

Top EFT at CMS

Jon S. Wilson on behalf of the CMS Collaboration

Baylor University

Large Hadron Collider Physics Conference 17 May 2022

- Effective Field Theory (EFT) is a model-independent approach to physics beyond the standard model
- Assume that new physics exists at some scale Λ beyond the current reach of experiments
- Enumerate all renormalizable terms in the Lagrangian, ordered by their mass dimension
- Multiply terms up to some maximum mass dimension by vector of Wilson coefficients
- SM corresponds to all coefficients at zero
- Analyses measure coefficients

The EFT Langrangian

$$\mathcal{L} = \mathcal{L}_{\mathsf{SM}} + \sum_{d=4}^{\infty} \sum_{i} rac{1}{\Lambda^{d-4}} c_{i}^{(d)} \mathcal{O}_{i}^{(d)}$$

where *d* is the mass dimension, $c_i^{(d)}$ is a Wilson coefficient, and $\mathcal{O}_i^{(d)}$ is a renormalizable operator

Historical / other EFTs include

- Fermi's theory of beta decay
- BCS theory of superconductivity
- many others, especially in condensed matter physics

- The EFT most useful for top quark physics at CMS is the standard model EFT, or SMEFT
- Usually look at dimension-6 operators
 - ▶ The SM already contains dimension-2 and -4 operators
 - Only one dimension-5 operator exists, which provides neutrino mixing
 - The fun stuff starts at dimension-6
- ▶ Need a useful basis for the vector space of dim-6 Wilson coefficients
- ▶ Most commonly used is "Warsaw basis" [JHEP 10 (2010) 085]
- ▶ 63 total operators, of which 4 produce baryon-number violation
- Implemented for MC as "dim6top" [https://feynrules.irmp.ucl.ac.be/wiki/dim6top]
- Other bases sometimes used when more convenient for specific analyses

EFT Overview

- Operators may alter rates/spectra for SM processes directly or via interference (diagrams on left)
- Or allow SM-forbidden processes (below)
 - Make precision top measurements and perform searches involving top to constrain top-related Wilson coefficients

- Measure $t\bar{t}Z/t\bar{t}H$ when $p_T(Z/H)$ is large
- EFT effects more pronounced at high $p_T(Z/H)$
- Select events with one charged lepton, missing p_T , and jets
- ▶ Reconstruct Z/H as single $b\bar{b}$ -tagged large-radius jet
- Most important background is $t\bar{t} + b\bar{b}$
- ► Measure 8 WCs: $c_{t\varphi}$, $c_{\varphi Q}^{-}$, $c_{\varphi Q}^{3}$, $c_{\varphi t}$, $c_{\varphi tb}$, c_{tW} , c_{bW} , c_{tZ}

 NN trained to distinguish ttZ/H from backgrounds

- Divide events among bins as functions of NN score, Z/H jet mass, and p_T(Z/H)
 - $p_T(Z/H)$ provides EFT sensitivity
 - ► NN score provides a high-purity region
 - Z/H jet mass provides sidebands to help control backgrounds

Showing 2016 as example; fit to three years simultaneously

Boosted *ttZ/ttH* CMS-PAS-TOP-21-003

- ► Vary the tt̄Z/H signal and tt̄ + bb̄ background as functions of the WCs
- Perform 1-D and 2-D likelihood scans for each WC and pair of WCs
- Consistent with SM (all WCs zero) at 95% CL
- Novel phase space with highly-boosted Z/H
- Complementary to other analyses
- Comparable sensitivity

JHEP 03 (2020) 056, ttZ, 77.5 fb⁻¹ JHEP 03 (2021) 095, ttZ/W/H, 41.5 fb⁻¹ JHEP 12 (2021) 083, t(t)Z, 138 fb⁻¹ arXiv:2201.07301. ttx. 138 fb⁻¹ This work, boosted ttZ/H, 138 fb⁻¹ 10 20 30 40 50 95% CL interval [TeV⁻²]

