

Top quark pair production cross-section in ATLAS

Leonid Serkin

for the ATLAS Collaboration

INFN Gruppo Collegato di Udine and ICTP Trieste, Italy

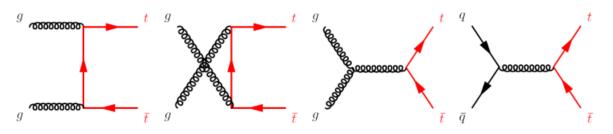
Latest results from the

Collaboration:

1.) Measurement of the inclusive top quark pair production cross-section at $\sqrt{s}=5.02$ TeV in the single-lepton and dilepton final states.

New result for LHCP 2022! ATLAS-CONF-2022-031

2.) Full Run-2 differential top quark pair cross-section measurements using boosted top quarks in the all-hadronic final state.

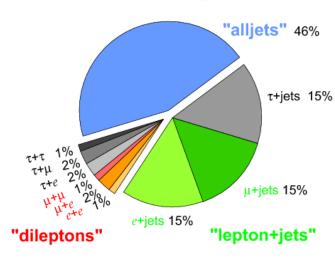

arXiv:2205.02817 (May. 2022) submitted to JHEP superseed ATLAS-CONF-2021-050

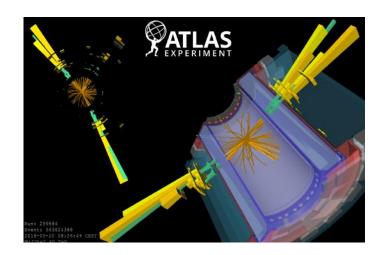
3.) Full Run-2 differential cross-sections using boosted top quark pair events in the lepton+jets channel at $\sqrt{s} = 13$ TeV.

arXiv:2202.12134 (Feb. 2022)
accepted in JHEP
superseed ATLAS-CONF-2021-031

Top quark production and decay

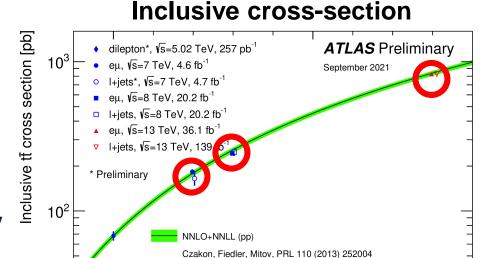
 Top quark pair (ttbar) production governed by strong interaction:


Final state topology is given W-boson decays:


$$W \rightarrow lv (\sim 30\%) / qq' (\sim 70\%)$$

Resolved or boosted topologies:

Top Pair Branching Fractions



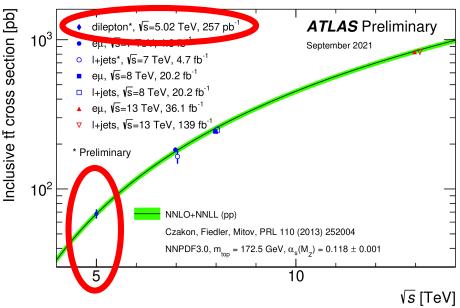
√s [TeV]

Inclusive ttbar cross-section measurement

Inclusive $\sigma(tt)$: a standard candle at LHC, allows us to test QCD predictions and constrain parameters such as top mass, α_s and PDFs

- Theory (NNLO+NNLL) predictions
 with 5.0% 7.5% precision
- ATLAS precision measurements:
- ~4% (eµ channel) and ~6% (l+jets) at 7 TeV and 8 TeV
- 2.4% (eµ) and 4.6% (l+jets) at 13 TeV
- Usually dominated by luminosity uncert. (dilep) and modelling (l+jets)

