

Search for low and high mass mediators in ATLAS and CMS with dijet and dilepton events

Niki Saoulidou,

National and Kapodistrian University of Athens, Greece

On behalf of the ATLAS and CMS Collaborations

LHCP2022: 10th Annual Large Hadron Collider Physics Conference, 16-21 May 2022, Virtual (Taiwan)

- Brief Introduction and Motivation
- Hunting for New Mediators@LHC :
 - Decaying to jets
 - Decaying to leptons

(selected recent Run II results will be shown):

• Summary - Outlook

Introduction : SM is incomplete

- Hierarchy Problem : Why is $M_{Pl}/M_{EW} \sim 10^{15.}$
- Unification of Gauge couplings : Why are gauge couplings so different, are they unified at a higher scale? Are there more forces in nature?
- **Origin of generations :** Why do quarks and leptons come in three generations? Are they elementary particles?
- **Gravity :** SM describes three of the four fundamental interactions at the quantum level (microscopically) but gravity is only treated classically.
- **Dark matter :** What is 25% of the Universe made off, and how does it interact with ordinary matter?
- Neutrino masses : What is the origin of neutrino masses?
- **CP Violation :** What is the origin?

New Mediators from a variety of BSM Models

Grand Unified Theories

Extended gauge group models SU(3) x SU(2) x U(1) $\mathcal{W} \rightarrow q \overline{q}$, $Z \rightarrow q \overline{q}$ ($\overline{l}l$)

Vector-like quarks in Little/Composite Higgs Models to solve the Hierarchy Problem

Dark Matter Mediators Leptophilic or leptophobic

Randall-Sundrum **Graviton G** $q\overline{q}, gg \rightarrow G \rightarrow q\overline{q}, gg$

New Mediators from a variety of BSM Models

Quark Compositeness

Excited quarks $qg \rightarrow q^* \rightarrow qg$

Left-Right extensions of the SM explaining the smallness of v masses

Scalar diquarks in renormalizable BSM theories

E6 GUT models contain Scalar diquarks $qq \rightarrow D \rightarrow qq$

SU(3)_C x SU(2)_L x SU(2)_R x U(1)_{B-L}

Doubly charged Higgs $H^{++/--} \rightarrow l^+ l^-$

ATLAS and CMS Experiments

 $\sigma(E)/E \approx 120\%/\sqrt{E(GeV)} \oplus 6.9\%$

Muons

 $\sigma(p_T)/p_T \approx 1\%$ for low pT muons $\sigma(p_T)/p_T \approx 5\%$ for 1 TeV muons

N. Saoulidou, Univ. of Athens, Greece

Muons

 $\sigma(p_T)/p_T < 10$ % up to 1 TeV muons

The LHC Accelerator

CMS Integrated Luminosity Delivered, pp

LHC Accelerator had so far a superb performance. Expecting the same in Run III

Mediators Decaying to Leptons

Dilepton Search for doubly charged Higgses

ATLAS EXOT-2022-010

Final State

2LSS, 3L and 4I

- ➢ ≥2 leptons (2LSS,3L,4L) satisfying quality selection criteria.
- Control (CR), Validation (VR), Signal regions (SR) defined. CR, VR and SRs determined using the invariant mass of the two same-charge leptons with the highest pT.
- Main backgrounds:
 - SM Diboson production estimated from q simulation, and events with fake leptons coming mostly from V+jets/gamma production estimated from data.
- Signal Model:
 - ➢ Left-right symmetric (LRS) models based on $SU(2)_L × SU(2)_R × U(1)_{B-L}$ symmetry, where doubly charged Higgs bosons composes the $SU(2)_{L,R}$ gauge boson triplet.

q

ATLAS EXOT-2022-010

- Maximum likelihood fit in the dilepton mass performed in the three SRs
 - Signal (simulation) and background (simulation and data-driven) templates utilized, and systematics encoded as nuisance parameters.
 - Profile likelihood ratio is the test statistic for limit estimation.

- Reach extended by 300 GeV with respect to the previous results:
 - Lepton flavour violation (LFV) decays allowed connecting high energy searches at LHC with low energy neutrinoless double beta decay ones.
 - The search is broad and the results can be interpreted in several BSM scenarios.