Jon Wilson (BU)

Top EFT at CMS

LHCP 2022 8 / 14

arXiv:2201.07301 (Accepted by JHEP)

- $t\bar{t}\gamma$ production in dilepton final state
- Measure differential cross section as function of p_T(γ)
- Non-prompt photon background estimated from data in a sideband region
- Other backgrounds estimated from MC and validated in a separate control region
- See CMS ttX/tX talk Wednesday by Carlos Vico Villalba in Top Physics 3

Dileptonic $t\bar{t}\gamma$

B

- Differential cross section used to constrain Wilson coefficients c_{tZ} and c^I_{tZ}
- WCs $c_{t\gamma}$ and $c_{t\gamma}^{I}$ also explored, but are degenerate with c_{tZ}/c_{tZ}^{I} in this analysis
- 1-D and 2-D likelihood scans; showing 2-D scan here
- Combine result with JHEP 12 (2021) 180: $t\bar{t}\gamma$ in lepton+jets final state
- Results consistent with the SM

- Differential cross section used to constrain Wilson coefficients c_{tZ} and c^I_{tZ}
- WCs $c_{t\gamma}$ and $c_{t\gamma}^{I}$ also explored, but are degenerate with c_{tZ}/c_{tZ}^{I} in this analysis
- 1-D and 2-D likelihood scans; showing 2-D scan here
- Combine result with JHEP 12 (2021) 180: $t\bar{t}\gamma$ in lepton+jets final state
- Results consistent with the SM

Events 10^t

10⁵

10⁴

10³

10²

-04

b-iet

- Search for charged lepton flavor violation with top
- ► Forbidden in SM, so no EFT-SM interference
- $e\mu tq$ vertex in production or decay
- ► Sensitive to WCs c_{eµtc} and c_{eµtu}, in scalar, vector, and tensor variants
- Select events with opposite-charge $e\mu$ and jets
- Use a BDT to separate signal from BG
- $e\mu tc$ and $e\mu tu$ very similar

Jon Wilson (BU)

0.1 0.2 0.3

-0.3 -0.2 -0.1

Data Other

 $e\mu tc$ -Vector \times 10 $e\mu tu$ -Vector

0.4 0.5

BDT discriminant

0.6

Vertex	Int.	Cross section [fb]		$C_{e\mu tq}/\Lambda^2$ [TeV $^{-2}$]		$B(10^{-6})$	
	type	Exp	Obs	Exp	Obs	Exp	Obs
	Vector	7.02	6.78	0.12	0.12	0.14	0.13
eµtu	Scalar	5.63	6.25	0.23	0.24	0.06	0.07
	Tensor	10.01	9.18	0.07	0.06	0.27	0.25
	Vector	11.21	9.73	0.39	0.37	1.49	1.31
eμtc	Scalar	9.11	8.88	0.87	0.86	0.91	0.89
	Tensor	21.02	17.22	0.24	0.21	3.16	2.59

- No sign of charged lepton flavor violation
- Set limits on cross sections
- Scalar, vector, tensor contribute differently to production vs. decay
- Scalar cross section limits strongest, tensor weakest
- Translate into branching ratio exclusions
- Excluded region above and right of curves

 Near-degeneracy of BDT shapes makes exclusion curves nearly straight lines

- ► EFT interpretation
- Exclusion in c_{eµtc}-c_{eµtu} plane above, right of curves
- Hierarchy among scalar, vector, tensor scenarios reversed
- Near-degeneracy, plus zero interference between *eµtc* and *eµtu*, makes exclusion curves nearly ellipses
 - Sensitive to roughly $c_{e\mu tc}^2 + c_{e\mu tu}^2$
- World's strongest limits on charged lepton flavor violation in top sector