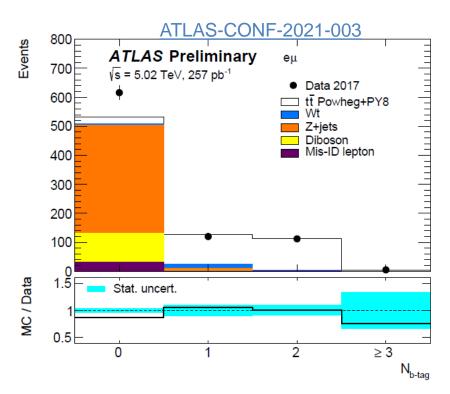
NNPDF3.0, $m_{top} = 172.5 \text{ GeV}, \alpha_s(M_7) = 0.118 \pm 0.001$


		A - []	3	- tt [1]	
٠.	Dilepton	5	0.257	66.0 ± 4.9	[2]
	$\begin{array}{c} e\mu \\ \ell + \mathrm{jets} \end{array}$	7 7	4.6 4.7	183 ± 7 165 ± 17	[3] [4]
	$\begin{array}{c} e\mu \\ \ell + \mathrm{jets} \end{array}$	8 8	$20.2 \\ 20.2$	242 ± 9 248 ± 14	[3] [5]
	$e\mu$ ℓ +jets	13 13	36.1 139	826.4 ± 19.9 830 ± 39	[6] [7]

Inclusive ttbar cross-section measurement

Inclusive $\sigma(tt)$: a standard candle at LHC, allows us to test QCD predictions and constrain parameters such as top mass, α_s and PDFs

- Theory (NNLO+NNLL) predictions with 5.0% 7.5% precision
- ATLAS precision measurements:
- ~4% (eµ channel) and ~6% (l+jets) at 7 TeV and 8 TeV
- 2.4% (eµ) and 4.7% (l+jets) at 13 TeV
- Usually dominated by luminosity uncert. (dilep) and modelling (l+jets)
- Preliminary dilepton channel (eµ, ee, µµ) at \sqrt{s} =5.02 TeV, observing: $\sigma(tt)$ = 66.0 ± 4.9 pb (7.5% precision)

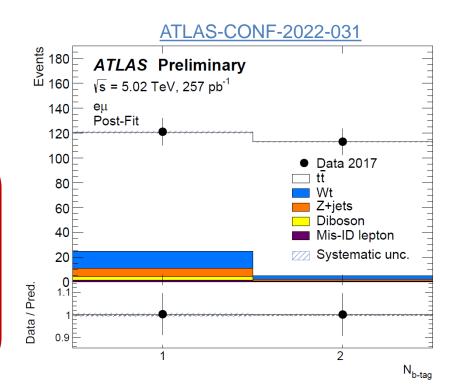


ATI -PHYS-PUB-2021-014

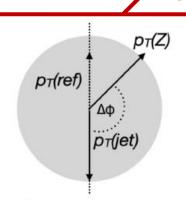
٠.	Channel	$\sqrt{s} [{\rm TeV}]$	$\int \mathcal{L} dt [fb^{-1}]$	$\sigma_{tar{t}}~[ext{pb}]$	Reference
i	Dilepton	5	0.257	66.0 ± 4.9	[2]
••	$e\mu \ \ell + { m jets}$	7 7	$4.6 \\ 4.7$	$183 \pm 7 \\ 165 \pm 17$	[3] [4]
	$\begin{array}{c} e\mu \\ \ell + \mathrm{jets} \end{array}$	8 8	$20.2 \\ 20.2$	242 ± 9 248 ± 14	[3] [5]
	$e\mu$ $\ell+\mathrm{jets}$	13 13	36.1 139	826.4 ± 19.9 830 ± 39	[6] [7]

- 257 pb⁻¹ of data collected by ATLAS in November 2017 at \sqrt{s} = 5.02 TeV
 - low-µ environment (data levelled to <µ>≈2)
- Dilepton channel (ATLAS-CONF-2021-003 released in 2021) using the standard double-tagging formalism in opposite-flavour dilepton events (extended to same-flavour ee, µµ channels):

$$\begin{array}{lll} N_{1}^{e\mu} & = & L\sigma_{t\bar{t}} \; \epsilon_{e\mu} 2\epsilon_{b}^{e\mu} (1 - C_{b}^{e\mu} \epsilon_{b}^{e\mu}) & + & \displaystyle \sum_{k={\rm bkg}} s_{1}^{k} \; N_{1}^{e\mu,k} \\ N_{2}^{e\mu} & = & L\sigma_{t\bar{t}} \; \epsilon_{e\mu} C_{b}^{e\mu} (\epsilon_{b}^{e\mu})^{2} & + & \displaystyle \sum_{k={\rm bkg}} s_{2}^{k} \; N_{2}^{e\mu,k} \end{array}$$

