Searches for Higgs boson decays to invisible particles in ATLAS and CMS

Laurent Thomas, on behalf of the ATLAS and CMS collaborations

LHCP 2022

L. Thomas (ULB)

 $H \rightarrow invisible$ searches at ATLAS and CMS

May 16th, 2022 1/16

Higgs as a dark matter portal

- In the Standard Model $\mathcal{BR}(H o ZZ o 4
 u)$: 0.1%
- Many dark matter scenarios consider a DM candidate coupling to the Higgs.
 - If $m_{DM} < \frac{m_H}{2}$ direct contribution to the H decay.
 - $\mathcal{BR} O(10\%)$ are possible.
- At colliders, need for visible particles recoiling against the invisible Higgs.
 - Common signature: significant missing transverse momentum (MET).
- ATLAS and CMS probing all production modes.
 - Will review their latest results based on the full Run 2 dataset in the next slides.

- Select events with a pair of jets with large angular separation $(\Delta \eta_{jj})$ and large invariant mass m_{jj}
- Lepton/photon veto.
- \circ High MET (\gtrsim 200 GeV) due to trigger constraint and to reject QCD events with mismeasured jets.
- Low $|\Delta \phi(jj)|$ cut to reduce QCD background further.
- Main remaining backgrounds: $Z(\nu\nu)$ +jets (strong and electroweak production), $W(l\nu)$ +jets with lost lepton.

L. Thomas (ULB)

Similar strategy in ATLAS/CMS:

- Simultaneous fit on m_{jj} distribution in both the signal region (SR, no lepton) and control regions (CR, 1 or 2 e/μ , enriched in $W(l\nu)/Z(ll)$)
- CMS also includes a γ +jets CR to improve stat. at high m_{jj}
- ATLAS uses several bins in number of extra jets
- Both separate between medium and high MET.

$$\begin{split} \mathbb{P} & \left\{ \boldsymbol{\theta} \right\} = \prod_{i} \mathbb{P} \left(d_{i}^{i} \Big| B_{i}(\boldsymbol{\theta}) + \left[\boldsymbol{Z}_{i}^{i} \left| \boldsymbol{\kappa}_{i}^{i \forall \uparrow} \right] + \left[\boldsymbol{W}_{i}^{i} \Big| \boldsymbol{\kappa}_{i}^{i \forall \uparrow} \right] + \boldsymbol{\theta} \right\}_{i}(\boldsymbol{\theta}) \right) \\ & \prod_{CR} \left(\prod_{i} \mathbb{P} \left(d_{i}^{CR} \Big| B_{i}^{CR}(\boldsymbol{\theta}) + \left[\boldsymbol{V}_{i}^{CR, \text{strong}} \right] \left| \boldsymbol{\kappa}_{i}^{i \forall \uparrow}, \boldsymbol{\theta} \right] + \left[\boldsymbol{V}_{i}^{CR, \text{VH}} \right] \left| \boldsymbol{\kappa}_{i}^{i \forall \uparrow}, \boldsymbol{\theta} \right] \right) \right) \end{split}$$

EWK and/or VBF W/y/Z contributions expressed as Z-+vv (strong) yields times transfer factors taken from simulations

Z--vv (VBF) /Z--vv (strong) contribution Z--W transfer factor CR--SR transfer factor

Channel dependent factors (1 for $ee/\mu\mu$)

CMS likelihood

 $\mathcal{L}(u,\kappa)$

- V+jets: High order corrections applied to simulation to accurately describe the m_{jj} distribution ratios in W/Z+jets.
- Remaining QCD contribution from events with large $|\Delta \phi(jj)|$
- ATLAS: dedicated validation region defined with intermediate $|\Delta \phi(jj)|$ condition
- CMS: noise in the forward calorimeter (HF) reduced and estimated by the use of dedicated jet shower shape variables.

VBF (ATLAS+CMS): Results

- Data compatible with SM expectation
- Observed 95% CL limit: $\mathcal{BR}(H \rightarrow \text{invisible}) < 0.145$ (ATLAS), 0.18 (CMS)
- Similar exp. limit at 0.10.
- By far the most sensitive production mode for $H
 ightarrow {
 m invisible}$
- Interpretations in terms of DM candidate mass m_{DM} .
 - Outperforms direct searches experiments for $m_{DM} \lesssim 10$ GeV.

VBF (ATLAS+CMS): High *m_{ii}* events

arXiv:2202.07953, arXiv:2201.11585

Yellow cones: jets, red/purple arrow: MET

L. Thomas (ULB)

- Similar event selection than above with the presence of an additional medium p_T photon (15-110 GeV)
- First time this signature is probed in the context of $H
 ightarrow {
 m invisible}$
 - Deep Neural Network trained using 8 most significant kinematic features (incl. $\Delta\eta(jj)$, MET, m_{jj})
 - 95%CL upper limit on $\mathcal{BR}(H \rightarrow \text{invisible}) < 0.37 \ (0.34^{+0.15}_{-0.10} \text{ exp.})$
- Also searching for new Higgs boson decaying into a photon and a dark photon
 - Signal extracted from photon+MET transverse mass.