- ▶ EFT is a powerful tool for studying the dynamics of the top sector
- And for searching for signs of new physics
- Model independent and amenable to combinations and global fits
- CMS has produced total of 13 top EFT publications in Runs 1 and 2, and many more are on the way
- Including three presented today
 - $t\bar{t}Z$ and $t\bar{t}H$ with highly-boosted Z or H
 - $t\bar{t}\gamma$ in the dilepton final state
 - \blacktriangleright Charged lepton flavor violation in opposite-charge $e\mu$ final state

Backup: Boosted $t\overline{t}Z/H$

Operator	Definition	WC
$O_{\mathbf{u}\varphi}^{(ij)}$	$\overline{\mathbf{q}}_{i}\mathbf{u}_{j}\widetilde{\varphi}\left(\varphi^{\dagger}\varphi ight)$	$c_{\mathrm{t}arphi}+ic_{\mathrm{t}arphi}^{I}$
$O_{arphi \mathrm{q}}^{1(ij)}$	$(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi) (\overline{\mathbf{q}}_{i} \gamma^{\mu} \mathbf{q}_{j})$	$c_{\varphi Q}^{-} + c_{\varphi Q}^{\dot{3}}$
$O^{3(ij)}_{arphi \mathrm{q}}$	$(\varphi^{\dagger} \overleftrightarrow{iD}_{\mu}^{I} \varphi) (\overline{\mathrm{q}}_{i} \gamma^{\mu} \tau^{I} \mathrm{q}_{j})$	$c_{\varphi Q}^3$
$O^{(ij)}_{arphi \mathrm{u}}$	$(\varphi^{\dagger} i \overrightarrow{D}_{\mu} \varphi) (\overline{\mathbf{u}}_{i} \gamma^{\mu} \mathbf{u}_{j})$	$C_{\varphi t}$
${}^{\dagger}O_{\varphi \mathrm{ud}}^{(ij)}$	$(ilde{arphi}^{\dagger}iD_{\mu}arphi)(\overline{\mathrm{u}}_{i}\gamma^{\mu}\mathrm{d}_{j})$	$c_{arphi ext{tb}} + i c_{arphi ext{tb}}^{I}$
$O_{\rm uW}^{(ij)}$	$(\overline{\mathrm{q}}_i \sigma^{\mu u} au^I \mathrm{u}_j) ilde{arphi} \mathrm{W}^I_{\mu u}$	$c_{\mathrm{tW}} + i c_{\mathrm{tW}}^{I}$
$O_{ m dW}^{(ij)}$	$(\overline{\mathbf{q}}_i \sigma^{\mu u} \tau^I \mathbf{d}_j) \ \varphi \mathbf{W}^I_{\mu u}$	$c_{ m bW}+ic^{I}_{ m bW}$
$^{\ddagger}O_{uB}^{(ij)}$	$(\overline{\mathbf{q}}_i \sigma^{\mu u} \mathbf{u}_j) \tilde{\varphi} \mathbf{B}_{\mu u}$	$(\mathcal{C}_{\mathrm{W}}c_{\mathrm{tW}} - c_{\mathrm{tZ}})/\mathcal{S}_{\mathrm{W}} + i(\mathcal{C}_{\mathrm{W}}c_{\mathrm{tW}}^{I} - c_{\mathrm{tZ}}^{I})/\mathcal{S}_{\mathrm{W}}$

Missing transverse momentum	$p_{\rm T}^{\rm miss} > 20 { m GeV}$
	$p_{\rm T}({\rm e}) > 30 \ (35 {\rm GeV})$ in 2016 (2017 and 2018)
=1 electron or muon	$p_{\mathrm{T}}(\mu) > 30\mathrm{GeV}$
	$ \eta(\mathbf{e}) < 2.5, \eta(\mu) < 2.4$
>1 AVP int	$p_{ m T} > 200 { m GeV}, \eta < 2.4$
≥1 ARo jet	$50 < m_{ m SD} < 200 { m GeV}$
=1 Z or Higgs boson candidate AK8 jet	Highest $b\overline{b}$ tagger score (>0.8)
\geq 5 AK4 jets (may overlap AK8 jet)	$p_{\rm T} > 30 {\rm GeV}, \eta < 2.4$
>2 h to good AVA jots	Satisfy medium DeepCSV b-tag requirements
≥2 D-lagged AN4 jets	$\Delta R(Z \text{ or Higgs boson candidate AK8 jet}) > 0.8$