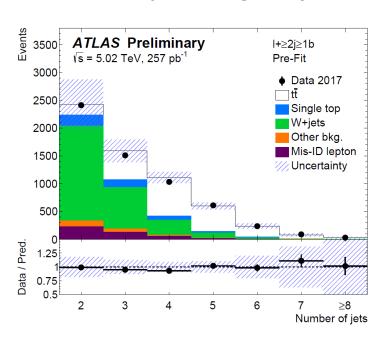

- 257 pb⁻¹ of data collected by ATLAS in November 2017 at \sqrt{s} = 5.02 TeV
 - low-µ environment (data levelled to <µ>≈2)
- Dilepton channel (ATLAS-CONF-2021-003 released in 2021) using the standard double-tagging formalism in opposite-flavour dilepton events (extended to same-flavour ee, µµ channels):

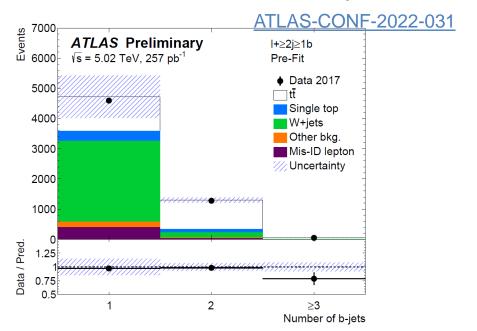
$$N_1^{e\mu} = L\sigma_{t\bar{t}} \epsilon_{e\mu} 2\epsilon_b^{e\mu} (1 - C_b^{e\mu} \epsilon_b^{e\mu}) + \sum_{k=\text{bkg}} s_1^k N_1^{e\mu,k}$$


$$N_2^{e\mu} = L\sigma_{t\bar{t}} \epsilon_{e\mu} C_b^{e\mu} (\epsilon_b^{e\mu})^2 + \sum_{k=\text{bkg}} s_2^k N_2^{e\mu,k}$$

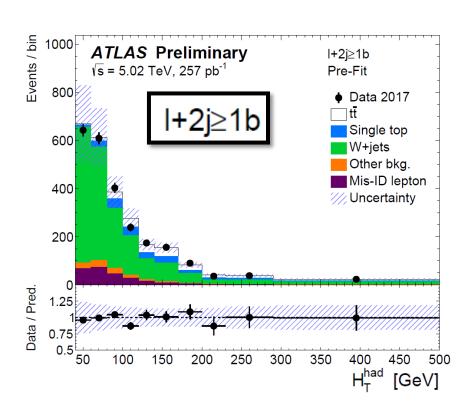
New result for LHCP 2022!

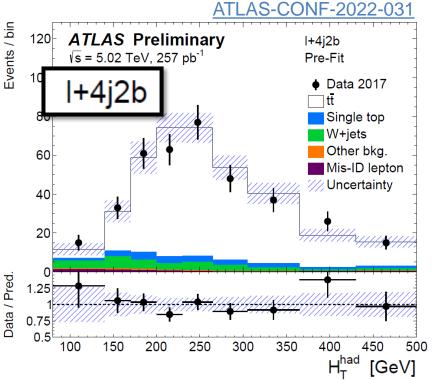
- in-situ JES/JER calibration at \sqrt{s} = 5.02 TeV
 - addition of new single-lepton channel
 - combination with the dilepton channel

