Third Generation SUSY Searches at ATLAS and CMS $(\tilde{t}, \tilde{b}, \tilde{g}, \tilde{q})$

Teruki Kamon

on behalf of the ATLAS and CMS Collaborations Mitchell Institute for Fundamental Physics and Astronomy Texas A&M University

Oth Annual Large Hadron Collider Physics Conference (LHCP2022), 16-21 May 2022, Virtual (Taiwan)

LHC 3G SUSY

May 2022

OUTLINE

- I. Introduction: SUSY sector
- II. ATLAS and CMS search results on 3rd generation squarks
- III. Summary

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS#Run_2_Summary_plots_13_TeV https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-013/

Teruki Kamon

LHC 3G SUSY

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

"SUSY + Another Higgs" Menu

- □ (Non-)MSSM Higgs (e.g., $A, H^{\pm}, ...$)
- **QCD Sectors**
- Heavy \tilde{g} , 1st/2nd generation \tilde{q} ?
- Lighter 3rd generation squarks (\tilde{t}, \tilde{b}) ?
- Charginos & Neutralinos, decaying into leptons, Higgs, W, Z

 $\widetilde{\chi}_1^0 \in (\widetilde{B}, \widetilde{W}, \widetilde{H}_d, \widetilde{H}_u) ; \widetilde{\chi}_1^+ \in (\widetilde{W}^+, \widetilde{H}_u^+) ; \widetilde{\chi}_1^- \in (\widetilde{W}^-, \widetilde{H}_d^-)^{\ref{eq:main_set}}$

- □ Sleptons
 - Mass degenerate $\tilde{e}_{R,L}$, $\tilde{\mu}_{R,L}$?
 - Light $\tilde{\tau}_1$?
- Lightest SUSY Particle (LSP)
 - $\tilde{\chi}_1^0$: Bino-like, Wino-like, Higgsino-like, Bino-Higgsino-like. [Example] Higgsino-like $\Rightarrow \chi_1^{\pm}$ and χ_2^0 below 200 GeV, with mass splittings of order 10 GeV.
 - $\tilde{G}: \tilde{\chi}_1^{0} \to \tilde{G}\gamma, \tilde{G}Z, \tilde{G}H,$
- Displaced Tracks, Long-Lived (LL)
- □ R-Parity violation (RPV)
- Supersymmetric Y (e.g., Y = hidden sector)

Anti-particleTransformation SUSY Transformation

Compressed scenarios

Quarks

Teruki Kamon

Analysis Flow

- 1) Advanced particle ID (e.g., particle flow, ML/DL, boosted objects): top, b, $h \rightarrow bb$, $h \rightarrow \tau\tau$, $W \rightarrow jj$
- 2) Full detector simulation
- 3) Signal Regions (SRs) and Control Regions (CRs)
- Blind analysis: data in CRs must be fully understood before analysis of the data in SRs.
- 5) Maximize sensitivity (e.g., NN) -
- 6) Observed and expected yields (with uncertainties) in SRs.

Note: particle flow ID

- Electrons, muons from ~5 GeV, τ_h ~20 GeV, jets ~30 GeV, b ~20 GeV, p_T^{miss} ~30 GeV, photon ~10 GeV
- See, for example, CMS: JINST 12 (2017) P10003, ATLAS: Eur. Phys. J. C 77 (2017) 466

Teruki Kamon

SUSY QCD 3rd Generation Sector

- □ The SUSY scale could be beyond the LHC kinematical limit a few TeV (see backup slides on the \tilde{g} and 1st/2nd generation \tilde{q}).
- □ If the \tilde{g} and $1^{st}/2^{nd}$ generation \tilde{q} would be ultra heavy, the search program for lighter 3^{rd} generation \tilde{q} (\tilde{t} , \tilde{b}) is important.
 - R-parity conserving (RPC) SUSY
 - No or little P_T^{miss}
 - ✓ RPV: see "Searches for RPV SUSY in ATLAS, CMS and LHCb" by Saikat Karmakar (Tata Inst. of Fundamental Research (IN))
 - ✓ RPC "Stealth SUSY" with \tilde{G} (LSP) + near-mass degenerate between scalar singlet *S* and fermion singlino \tilde{S} (in hidden sector): $\tilde{t} \to \tilde{S} \to \tilde{G}$