Boosted $t\bar{t}Z/H$ Jet mass

Boosted $t\bar{t}Z/H$ 2017 data

Boosted $t\bar{t}Z/H$ 2018 data

Jon Wilson (BU)

₿ı

Signal strength	Observed $\pm 1\sigma$	Stat.	MC Stat.	Experiment	Theory	Expected $\pm 1\sigma$
$\mu_{tar{t}Z}$	$0.65\substack{+1.05 \\ -0.98}$	$^{+0.80}_{-0.76}$	$^{+0.37}_{-0.38}$	$^{+0.38}_{-0.31}$	$\substack{+0.42\\-0.38}$	$1.00\substack{+0.92 \\ -0.84}$
$\mu_{t\bar{t}H}$	$-0.33\substack{+0.87\\-0.85}$	$^{+0.72}_{-0.65}$	$^{+0.32}_{-0.34}$	$\substack{+0.19\\-0.17}$	$^{+0.30}_{-0.38}$	$1.00\substack{+0.79\\-0.73}$

Source of uncertainty	$\Delta \mu_{\mathrm{t} \mathrm{\bar{t}} \mathrm{Z}}$	$\Delta \mu_{t\bar{t}H}$
$t\bar{t} + c\bar{c}$ cross section	$^{+0.24}_{-0.22}$	$^{+0.17}_{-0.16}$
$t\bar{t} + b\overline{b}$ cross section	$^{+0.17}_{-0.23}$	$^{+0.15}_{-0.22}$
$t\bar{t} + 2b$ cross section	$^{+0.03}_{-0.03}$	$\substack{+0.10\\-0.10}$
$\mu_{ m R}$ and $\mu_{ m F}$ scales	$\substack{+0.19\\-0.14}$	$\substack{+0.10\\-0.16}$
Parton shower	$\substack{+0.15\\-0.16}$	$^{+0.06}_{-0.05}$
Top quark $p_{\rm T}$ modeling in t ${ar t}$	$^{+0.01}_{-0.01}$	$^{+0.11}_{-0.13}$
b-tag efficiency	$^{+0.25}_{-0.13}$	$^{\mathrm{+0.10}}_{\mathrm{-0.11}}$
bb-tag efficiency	$\substack{+0.17\\-0.12}$	$^{+0.04}_{-0.03}$
Jet energy scale and resolution	$\substack{+0.11\\-0.10}$	$^{+0.11}_{-0.12}$
Jet mass scale and resolution	$^{+0.10}_{-0.11}$	$^{+0.08}_{-0.08}$

		1	
	3	ŀ	
	Г		I
			2

Signal	$p_{\rm T}^{{ m Z/H}}$ (GeV) interval	95% CL upper limit (fb)	95% CL upper limit / SM
tĪZ	(200, 300]	$359(492^{+216}_{-143})$	$3.42(4.69^{+2.06}_{-1.36})$
	(300, 450]	$208\;(135^{+58}_{-39})$	$4.88\ (3.17^{+1.37}_{-0.91})$
	(450,∞)	$49.1\;(50.7^{+23.0}_{-15.4})$	$4.02~(4.16^{+1.89}_{-1.26})$
tīH	(200, 300]	$418\ (736^{+296}_{-210})$	$8.02(14.1^{+5.7}_{-4.0})$
	(300, 450]	$59.9\;(47.3^{+20.5}_{-13.9})$	$3.24~(2.55^{+1.11}_{-0.75})$
	(450,∞)	$9.78\ (16.5^{+7.4}_{-4.9})$	$1.96\;(3.30^{+1.49}_{-0.98})$

