

Probing the Higgs sector with gravitational waves

Gláuber Carvalho Dorsch

LHCP 2022 Taipei (online), 16th May 2022

Outline

Probing the Higgs sector with gravitational waves

- Electroweak phase transition The bridge between the Higgs and gravitational wave physics
- LISA: the Laser Interferometer Space Antenna ... and the possibility of detecting these GWs
- Probing BSM physics with GWs: a 2HDM example
- Conclusions and outlook

The electroweak phase transition

Cold, nearly empty Universe $(T \approx 0)$

Higgs mechanism proceeds as in textbooks

The electroweak phase transition

Higgs mechanism proceeds as in textbooks

But the early Universe is hot!

Higgs immersed in plasma Thermal corrections to effective potential

The electroweak phase transition

Hindmarsh, Huber, Rummukainen and Weir Phys. Rev. D **92**, 123009

Collisions break spherical symmetry ↓ quadrupole moment (sources GWs)! (kinetic energy, sound waves, turbulence)

LIGO noise budget (LIGO Document T1800044-v5)

LISA Laser Interferometer Space Antenna

LISA: Laser Interferometer Space Antenna

Astro2020 Whitepaper, arXiv:1907.06482 [astro.ph-IM]

G. C. Dorsch (UFMG)

LHCP 2022 6 / 17

GWs as complementary probes of BSM physics

Accurate prediction of spectrum from BSM test BSM physics with GWs!

Key parameters:

• $\alpha \equiv \frac{\text{energy released}}{\text{total energy in radiation}}$

• $\beta^{-1} \equiv$ characteristic timescale • $\beta^{-1} \equiv$ of phase transition; $\Gamma = \Gamma_* e^{-\beta (t-t_*)}$

• $T_* \equiv \text{temperature}$

• $v_w \equiv$ velocity of bubble expansion

A CONCRETE EXAMPLE: THE 2HDM CASE

Caprini, Chala, GCD et al., JCAP 03 (2020) 024

• Minimal SM extensions:

- Two $SU(2)_L$ scalar doublets: Φ_1 and Φ_2 .
- ▶ Motivated by many SM extensions (e.g. SUSY, Composite Higgs).
- ▶ Various heavy scalars (h_0, H_0, A_0, H^{\pm}) increase EWPT strength.
- ▶ 7 parameters: 4 scalar masses, overall mass scale of Φ_2 , 2 mixing angles

• Minimal SM extensions:

- Two $SU(2)_L$ scalar doublets: Φ_1 and Φ_2 .
- ▶ Motivated by many SM extensions (e.g. SUSY, Composite Higgs).
- ▶ Various heavy scalars (h_0, H_0, A_0, H^{\pm}) increase EWPT strength.
- ▶ 7 parameters: 4 scalar masses, overall mass scale of Φ_2 , 2 mixing angles

Caprini, Chala, GCD et al., JCAP 03 (2020) 024

• Minimal SM extensions:

- Two $SU(2)_L$ scalar doublets: Φ_1 and Φ_2 .
- ▶ Motivated by many SM extensions (e.g. SUSY, Composite Higgs).
- ▶ Various heavy scalars (h_0, H_0, A_0, H^{\pm}) increase EWPT strength.
- ▶ 7 parameters: 4 scalar masses, overall mass scale of Φ_2 , 2 mixing angles

Caprini, Chala, GCD et al., JCAP 03 (2020) 024

• Minimal SM extensions:

- Two $SU(2)_L$ scalar doublets: Φ_1 and Φ_2 .
- ▶ Motivated by many SM extensions (e.g. SUSY, Composite Higgs).
- ▶ Various heavy scalars (h_0, H_0, A_0, H^{\pm}) increase EWPT strength.
- ▶ 7 parameters: 4 scalar masses, overall mass scale of Φ_2 , 2 mixing angles

Caprini, Chala, GCD et al., JCAP 03 (2020) 024

G. C. Dorsch (UFMG)

LHCP 2022 9 / 17

See also Kling, Su and Su, JHEP 06 (2020) 163

Orange: 2HDM Type-II excluded at LHC (but not Type-I) Blue: Not excluded by LHC

G. C. Dorsch (UFMG)

Higgs and gravitational waves

LHCP 2022 10 / 17

LHCP 2022 11 / 17

BUBBLE WALL VELOCITY:

A COMMENT ON RECENT DEVELOPMENTS

G. C. Dorsch (UFMG)

Higgs and gravitational waves

LHCP 2022 12 / 17

Bubble wall velocity and Boltzmann equation

GCD, Huber, Konstandin, JCAP 04 (2022) 04, 010

GW spectrum determined by 4 thermodynamical parameters:

 T_*

equilibrium physics analysis of free-energy and

 v_{m}

non-equilibrium

Bubble wall velocity and Boltzmann equation

GCD, Huber, Konstandin, JCAP 04 (2022) 04, 010

GW spectrum determined by 4 thermodynamical parameters:

Bubble wall velocity and Boltzmann equation

GCD, Huber, Konstandin, JCAP 04 (2022) 04, 010

GW spectrum determined by 4 thermodynamical parameters:

Current debate: continuous vs. discontinuous friction

Konstandin, Nardini, Rues, JCAP 09 (2014) 028

$$f(x,p) = \frac{1}{e^{\beta p^{\mu}(u_{\mu} + \delta u_{\mu}) - \mu} \pm 1}$$
Moore, Prokopec, PRD 52 (1995) 7182
3 fluctuations: μ , $\delta u_0 \equiv \delta T/T$, $\delta u_z \equiv \delta v$
Discontinuous friction

$$u = \frac{1}{e^{\beta p^{\mu}(u_{\mu} + \delta u_{\mu}) - \mu} \pm 1}$$

$$u = \frac{1}{e^{\beta p^{\mu}(u_{\mu} + \delta u_{\mu}) - \mu} \pm 1}$$

$$u = \frac{1}{e^{\beta p^{\mu}(u_{\mu} + \delta u_{\mu}) - \mu} \pm 1}$$

$$u = \frac{1}{e^{\beta p^{\mu}(u_{\mu} + \delta u_{\mu}) - \mu} \pm 1}$$

$$u = \frac{1}{e^{\beta p^{\mu}(u_{\mu} + \delta u_{\mu}) - \mu} \pm 1}$$

$$u = \frac{1}{e^{\beta p^{\mu}(u_{\mu} + \delta u_{\mu}) - \mu} \pm 1}$$

$$u = \frac{1}{e^{\beta p^{\mu}(u_{\mu} + \delta u_{\mu}) - \mu} \pm 1}$$

$$u = \frac{1}{e^{\beta p^{\mu}(u_{\mu} + \delta u_{\mu}) - \mu} \pm 1}$$

$$u = \frac{1}{e^{\beta p^{\mu}(u_{\mu} + \delta u_{\mu}) - \mu} \pm 1}$$

$$u = \frac{1}{e^{\beta p^{\mu}(u_{\mu} + \delta u_{\mu}) - \mu} \pm 1}$$

$$u = \frac{1}{e^{\beta p^{\mu}(u_{\mu} + \delta u_{\mu}) - \mu} \pm 1}$$

$$u = \frac{1}{e^{\beta p^{\mu}(u_{\mu} + \delta u_{\mu}) - \mu} \pm 1}$$

$$u = \frac{1}{e^{\beta p^{\mu}(u_{\mu} + \delta u_{\mu}) - \mu} \pm 1}$$

$$u = \frac{1}{e^{\beta p^{\mu}(u_{\mu} + \delta u_{\mu}) - \mu} \pm 1}$$

$$u = \frac{1}{e^{\beta p^{\mu}(u_{\mu} + \delta u_{\mu}) - \mu} \pm 1}$$

$$u = \frac{1}{e^{\beta p^{\mu}(u_{\mu} + \delta u_{\mu}) - \mu} \pm 1}$$

$$u = \frac{1}{e^{\beta p^{\mu}(u_{\mu} + \delta u_{\mu}) - \mu} \pm 1}$$

$$u = \frac{1}{e^{\beta p^{\mu}(u_{\mu} + \delta u_{\mu}) - \mu} \pm 1}$$

Current debate: continuous vs. discontinuous friction

Fluid Ansatz (90's)

$$f(x,p) = \frac{1}{e^{\beta p^{\mu}(u_{\mu} + \delta u_{\mu}) - \mu} \pm 1}$$
Moore, Prokopec, PRD 52 (1995) 7182
3 fluctuations: μ , $\delta u_0 \equiv \delta T/T$, $\delta u_z \equiv \delta v$
Discontinuous friction

$$\int_{0}^{\infty} \frac{du_0}{u_0} = \int_{0}^{\infty} \int_{0}^{0} \int_{0}^{0}$$

$$\begin{aligned} & \text{Recently proposed} \\ & f(x,p) = \frac{1}{e^{\beta p^{\mu} u_{\mu} - \mu} \pm 1} + \delta f \\ & \stackrel{Cline, Kainulainen}{PRD \ 101 \ (2020) \ 063525} \\ & ad \ hoc \ factorization \ property: \\ & \langle X\delta f \rangle \sim \left\langle \frac{p_z}{E} \delta f \right\rangle \times \int d^3 p \ \frac{E}{p_z} X \ f_{eq} \\ & \text{Leaves 2 fluctuations: } \mu \ and \ u \equiv \langle (p_z/E) \delta f \rangle \end{aligned}$$