ĝ /q̃ Mass Reach (M)	M/√ <i>s</i>
~400 GeV	0.20
~1.7 TeV	0.21
~2.2 TeV	0.17
~20 TeV*	0.20*
	ĝ / q̃ Mass Reach (M) ~400 GeV ~1.7 TeV ~2.2 TeV ~20 TeV*

(*) just use a naïve scaling

✓ …

"SUSY *t*, *b*" Menu

Teruki Kamon

LHC 3G SUSY

-

In the corridor $(\Delta m(\tilde{t}, \tilde{\chi}_1^0) = m(t))$, 2 complementary approaches: (i) measurement of differential cross-sections for ATLAS, (ii) DNN techniques for CMS,

- □ Stop: Up to ~1250 GeV
 - Weaker limits for compressed mass spectra
 - Access to ultra compressed-mass scenario (small $\Delta m(\tilde{t}, \tilde{\chi}_1^0)$) via ISR jet

Teruki Kamon

CMS $\tilde{t} \to t \tilde{\chi}_1^0$

- Stop: Up to ~1300 GeV for 0ℓ , 1ℓ , 2ℓ (combination)
- □ Weaker limits for 2ℓ
- $\Box \quad \mathsf{CMS} \sim \mathsf{ATLAS} \text{ for } \Delta m(\tilde{t}, \tilde{\chi}_1^0) > m(b) + m(W)$

Teruki Kamon

□ Stop: Up to ~1400 GeV

Teruki Kamon

LHC 3G SUSY

LHC 3G SUSY

 $\widetilde{b} \to b \widetilde{\chi}_1^0, \widetilde{b} \to b \widetilde{\chi}_2^0, \widetilde{b} \to t \widetilde{\chi}_1^-$

 $\Box \quad \tilde{b} \to b \tilde{\chi}_1^0, b \tilde{\chi}_2^0: \sim 1300 \text{ GeV}; \text{ Powerful to access to } \Delta m(\tilde{b}, \tilde{\chi}_{2,1}^0) \sim 0 \text{ GeV with ISR jet}$ $\Box \quad \text{Weaker limits for } \tilde{b} \to t \tilde{\chi}_1^-$

Teruki Kamon

LHC 3G SUSY

$\tilde{t} + \tilde{\chi}_1^0$ **RPV or Stealth Sector**

□ Stop: ~900 GeV for $m(\tilde{S}) - m(S) = 10$ GeV (\tilde{G} from \tilde{S} decay are soft \Rightarrow little P_T^{miss})

Teruki Kamon

LHC Chargino/Neutralino

Summary: Run $2 \Rightarrow$ Run 3

ATLAS SUSY Searches* - 95% CL Lower Limits

simplified models, c.f. refs. for the assumptions made.

- \Box LHC Run-2 (140 fb⁻¹): Stringent limits of **O(1 TeV)** in very diverse search scenarios.
- More results are in the pipeline and will become public throughout the remainder of the year, and more data in Run 3 is critical to develop new ideas & techniques and to open new avenues for constraining SUSY parameter space.

Teruki Kamon

ATLAS Preliminary

Teruki Kamon

Teruki Kamon

CMS 3G SUSY

Quick Review: \widetilde{g} Limits with $\widetilde{\chi}_1^0$ or \widetilde{G}

Gluionos: Up to ~2200 GeV for $\tilde{g} \to qq\tilde{\chi}_1^0$, $bb\tilde{\chi}_1^0$, $tt\tilde{\chi}_1^0$, $qqW\tilde{\chi}_1^0$, $qq(\ell\ell, \nu\nu)\tilde{\chi}_1^0$ Weaker limits for $\tilde{g} \to qqZ\tilde{\chi}_1^0$, $qqWZ\tilde{\chi}_1^0$, $qq(\tau\tau, \tau\nu, \nu\nu)\tilde{\chi}_1^0$ 1600-2050 GeV for $\tilde{g} \to qq(\gamma/Z)\tilde{G}$ by $\tilde{\chi}_1^0 \to (\gamma/Z)\tilde{G}$

Teruki Kamon

LHC 3G SUSY

- Squarks: Up to ~1800 GeV with 4-degenerate flavor \tilde{q} ; ~1200 GeV for one flavor \tilde{q}
- **D** Weaker limits: cascade cays via $\tilde{\chi}_2^0$, $\tilde{\chi}_1^{\pm}$, $\tilde{\ell}$
- Powerful technique for small mass difference (compressed mass spectra) with ISR jet

Teruki Kamon