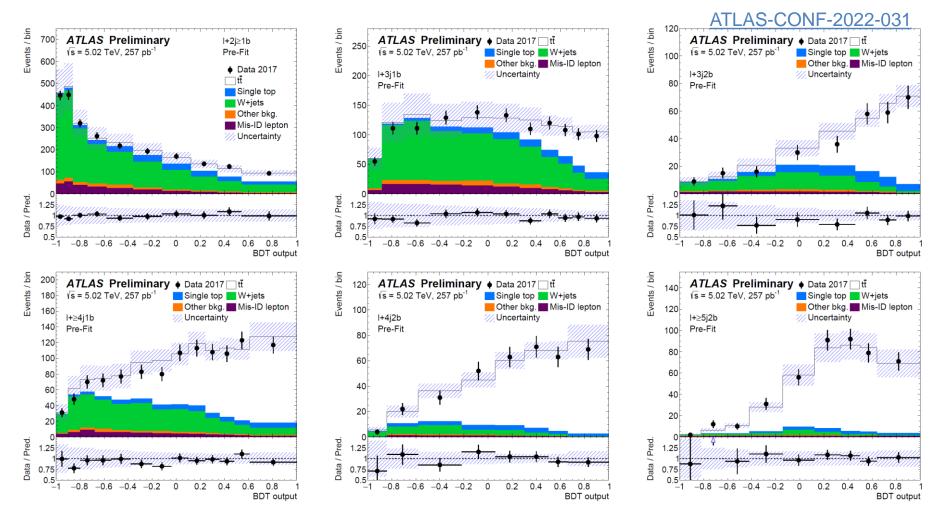



- In-situ correction derived using the Z+jet balance technique due lower noise thresholds during 5.02 data-taking (~ 2-8%)
 - ✓ Dilepton channel re-analysed, not sensitive to JES/JER, minor change: $\sigma(\text{ttbar}) = 66.0 \pm 4.9 \text{ pb} \rightarrow 65.7 \pm 4.9 \text{ pb}$

 $p_T^{ref} = p_T(Z) * |\cos \Delta \phi(Z, j_1)|$


- New channel added: single-lepton
 - > ≥2 jets, 1 or 2 b-jets with pT > 20 GeV, and MET/mTW cuts > 30 GeV
 - MC for W/Z+jets, single top, diboson; data-driven mis-identified leptons




- Divide into six regions based on # of jets and b-jets
- Excellent pre-fit agreement of rates and shapes in all regions

REGION NAME	JET MULTIPLICITY	b-jet multiplicity
ℓ +2j \geq 1b	2	≥ 1
ℓ+3j 1b	3	1
ℓ+3j 2b	3	2
ℓ+≥4j 1b	≥ 4	1
ℓ+4j 2b	4	2
<i>ℓ</i> +≥5j 2b	≥ 5	2

- 2 boosted-decision trees using six input variables each trained to separate signal from background (mainly W+jets and single top)
- ✓ Good agreement is found in the shapes of the BDT outputs in each region.

Category		$\delta\sigma_{t\bar{t}}$ [%]
	Dilepton	Single lepton
$t\bar{t}$ generator [†]	1.2	1.0
$t\bar{t}$ hadronisation*,†	0.3	0.9
$t\bar{t}~h_{\rm damp}$ and scale variations [†]	1.0	1.1
$t\bar{t}$ parton-distribution functions [†]	0.2	0.2
Single-top background	1.1	0.8
W/Z+jets background*	0.8	2.4
Diboson background	0.3	0.1
Misidentified leptons*	0.7	0.3
Electron identification/isolation	0.8	1.2
Electron energy scale/resolution	0.1	0.1
Muon identification/isolation	0.6	0.2
Muon momentum scale/resolution	0.1	0.1
Lepton-trigger efficiency	0.2	0.9
Jet-energy scale/resolution	0.1	1.1
$\sqrt{s} = 5.02 \text{ TeV JES correction}$	0.1	0.6
Jet-vertex tagging	< 0.1	0.2
Flavour tagging	0.1	1.1
$E_{ m T}^{ m miss}$	0.1	0.4
Simulation statistical uncertainty*	0.2	0.6
Data statistical uncertainty*	6.8	1.3
Total systematic uncertainty	3.1	4.2
Integrated luminosity	1.8	1.6
Beam energy	0.3	0.3
Total uncertainty	7.5	4.5