WC/Λ^2 [TeV ⁻²]	95% CL interval (others profiled)	95% CL interval (others fixed to SM)
$c_{\mathrm{t} \varphi}$	[0.70, 29.42]	[0.31, 29.94]
$c^{\varphi Q}$	[-6.71, 7.72]	[-4.77, 5.54]
$c_{\varphi Q}^3$	[-4.01, 3.61]	[-3.86, 2.90]
$c_{\varphi t}$	[-10.91, 7.42]	[-8.32, 5.34]
$c_{\varphi tb}$	[-9.39, 10.65]	[-9.39, 10.12]
c_{tW}	[-1.56, 1.44]	[-1.02, 0.92]
$c_{\rm bW}$	[-4.60, 4.57]	[-4.54, 4.47]
c_{tZ}	[-1.53, 1.46]	[-0.99, 1.00]

Boosted $t\bar{t}Z/H$ WC 2D

Boosted $t\bar{t}Z/H$

NN variables

Name	Description
tî system	
b p _T	p_T of the leading (subleading) b jet
b score	DeepCSV score of the leading (subleading) b jet
q pr	p_T of the leading (subleading) non-b jet
q score	DeepCSV score of the leading (subleading) non-b jet
$\Delta R(\mathbf{b}, \mathbf{q})$	minimum ΔR between the leading (subleading) b jet and any non-b jet
$\Delta R(q, \dot{q})$	ΔR between the non-b jets closest and next-to-closest to the leading (sub- leading) b jet
m(q + q)	invariant mass of the non-b jets closest and next-to-closest to the leading (subleading) b jet
$\Delta R(b, q+q)$	ΔR between the leading (subleading) b jet and the sum of the nearest and nearest to nearest non b jets
w(h + a + a)	invariant mass of the leading (subleading) hiet and the nearest and next
m(b+q+q)	to-nearest non-b jets
$\Delta R(Z/H, b + q + q)$	ΔR between the Z/H boson candidate and the sum of the leading (sub-
	leading) b jet and the non-b jets nearest and next-to-nearest to the lead- ing (subleading) b jet
$AR(Z/H, h+h+a+a+\ell)$	ΔR between the Z/H boson candidate and the sum of the leading and
	subleading b jets, the non-b jets nearest and next-to-nearest to the lead- ing (subleading) b jet and the lenter
$m_{\pi}(\mathbf{b} \perp \ell \perp \vec{n} \text{ miss})$	transverse mass of the subleading b jet, the lepton
$m_{T}(b + c + p_{T})$ m(Z/H + b)	invariant mass of the Z/H boson candidate and the nearest hiet
$m(\mathbf{z}_{i}) + \mathbf{b}$	invariant mass of the leading and subleading hiets
$AR(\mathbf{b}, \mathbf{b})$	AP between the leading and subleading biets
AR(Z/H a)	AP between the Z/H boson candidate and the leading non-h iet
AR(Z/H h)	AP between the Z/H boson candidate and the leading hort-bjet
$AR(Z/H, \ell)$	AP between the 2/11 boson candidate and the leating o jet
$m(\mathbf{Z}/\mathbf{H} + \ell)$	invariant mass of the Z/H boson candidate and the lepton
$AR(b, \ell)$	AP between the leading (subleading) b ist and the lepton
$w(b + \ell)$	invariant mass of the leading (subleading) b jet and the lepton
N(b)	number of h jets outside the Z/H boson candidate cone ($\Lambda R > 0.8$)
N(dout)	number of non-hiets outside the Z/H boson candiate cone ($\Delta R > 0.8$)
Event topology	number of non b jets outside the k/ 11 boson candide cone (and p outs)
N(AK8 iets)	number of AK8 jets including the Z /H boson candidate
N(AK4 jots)	number of AK4 jets
N(Z/H)	number of AK8 jets with a minimum AK8 bh tagger score of 0.8
AK8 mar	maximum max of AV8 jets evoluting the Z/H boson candidate
H_(b_)	Havintum mgp of Ako jets excluding the Z/H boson candidate cone (AR > 0.8)
$H_{T}(b_{out}, q_{out}, \ell)$	$H_{\rm T}$ of all AK jets outside the Z/H boson candidate cone ($\Delta R > 0.8$) and the laster
and an inite	and an initial and a start the AK4 into and the lember [2]
sphericity	sphericity calculated from the AK4 jets and the lepton [7]
aplanarity Z/H boson candidate substru	aplanarity calculated from the AK4 jets and the lepton [?] cture
b _{in} score	maximum (minimum) DeepCSV score of AK4 jets within the Z/H boson
	candidate cone ($\Delta R \le 0.8$)
$\Delta R(b_{in}, b_{out})$	ΔR between a b jet within the Z/H boson candidate cone ($\Delta R \le 0.8$) and
	the leading b jet outside of the Z/H boson candidate cone ($\Delta R > 0.8$)
N(bin)	number of b jets within the Z/H boson candidate cone ($\Delta R \le 0.8$)
N(qin)	number of non-b jets within the Z/H boson candidate cone ($\Delta R \le 0.8$)
Z/H bb score	AK8 bb tagger score of the Z/H boson candidate