> ≥1 prompt, isolated light lepton (electron or muon) and ≥1 prompt, isolated τ_h .

• Main backgrounds:

ttbar, diboson, Z, Wγ. Estimated from simulation and with data-driven methods for the multijet and W+jets ones.

CMS-EXO-2019-014

• Signal Model:

Addition of an extra U(1) gauge symmetry provides a massive Z' with LFV eµ, eτ, and µτ final states.

Observable

$$x_{\tau}^{\rm vis} = p_{\rm T}^{\rm vis} / (p_{\rm T}^{\rm vis} + p_{\rm T, \, coll}^{\rm miss})$$

$$m_{\rm coll} = m_{\rm vis} / \sqrt{x_{\tau}^{\rm vis}}$$

Results and Interpretations

Bayesian binned-likelihood utilized, with a uniform positive prior probability density for the signal cross section. Nuisance parameters modeled via log-normal distributions for normalization and via "template morphing" for shape. A Markov Chain MC method is used for the integration.

• These are the first results of a high-mass lepton flavor violation search using the full Run II dataset. All results of this search are currently the most stringent limits from any collider experiment.

Mediators Decaying to Jets

Di-b-jet Search

Data-sets : PHYSICAL REVIEW D 105, 012001 (2022) Final State

New trijet trigger deployed in 2017, extending search by 100 GeV.

Main Experimental Signature :

- Four-jet final state, the two leading jets are b-tagged and either the third or the fourth one as well to reduce QCD backgrounds.
- Deep ANN used for b-tagging improving performance at high pT.

• Main backgrounds:

- QCD estimated in a data-driven way using functional decomposition with truncated series.
- Signal Model:
 - Lepton Universality Violating Z' exclusively coupled to the 3rd generation SM fermions.

N. Saoulidou Univ. of Athens, Greece

- Maximum likelihood fit performed
 - Signal (simulation) and background (data-driven prediction) templates utilized, and systematics encoded as nuisance parameters.
 - Profile likelihood ratio is the test statistic for limit estimation.

This model, which can address b-physics "anomalies" is compared with data for the first time.

N. Saoulidou Univ. of Athens, Greece

Main Experimental Signature :

- ➤ Two large-radius (wide) resolved jets, with at least one b-tagged. Three Signal Regions, 1 b-tagged jet, 2 b-tagged jets, 1 jet containing a muon for Z', ≥1 btagged jet for q*
- Main backgrounds
 - Multijet QCD production estimated with a data-driven approach, using a parametric functional form.
- Signal Model:
 - Sequential Standard Model generalized with a Heavy vector triplet (HVT) Z', Compositeness with scale Λ equal to the resonance mass, generic resonances & model independent limits.

CMS-EXO-20-008

Signal Shapes

- Maximum likelihood fit in the dijet mass performed in the SRs
 - Signal (simulation) and background (data-driven prediction) templates utilized, and systematics encoded as nuisance parameters.
 - Profile likelihood ratio is the test statistic for limit estimation.

- New HVT model explored, Z' masses between 1.8 and 2.4 TeV at 95% CL are excluded, coupling limits of the HVT boson to SM bosons and fermions are provided.
- Excited **b** quarks with mass from 1.8 to 4.0 TeV are excluded at 95% CL. This is the most stringent exclusion of excited b quarks to date.

- Main Experimental Signature :
 - Two large-radius (wide) resolved jets considered to encapsulate P₃ and R₂. P₁,P₂,P₃ are gluons
 - Several Signal Regions (SRs) defined, 22 in total, in the m(R₂)/m(P₃) plane.
- Main backgrounds:
 - Multijet QCD production estimated with a data-driven approach, using a parametric functional form.
- Signal Model:
 - Kaluza-Klein Graviton (R₁) decaying to a Radion (R₂) and a gluon (P₃), but search is generic and largely model independent.

- Maximum likelihood fit in the dijet mass performed in the SRs
 - Signal (simulation) and background (data-driven prediction) templates utilized, and systematics encoded as nuisance parameters.
 - Profile likelihood ratio is the test statistic for limit estimation.