• Largest uncertainties: luminosity (1.6%), signal and background modelling, object reconstruction

Category	$\delta\sigma_{t\bar{t}}$ [%]					
	Dilepton	Single lepton	Combination			
$t\bar{t}$ generator [†]	1.2	1.0	0.8			
$t\bar{t}$ hadronisation*,†	0.3	0.9	0.7			
$tar{t}\ h_{ m damp}$ and scale variations †	1.0	1.1	0.8			
$t\bar{t}$ parton-distribution functions [†]	0.2	0.2	0.2			
Single-top background	1.1	0.8	0.6			
W/Z+jets background*	0.8	2.4	1.8			
Diboson background	0.3	0.1	< 0.1			
Misidentified leptons*	0.7	0.3	0.3			
Electron identification/isolation	0.8	1.2	0.8			
Electron energy scale/resolution	0.1	0.1	< 0.1			
Muon identification/isolation	0.6	0.2	0.3			
Muon momentum scale/resolution	0.1	0.1	0.1			
Lepton-trigger efficiency	0.2	0.9	0.7			
Jet-energy scale/resolution	0.1	1.1	0.8			
$\sqrt{s} = 5.02 \text{ TeV JES correction}$	0.1	0.6	0.5			
Jet-vertex tagging	< 0.1	0.2	0.2			
Flavour tagging	0.1	1.1	0.8			
$E_{ m T}^{ m miss}$	0.1	0.4	0.3			
Simulation statistical uncertainty*	0.2	0.6	0.5			
Data statistical uncertainty*	6.8	1.3	1.3			
Total systematic uncertainty	3.1	4.2	3.7			
Integrated luminosity	1.8	1.6	1.6			
Beam energy	0.3	0.3	0.3			
Total uncertainty	7.5	4.5	3.9			

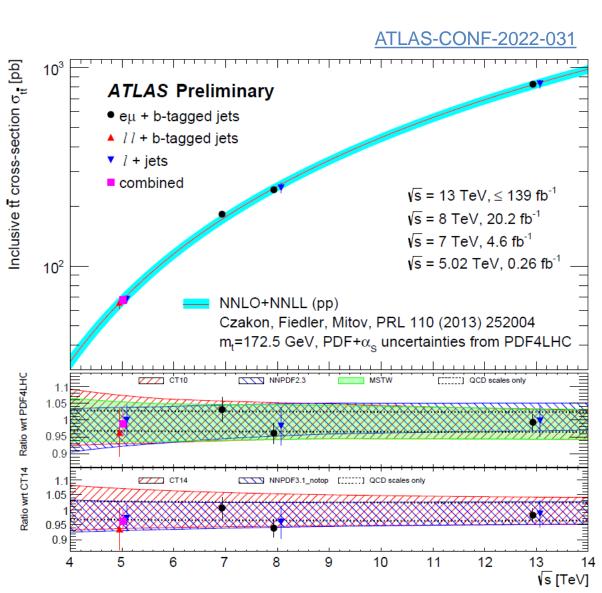
• Largest uncertainties: luminosity (1.6%), signal and background modelling, object reconstruction

- Combination of a cut-andcount dilepton result with a binned PLL fit in singlelepton channel:
 - ✓ Using Convino tool(Eur. Phys. J. C(2017) 77 792)
 - ✓ Post-fit uncertainty correlations accounted for in the combination

Observed production cross-section in the dilepton channel:

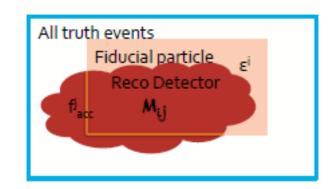
$$\sigma_{t\bar{t}} = 65.7 \pm 4.5 \text{ (stat.) } \pm 1.6 \text{ (syst.) } \pm 1.2 \text{ (lumi.) } \pm 0.2 \text{ (beam) pb}$$
(7.5% precision)

