Giorgio Arcadi

Theoretical overview of novel BSM models

University of Messina

Motivation of the talk...

Dark Matter models testable at collider:

Good compromise between realistic model and a simplified predictive scenario.

Broad variety of collider signatures. E.g. light/heavy resonances, mono-X

Interesting DM phenomenology.

Disclaimer: Summary of selected models

First class of models:

$$V_{S}(S) = \frac{1}{2}M_{SS}^{2}S^{2} + \frac{1}{3}\mu_{S}S^{3} + \frac{1}{4}\lambda_{S}S^{4}$$
Conventional 2HDM Potential
$$V_{S,2HDM}(\Phi_{1}, \Phi_{2}, S) = \mu_{11S}(\Phi_{1}\Phi_{1}^{\dagger})S + \mu_{22S}(\Phi_{2}\Phi_{2}^{\dagger})S + (\mu_{12S}\Phi_{1}\Phi_{2}^{\dagger}S + h.c.) + \frac{\lambda_{11S}}{2}(\Phi_{1}\Phi_{1}^{\dagger})S^{2} + \frac{\lambda_{22S}}{2}(\Phi_{2}\Phi_{2}^{\dagger})S^{2} + \frac{1}{2}(\lambda_{12S}\Phi_{1}\Phi_{2}^{\dagger}S^{2} + h.c.)$$

$$V(\Phi_{1}, \Phi_{2}, S/P) = V_{2HDM}(\Phi_{1}, \Phi_{2}) + V_{Self}(S/P) + V_{S/P,2HDM}(\Phi_{1}, \Phi_{2}, S/P)$$

$$Self Interaction lagrangian$$

$$V_{P}(P) = \frac{1}{2}M_{PP}^{2}P^{2} + \frac{1}{4}\lambda_{P}P^{4}$$

$$Singlet Doublet Interaction Lagrangian$$

$$V_{P,2HDM}(P) = \frac{\lambda_{11P}}{2}(\Phi_{1}\Phi_{1}^{\dagger})P^{2} + \frac{\lambda_{22P}}{2}(\Phi_{2}\Phi_{2}^{\dagger})P^{2} + \mu_{12P}P(i\Phi_{1}^{\dagger}\Phi_{2} + h.c.)$$

EW Symmetry Breaking

$$L_{S,DM} = -y_{\chi}^{S} S \bar{\chi} \chi \longrightarrow -y_{\chi}^{S} (\sin\theta S_{1} + \cos\theta S_{2}) \bar{\chi} \chi$$

$$L_{P,DM} = -y_{\chi}^{P} P \bar{\chi} \chi \longrightarrow -y_{\chi}^{P} (\sin\theta A + \cos\theta a) \bar{\chi} \chi$$

Dark Matter Phenomenology

2HDM+S

N. Bell, G. Busoni, I. W. Sanderson; JCAP 08 (2018) 017

G.A. et al; JCAP 03 (2018) 042 F. Ertas and F. Kahlhoefer; JHEP 06 (2019) 052 T. Abe, M. Fujiwara and J. Hisano, JHEP 02 (2019)

Relic Density

P-wave dominated annihilation cross-section.

S-wave dominated annihilation cross-section.

Direct Detection

Sizable (tree-level) Spin Independent DM/nucleon crosssection.

$$\sigma_{\chi p}^{SI} \propto \frac{y_{\chi}^2}{v^2} \sin^2\theta \cos^2\theta \left(\frac{1}{M_{S_1}^2} - \frac{1}{M_{S_2}^2}\right)^2$$

Very suppressed (Spin Dependent-like) tree level cross-section. SI cross induced at the loop level (can be probed by next generation detectors)

2HDM+S Model

N. F. Bell, G. Busoni, I. W. Sanderson JCAP 01 (2018) 015


```
LHCP2022
```

Purpouse of our Study: Can Mono-Z, Mono-h, $\overline{t}t$ signatures probe and possibly discriminate between 2HDM+S/2HDM+PS.

Summary of Combined Constraints

G.A., G. Busoni, T. Hugle, V. Tenorth JHEP 06 (2020) 098, see also T. Robens Symmetry 13 (2021) 12, 2341

Sensitivity to searches of light resonances

S. Argyropoulos and U. Haisch arXiv:2202.12631

Second class of models:

$2HDM+U(1)_X$

G.A., S. Profumo, F. S. Queiroz, C. Siquera JCAP 12 (2020) 030

Third class of models:

Invisible H decay vs Direct Detection

Giorgio Arcadi

LHCP2022

50 100

Vector Dark Matter (dark U(1))

LHCP2022

V DM plus metastable V^3

 $VV \rightarrow V^3V^3$ annihilation allow correct relic density for very heavy H_2 . We can recover the EFT limit.

Conclusions

- Models with extended Higgs sectors provide a nice correlation between DM and LHC searches.
- On one side the feature interesting DM phenomenology, on the other offer peculiar collider signals.

We have provided a brief overview of some interesting examples.