- Select events with \geq 1 high p_T (> 150 GeV) central jet and p_T^{recoil} (= MET in SR) > 200 GeV
- Loose jet identification condition (e.g. on charged energy fraction) to remove fake jets from non collision backgrounds, detector noise.
- Similarly to VBF, simultaneous fit on SR (0 lepton) and CR (1 or 2 leptons) to constrain backgrounds.
- Systematic uncertainties at the same level as statistical one, up to p_T^{recoil} of 1 TeV.
- 95%CL upper limit on $\mathcal{BR}(H \rightarrow \text{invisible}) < 0.34 \ (0.39^{+0.16}_{-0.11} \text{ exp.})$

9/16

arXiv:2102.10874

ggH (boosted) and V(qq)+H (CMS)

arXiv:2107.13021

- Similar analysis performed by CMS, additionally targeting W/Z(qq) + H.
- Selecting high radius "AK8" jets (anti- k_T with R=0.8)
- DNN tagger "DeepAK8" to identify a two-prong substructure compatible with $W/Z \rightarrow qq$.
- Three categories based on DeepAK8 score and jet soft-drop mass (∈/∉ [65,120]).
- 95%CL upper limit on $\mathcal{BR}(H \to \mathrm{invisible}) < 0.28$ (0.25 exp.)

- Requires one reconstructed $Z(ee)/(\mu\mu)$.
- b-tagged jet veto (to suppress $t\overline{t}$)
- CMS: fit to the MET distribution (separately for events with 0 or 1 jet)
- ATLAS: fit to output of BDT trained with 8 variables.
- ATLAS/CMS: Simultaneous fit to SR (2 leptons) + CR with 3 or 4 leptons to constrain $ZZ(2/2\nu)$ and $WZ(1/3\nu)$ with lost lepton (ATLAS: also $e\mu$ CR)
- Main uncertainty from background (mostly ZZ) modelling at high MET.

Uncertainty source	ΔB [%]
Statistical uncertainty	5.1
Systematic uncertainties	7.4
Theory uncertainties	4.9
Signal modelling	0.4
ZZ modelling	4.4
Non- ZZ background modelling	2.1
Experimental uncertainties (excl. MC stat.)	4.6
Luminosity, pile-up	1.5
Jets, E_{T}^{miss}	4.0
Flavour tagging	0.4
Electrons, muons	1.2
MC statistical uncertainty	1.6
Total uncertainty	9.0

$Z(I\overline{I}) + H$ (ATLAS+CMS): results

• $\mathcal{BR}(H \to \mathrm{invisible}) < 0.19$ at 95%CL (0.19 exp.) by ATLAS and < 0.29 (0.25 exp.) by CMS

- Reinterpretation of previously published searches for new physics with a tt
 pair and MET in 0, 1, 2 lepton channels, primarily focusing on TeV particles.
- Each channel defines several SR based on the event content and its kinematics
- 0 lepton channel completed with a lower MET region accessible through MET+b-tagged jet triggers.
- Exclusion significantly improved with the combination.

Analysis	Best fit $\mathcal{B}_{H \to inv}$	Observed upper limit	Expected upper limit	Reference
ttOL	$0.48^{+0.27}_{-0.27}$	0.95	$0.52^{+0.23}_{-0.16}$	[27], this document
tt1L	$-0.04^{+0.35}_{-0.29}$	0.74	$0.80^{+0.40}_{-0.26}$	[28], this document
tt2L	$-0.09\substack{+0.22\\-0.20}$	0.39	$0.42^{+0.18}_{-0.12}$	[29], this document
tīH comb.	$0.08\substack{+0.16 \\ -0.15}$	0.40	$0.30_{-0.09}^{+0.13}$	This document

- Earlier ATLAS has also released an early combination of the VBF and $t\overline{t}H$ (0 lepton, 2 leptons) channels, also combining Run 1 and Run 2
- This illustrates the interest/feasibility of combinations.
- Limits still very driven by VBF Run 2 but missing $t\overline{t}H \ 1$ lepton... and other production modes !

Phase 2 projections

- Study of the CMS sensitivity reach to the VBF channel with HL LHC integrated luminosity
- Simplified analysis: consider events with m_{jj} >2.5 TeV, MET>200 GeV
- Set limits as a function of MET threshold
- Expect to reach $\mathcal{BR}(H \to \mathrm{invisible}) < 0.038$ at 95%CL
- ATLAS + CMS, VBF+ZH combination could reduce this down to 2.5%
- N.B. Current expected limit (VBF only, 13 TeV, \approx 150 fb⁻¹) already at 0.1 !
 - The challenge will be to deal with systematic uncertainties.

L. Thomas (ULB)

May 16th, 2022 15/16

Summary

- Invisible decay of the Higgs is a natural place to look for new physics and in particular for dark matter
- All Higgs production channels (even rare ones such as VBF+ γ) are being studied by ATLAS or CMS
- Now probing $\mathcal{BR}(H \to \text{invisible}) \approx 10\%$ with VBF.
- Combination efforts are ramping up.
- More data to come in Run 3 and Phase 2 will significantly increase our sensitivity reach... if one manages to tackle systematic uncertainties !

References:

- VBF ATLAS: arXiv:2202.07953 (submitted to JINST)
- VBF CMS: arXiv:2201.11585 (accepted in Phys. Rev. D)
- VBF $+\gamma$ ATLAS: arXiv:2109.00925 (Eur. Phys. J. C 82 (2022) 105)
- ggF ATLAS: arXiv:2102.10874 (Phys. Rev. D 103 (2021) 112006)
- ggF and V(qq)+H CMS: arXiv:2107.13021 (JHEP 11 (2021) 153)
- Z(II)+H ATLAS: arXiv:2111.08372 (Phys. Lett. B 829 (2022) 137066)
- Z(II)+H CMS: arXiv:2008.04735 (Eur. Phys. J. C 81 (2021) 13)
- tī+H combination ATLAS: ATLAS-CONF-2022-007 (http://cdsweb.cern.ch/record/2805211)
- tt+H combination ATLAS: ATLAS-CONF-2020-052 (http://cdsweb.cern.ch/record/2743055)
- HL-LHC projection CMS: CMS-PAS-FTR-18-016 (https://cds.cern.ch/record/2647700)