Backup: $t\overline{t}\gamma$

 $t\bar{t}\gamma$

$t\bar{t}\gamma$

138 fb⁻¹ (13 TeV)

Other+y

Nonprompt γ Syst. uncertainty

Number of b-tagged jets

Nonprompt y

Otherty

0.8

Other+v

Nonprompt y

138 fb⁻¹ (13 TeV)

1.2 1.4 $\ln(\gamma)$

138 fb⁻¹(13 TeV)

Kinematic plots signal region

Jon Wilson (BU)

Top EFT at CMS

p_(j_) [GeV]

Kinematic plots signal region

 $t\bar{t}\gamma$

Kinematic plots: Z gamma region

80

Jon Wilson (BU)

 $t\bar{t}\gamma$

₿ı

 $t\bar{t}\gamma$

photon pT in signal region

B,

Diff. cross sections

 $t\bar{t}\gamma$

Diff. cross sections

138 fb⁻¹(13 TeV)

 $t\bar{t}\gamma$

1D WC scans

 $t\bar{t}\gamma$

Jon Wilson (BU)

Top EFT at CMS

LHCP 2022 31 / 43

Process	Cross section normalization	Event generator	Perturbative order in QCD
$t\bar{t}\gamma$ NLO		MadGraph5_amc@nlo	LO
Z+jets	NNLO [49]	MadGraph5_amc@nlo	LO
Zγ, Wγ, VV, VVV, tīV, tZq, tWZ, tHq, tHW, tīVV, tītī	NLO	MadGraph5_amc@nlo	NLO
tī	NNLO+NNLL [50]	POWHEG	NLO
single t (t channel)	NLO [51, 52]	POWHEG	NLO
single t (s channel)	NLO [51, 52]	MadGraph5_amc@nlo	NLO
tW	NNLO [53]	POWHEG	NLO
tīH	NLO	POWHEG	NLO
$gg \to ZZ$	LO	MCFM	LO

Leptons	Photons	Jets	b jets	Events
$p_{\rm T} > 25 \ (15) { m GeV}$	$p_{\rm T}>20{ m GeV}$	$p_{\rm T} > 30{ m GeV}$	$p_{\rm T} > 30 {\rm GeV}$	$N_\ell = 2$ (OC)
$ \eta < 2.4$	$ \eta < 1.44$	$ \eta < 2.4$	$ \eta < 2.4$	$N_\gamma=1$
	$\Delta R(\gamma,\ell) > 0.4$	$\Delta R(\text{jet}, \ell) > 0.4$	$\Delta R(ext{jet}, \ell) > 0.4$	$N_{ m b} \geq 1$
	isolated	$\Delta R(\text{jet}, \gamma) > 0.1$	$\Delta R(ext{jet}, \gamma) > 0.1$	$m(\ell\ell) > 20\mathrm{GeV}$
			matched to b hadron	