OF

NF

0.05

0.04

Laurent, Cline, PRD 102 (2020) 063516

Could the discontinuity be an artifact of truncating the fluid Ansatz (i.e. including only 3 perturbations)?

Extended fluid Ansatz

Extended fluid Ansatz

Extended fluid Ansatz

 v_{m}

 $a = \times 10^{-3}$

$$f(x,p) = \frac{1}{e^{\beta p^{\mu} u_{\mu} + \delta} \pm 1}$$
with

$$\delta = w^{(0)} + p^{\mu} w^{(1)}_{\mu} + p^{\mu} p^{\nu} w^{(2)}_{\mu\nu} + \cdots$$
Linearized Boltzmann equation

$$p^{\mu} \partial_{\mu} \delta f_i(x^{\mu}, p^{\mu}) = S[f_j] + C[f_j]$$

$$\downarrow$$

$$A \cdot q' + \Gamma \cdot q = S$$
with $q = (w^{(0)}, w^{(1)}_0, w^{(1)}_z, \ldots)^T$
Important!
A discontinuity is expected
from energy-momentum

conservation!

Discontinuity recovered in non-linearized approaches Laurent, Cline, arXiv:2204.13120 0.2

0.0

0.2

0.4

v

LHCP 2022 16 / 17

 $\frac{v_+v_-}{1/3} = \frac{1/3}{1/3}$

0.8

1.0

1.0

Conclusions

- We live in a golden age for Cosmology (precision measurements, GW detection, new experiments in sight...)
- Cosmological observations can be used to constrain BSM Particle Physics. The Early Universe reached higher energies than any accelerator we could dream of building in the foreseeable future.
- The study of the EWPT provides a rich Particle-Cosmology interface.
 EW epoch ↔ physics @ EW scale (relevant at current colliders!)
- Room for improvement in estimate of thermodynamical parameters
- Application of extended fluid Ansatz to specific models (computation of v_w from first principles)
- Improvement in implementation (collision terms) and solution of Boltzmann equation

Conclusions

- We live in a golden age for Cosmology (precision measurements, GW detection, new experiments in sight...)
- Cosmological observations can be used to constrain BSM Particle Physics. The Early Universe reached higher energies than any accelerator we could dream of building in the foreseeable future.
- The study of the EWPT provides a rich Particle-Cosmology interface.
 EW epoch ↔ physics @ EW scale (relevant at current colliders!)
- Room for improvement in estimate of thermodynamical parameters
- Application of extended fluid Ansatz to specific models (computation of v_w from first principles)
- Improvement in implementation (collision terms) and solution of Boltzmann equation

THANK YOU!

APPENDICES

LISA Science Objectives

LISA Mission Proposal L3

Collision terms

coll.
$$\sim \delta_p + \delta_k - \delta_{p'} - \delta_{k'}$$

Annihilations
$$|\mathcal{M}|^2 \sim -g_s^4 \frac{st}{(t-m_q^2)^2}$$

 $t = -2p \cdot p' = -2|\mathbf{p}||\mathbf{p}'| \cos \theta_{pp'}$

$$\begin{split} \int_p p^\mu \dots p^\nu \mathcal{C}[f] &\simeq \int_p \int_k \int_{p'} \int_{k'} \frac{st}{(t - m_q^2)^2} \delta^4(\dots) p^\mu \dots p^\nu f_p f_k(1 \pm f_{p'})(1 \pm f_{k'}) \times \\ & \times \left[\dots + w_{\rho\sigma}^{(2)}(p^\rho p^\sigma + k^\rho k^\sigma) + \dots \right] \end{split}$$

Results: Supersonic baryogenesis

G. C. Dorsch (UFMG)

Higgs and gravitational waves

LHCP 2022 4 / 5

Results: small v_w

G. C. Dorsch (UFMG)