\Lambda_b \rightarrow \Lambda$ lattice results with dispersive bounds: Blake, Meinel, Rahimi, van Dyk, 2205.06041

Dispersive bounds on $\Lambda_b \rightarrow \Lambda$ form factors

[T. Blake, S. Meinel, M. Rahimi, D. van Dyk, 2205.06041]

We propose a novel z-parametrization of semileptonic form factors, suitable for cases with $t_+ \equiv t_{cut} < t_{th} \equiv (m_{initial} + m_{final})^2$, in terms of **orthogonal polynomials on the unit circle**; this diagonalizes the form factor contributions to dispersive bounds. We tested the method by performing new fits to the $\Lambda_b \rightarrow \Lambda$ form factors from lattice QCD. [In that case, $t_+ = (m_B + m_K)^2$, $t_{th} = (m_{\Lambda_b} + m_{\Lambda})^2$.]

Dispersive bounds on $\Lambda_b \rightarrow \Lambda$ form factors

The strong unitarity bounds allow stable extrapolations to low q^2 .

$$\Lambda^*$$
 baryons $(S = -1, I = 0)$

		Overall	Status as seen in —		
Particle	J^P	status	$N\overline{K}$	$\Sigma \pi$	Other channels
$\Lambda(1116)$	$1/2^{+}$	****			$N\pi$ (weak decay)
A(1380)	$1/2^{-}$	**	**	**	
A(1405)	$1/2^{-}$	****	****	****	
A(1520)	$3/2^{-}$	****	****	****	$\Lambda \pi \pi, \Lambda \gamma$
$\Lambda(1600)$	$1/2^{+}$	****	***	****	$\Lambda\pi\pi, \Sigma(1385)\pi$
$\Lambda(1670)$	$1/2^{-}$	****	****	****	$\Lambda \eta$
$\Lambda(1690)$	$3/2^{-}$	****	****	***	$A\pi\pi, \Sigma(1385)\pi$
$\Lambda(1710)$	$1/2^{+}$	*	*	*	
$\Lambda(1800)$	$1/2^{-}$	***	***	**	$\Lambda\pi\pi, \Sigma(1385)\pi, N\overline{K}^*$
$\Lambda(1810)$	$1/2^{+}$	***	**	**	$N\overline{K}_2^*$
$\Lambda(1820)$	$5/2^{+}$	****	****	****	$\Sigma(1385)\pi$
A(1830)	$5/2^{-}$	****	****	****	$\Sigma(1385)\pi$
A(1890)	$3/2^{+}$	****	****	**	$\Sigma(1385)\pi, N\overline{K}^*$
A(2000)	$1/2^{-}$	*	*	*	
A(2050)	$3/2^{-}$	*	*	*	
A(2070)	$3/2^{+}$	*	*	*	
A(2080)	$5/2^{-}$	*	*	*	
A(2085)	$7/2^{+}$	**	**	*	
A(2100)	$7/2^{-}$	****	****	**	$N\overline{K}^*$
A(2110)	$5/2^{+}$	***	**	**	$N\overline{K}^*$
A(2325)	$3/2^{-}$	*	*		
A(2350)	$9/2^{+}$	***	***	*	
A(2585)		*	*		

 $\Gamma_{\Lambda^*(1520)} pprox 16$ MeV

[PDG]

$\Lambda_b \rightarrow \Lambda^*(1520)$ form factors

[S. Meinel and G. Rendon, 2009.09313/PRD 2021 and 2107.13140/PRD 2022].

One of the 14 form factors for $\Lambda_b \to \Lambda^*(1520)$ is show below:

 $\Lambda_b o \Lambda^*(1520) \mu^+ \mu^-$ differential branching fraction near q^2_{\max} Quark model vs. lattice QCD

QM = using form factors from [L. Mott, W. Roberts, arXiv:1108.6129/IJMPA 2012]

 $\Lambda_b o \Lambda^*(1520)(o pK^-)\mu^+\mu^-$ angular observables near q^2_{\max} Quark model vs. lattice QCD

See [S. Descotes-Genon, M. Novoa-Brunet, 1903.00448/JHEP 2019] for definitions. The lepton mass is neglected here.

 $\Lambda_b o \Lambda^*(1520)(o pK^-)\mu^+\mu^-$ angular observables near q^2_{\max} Quark model vs. lattice QCD

See [S. Descotes-Genon, M. Novoa-Brunet, 1903.00448/JHEP 2019] for definitions. The lepton mass is neglected here.

Summary: $b
ightarrow c \ell ar{
u}$ and $b
ightarrow s \ell \ell$ form factors from lattice QCD

Transition	References
B ightarrow D	FNAL/MILC 1503.07237, HPQCD 1505.03925
$B ightarrow D^*$	FNAL/MILC 1403.0635*, 2105.14019, HPQCD 1711.11013*
$B_s ightarrow D_s$	HPQCD 1906.00701
$B_s o D_s^*$	HPQCD 1711.11013*, 1904.02046*, 2105.11433
$B_c ightarrow J/\psi$	HPQCD 2007.06957
$\Lambda_b o \Lambda_c$	Detmold, Lehner, Meinel, 1503.01421 (tensor FFs in 1702.02243)
$\Lambda_b ightarrow \Lambda_c^*(2595)$	Meinel and Rendon, 2103.08775 (updated in 2107.13140)
$\Lambda_b ightarrow \Lambda_c^*(2625)$	Meinel and Rendon, 2103.08775 (updated in 2107.13140)
B ightarrow K	HPQCD 1306.2384, FNAL/MILC 1509.06235
$B ightarrow K^*$	Horgan, Liu, Meinel, Wingate, 1310.3722 (upd. in 1501.00367)
$B_s \to \phi$	Horgan, Liu, Meinel, Wingate, 1310.3722 (upd. in 1501.00367)
$B_c ightarrow D_s$	HPQCD, 2108.11242
$\Lambda_b ightarrow \Lambda$	Detmold and Meinel, 1602.01399
$\Lambda_b ightarrow \Lambda^*(1520)$	Meinel and Rendon, 2009.09313 (updated in 2107.13140)

*at zero recoil only

For averages, see http://flag.unibe.ch