 $tar{t}\gamma$

	Course	Correlation	Uncertainty [%]		
	Source	Correlation	Prefit range	Postfit	
	Integrated luminosity	\sim	1.3-3.2	1.7	
	Pileup	\checkmark	0.1 - 1.4	0.7	
_	Trigger efficiency	×	0.6 - 1.7	0.6	
nta	Electron selection efficiency	\sim	1.0 - 1.3	1.0	
me	Muon selection efficiency	\sim	0.3-0.5	0.5	
beni	Photon selection efficiency	\sim	0.4-3.6	1.1	
Exp	Electron & photon energy	\checkmark	0.0 - 1.1	0.1	
	Jet energy scale	~	0.1 - 1.3	0.5	
	Jet energy resolution	\checkmark	0.0-0.6	< 0.1	
	b tagging efficiency	\sim	0.9 - 1.4	1.1	
	L1 prefiring	\checkmark	0.0-0.8	0.3	
	Values of $\mu_{\rm F}$ and $\mu_{\rm R}$	\checkmark	0.3-3.5	1.3	
cal	PDF choice	\checkmark	0.3 - 4.5	0.3	
retio	PS modelling: ISR & FSR scale	\checkmark	0.3-3.5	1.3	
leoi	PS modelling: colour reconnection	\checkmark	0.0 - 8.4	0.2	
Ţ	PS modelling: b fragmentation	\checkmark	0.0-2.2	0.7	
	Underlying-event tune	\checkmark	0.5	0.5	
ч	$Z\gamma$ correction & normalization	\checkmark	0.0-0.2	0.1	
n	t γ normalization	\checkmark	0.0-0.9	0.8	
gn	Other+ γ normalization	\checkmark	0.3-1.0	0.8	
ack	Nonprompt γ normalization	\checkmark	0.0 - 1.8	0.7	
ш	Size of simulated samples	×	1.5-7.6	0.9	
	Total systematic uncertainty			3.6	
	Statistical uncertainty			1.4	
	Total uncertainty			3.9	

Symbol Definition

- $p_{\mathrm{T}}(\gamma)$ Transverse momentum of the photon
- $|\eta|(\gamma)$ Absolute value of the pseudorapidity of the photon

 $t\bar{t}\gamma$

- min $\Delta R(\gamma, \ell)$ Angular separation between the photon and the closest lepton
 - $\Delta R(\gamma, \ell_1)$ Angular separation between the photon and the leading lepton
 - $\Delta R(\gamma, \ell_2)$ Angular separation between the photon and the subleading lepton
- min $\Delta R(\gamma, b)$ Angular separation between the photon and the closest b jet
 - $|\Delta\eta(\ell\ell)|$ Pseudorapidity difference between the two leptons
 - $\Delta \varphi(\ell \ell)$ Azimuthal angle difference between the two leptons
 - $p_{\mathrm{T}}(\ell \ell)$ Transverse momentum of the dilepton system
- $p_{\mathrm{T}}(\ell_1) + p_{\mathrm{T}}(\ell_2)$ Scalar sum of the transverse momenta of the two leptons
 - $\begin{array}{ll} \min \Delta R(\ell,j) & \text{Smallest angular separation between any of the selected leptons and jets} \\ p_{\mathrm{T}}(\mathbf{j}_1) & \text{Transverse momentum of the leading jet} \end{array}$