• This is the **first dedicated search** for **resonances decaying into three final state** partons **at the LHC** in events **with a boosted resonance**.

N. Saoulidou Univ. of Athens, Greece

Di-tb-jet Search for W'

- Main Experimental Signature :
 - One large-radius (large-R) jet while to capture the top-quark and one a small-radius (small-R) jet to capture the *b* quark, no leptons.
 - Dedicated, optimized DNN top-tagger and a DNN b-tagger used.
 - Several Signal (SR), Control (CR) and Template (TR) Regions utilized. CRs used for background normalization, TRs for background shape estimation.

S EXOT-2021-043

Signal Shapes

• Main backgrounds:

- Multijet QCD production estimated with a data-driven approach and ttbar estimated from simulation.
- Signal Model:
 - Sequential Standard Model with a W' "a replica" of W but with higher mass and right-handed chirality.

N. Saoulidou Univ. of Athens, Greece

ATLAS Simulation Preliminary 0.35 SR1 W'_p mass [GeV] 0.3 1500 0.25 2000 events 3000 0.2 4000 5000 action of 0.15 0.1 0.05 1000 2000 3000 4000 5000 6000 7000 m_{th} [GeV] 20

Results and Interpretations

- Maximum likelihood fit in the dijet mass performed in the three SRs
 - > Signal (simulation) and background (data-driven prediction) templates utilized, and systematics encoded as nuisance parameters.
 - Profile likelihood ratio is the test statistic for limit estimation. >

- Results significantly extend (by ~ 1 TeV) the sensitivity by :
 - Improved top-tagging techniques.
 - > a data-driven multijet background estimate reducing the uncertainty in the background modeling. 21

Main Experimental Signature : Four resolved AK4CHS jets paired to same mass resonances.

- Main backgrounds
 - Multijet QCD production estimated with a data-driven approach, using several a parametric functional forms.
- Signal Model:
 - Diquarks model decaying to pairs of vector-like quarks, which in-turn decay to a quark and a gluon. Search largely model independent.

- Maximum likelihood fit in the dijet mass performed in the SRs
 - Signal (simulation) and background (data-driven prediction) templates utilized, and systematics encoded as nuisance parameters.
 - > Profile likelihood ratio is the test statistic for limit estimation.

- Many powerful new and novel results with the full Run II datasets.
- Reach on analyses with additional data improved beyond luminosity scaling. More results in the pipeline in the near future.
- However, with 140 fb⁻¹ of the anticipated 400 fb⁻¹ for RunII and Run III and 3000 fb⁻¹ (HL-LHC) we have just started hunting for new Mediators.
- Anticipating additional data, we work on improving our detectors, trigger, reconstruction, tagging and analysis methods in order to significantly extend the discovery reach for new physics, and hope/prepare for a discovery in Run III.

Thank you!

Di-fat-jet Search for Vector-like quarks

Final State

ATLAS EXOT-2019-07

- Main Experimental Signature :
 - > ≥2 large-*R* jets with *p*T>350 GeV, $|\eta| < 2.0$ with a mass between [100, 225] GeV, no leptons.
 - ➤ The Signal Region (SR) has one Higgs-boson tagged jet with ≥2 b-tags and one top-quark-tagged jet with ≥1 b-tag.
 - Several Validation Regions (VR), QCD regions, and ttbar Normalization Regions.

Main backgrounds:

- ttbar, multijet QCD production.
 Data-driven estimation from dedicated regions, and with an ABCD-like methodology.
- Signal Model:
 - Little Higss/Composite Higgs models, predicting vector-like quarks.

Event Categories

Leading large-R jet tagging state

- Maximum likelihood fit in the dijet mass performed in the SR and the NR
 - Signal (simulation) and background (data-driven prediction) templates utilized, and systematics encoded as nuisance parameters.
 - Profile likelihood ratio is the test statistic for limit estimation.

- Results significantly extend the sensitivity by :
 - tagging techniques with greater background rejection,
 - a data-driven multijet background estimate reducing the uncertainty in the background modeling.

Di-tb-jet Search for W'

<u>ATLAS EXOT-2021-043</u>

N. Saoulidou Univ. of Athens, Greece

28

Paired Dijet Search