	Dilepton result		n result	Dilepton & ℓ +jets combination		
	Wils	on coefficient	68% CL interval	95% CL interval	68% CL interval	95% CL interval
			$[(\Lambda/\text{TeV})^2]$	$[(\Lambda/\text{TeV})^2]$	$[(\Lambda/\text{TeV})^2]$	$[(\Lambda/\text{TeV})^2]$
q	c_{tZ}	$c_{\mathrm{tZ}}^{\mathrm{I}}=0$	[-0.28, 0.35]	[-0.42, 0.49]	[-0.15, 0.19]	[-0.25, 0.29]
Expecte		profiled	[-0.28, 0.35]	[-0.42, 0.49]	[-0.15, 0.19]	[-0.25, 0.29]
	$c_{\mathrm{tZ}}^{\mathrm{I}}$	$c_{\mathrm{tZ}}=0$	[-0.33, 0.30]	[-0.47, 0.45]	[-0.17, 0.18]	[-0.27, 0.27]
		profiled	[-0.33, 0.30]	[-0.47, 0.45]	[-0.18, 0.18]	[-0.27, 0.27]
Observed	\mathcal{C}_{tZ}	$c_{\mathrm{tZ}}^{\mathrm{I}}=0$	[-0.43, -0.09]	[-0.53, 0.52]	[-0.30, -0.13]	[-0.36, 0.31]
		profiled	[-0.43, 0.17]	[-0.53, 0.51]	[-0.30, 0.00]	[-0.36, 0.31]
	$c_{\mathrm{tZ}}^{\mathrm{I}}$	$c_{tZ} = 0$	$[-0.47, -0.03] \cup [0.07, 0.38]$	[-0.58, 0.52]	$[-0.32, -0.13] \cup [0.16, 0.29]$	[-0.38, 0.36]
		profiled	[-0.43, 0.33]	[-0.56, 0.51]	[-0.28, 0.23]	[-0.36, 0.35]

 $tar{t}\gamma$

Backup: Charged lepton flavor violation

Charged lepton flavor violation 138 fb⁻¹ (13 TeV)

euto-Vector × 10

0 1000 1200 1400 p_(leading lepton) [GeV]

138 fb⁻¹ (13 TeV

AR(eu)

138 fb⁻¹ (13 TeV)

p_miss [GeV]

Other

euto-Vector × 10

Kinematic plots

₿ı

Charged lepton flavor violation

Kinematic plots

300

Charged lepton flavor violation

BDT outputs

Charged lepton flavor violation

Event yields

Chan	nel		1 b tagged	> 1 b tagged		
tī			477800 ± 7900	265000 ± 7100		
tW			49100 ± 1300	7710 ± 250		
Other			7950 ± 670	850 ± 70		
Total	backgrou	nd prediction	534900 ± 8000	273600 ± 7100		
Data	-	-	537236	268781		
	Vector	t decay	604 ± 2	45.2 ± 0.4		
		t production	17103 ± 29	1557 ± 9		
o u hu	Scalar	t decay	78.2 ± 0.2	6.1 ± 0.1		
eµtu		t production	3670 ± 6	336 ± 2		
	Tensor	t decay	3499 ± 9	266 ± 2		
		t production	61011 ± 107	5567 ± 33		
	Vector	t decay	596 ± 2	90.4 ± 0.5		
		t production	1711 ± 3	166 ± 1		
outo	Scalar	t decay	77.7 ± 0.2	11.4 ± 0.1		
eµtc		t production	294 ± 1	28.5 ± 0.2		
	Tanaan	t decay	3467 ± 8	534 ± 3		
	rensor	t production	6329 ± 13	621 ± 4		

Charged lepton flavor violat	ion S _l	ystematics	
Source	tī (%)	CLFV signal	
		decay (%)	production (%)
Trigger	1.2	1.2	2.9
Electron identification and isolation	1.6	1.6	3.9
Muon identification and isolation	0.6	0.6	0.7
Electron energy scale and resolution	< 0.1	< 0.1	< 0.1
Muon momentum scale and resolution	< 0.1	< 0.1	< 0.1
Jet energy scale and resolution	2.5	2.1	1.2
b tagging	3.1	3.9	4.5
Pileup	0.3	0.3	0.2
ME scale	0.9	0.8	0.7
ISR/FSR scale	1.5	2.9	1.9
PDF	0.8	0.8	0.9
UE tune	0.4		_
ME/PS matching	< 0.1		—
Color reconnection	1.0		_
MC statistical	< 0.1	< 0.1	< 0.1

Jon Wilson (BU)

B