• Observed production cross-section in the single-lepton channel:


$$\sigma_{t\bar{t}} = 68.2 \pm 0.9 \, (\text{stat.}) \, \pm 2.9 \, (\text{syst.}) \, \pm 1.1 \, (\text{lumi.}) \, \pm 0.2 \, (\text{beam}) \, \text{pb}$$
(4.5% precision)

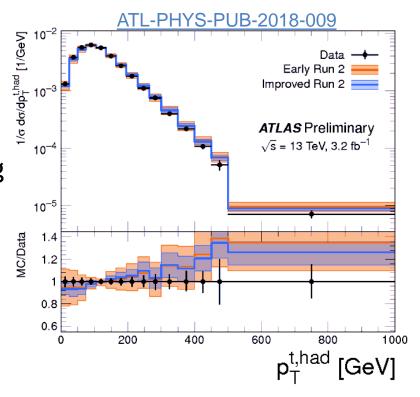
• Combination of the dilepton and single-lepton measurements:

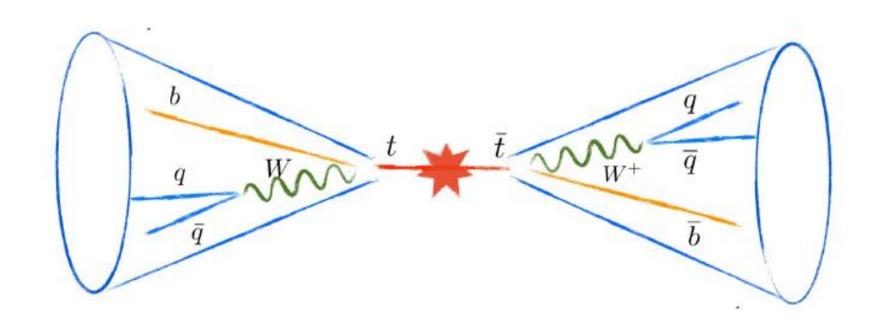
$$\sigma_{t\bar{t}} = 67.5 \pm 0.9 \text{(stat.)} \pm 2.3 \text{(syst.)} \pm 1.1 \text{(lumi.)} \pm 0.2 \text{(beam) pb}$$
(3.9% precision)


 Results are consistent with the NNLO+NNLL QCD prediction of 68.2 ± 5.2 pb, calculated with Top++, and exceed the relative precision of theoretical calculations

- Most precise single-lepton result in ATLAS, slightly more precise than 13 TeV using ~500 more data [Phys. Lett. B 810 (2020) 135797]
- 5.02 TeV result from CMS [JHEP 04 (2022) 144] combined single-lepton result using 2015 data (27.4 pb⁻¹) and dilepton using 2017 data (304 pb⁻¹) with 8% precision: $\sigma(tt) = 63.0 \pm 5.1$ pb
- Consistent with CMS, total uncertainty reduced by almost a factor of two

Differential ttbar cross-section measurements

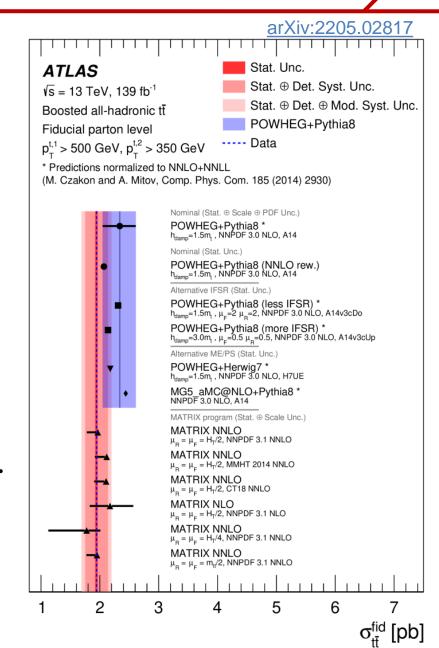

- Extensions to the SM may modify differential cross-sections in ways that an inclusive cross-section measurement is not sensitive to
 - i.e. distort the top-quark p_T distribution


 Test global properties of ttbar events at parton-level and particle-level

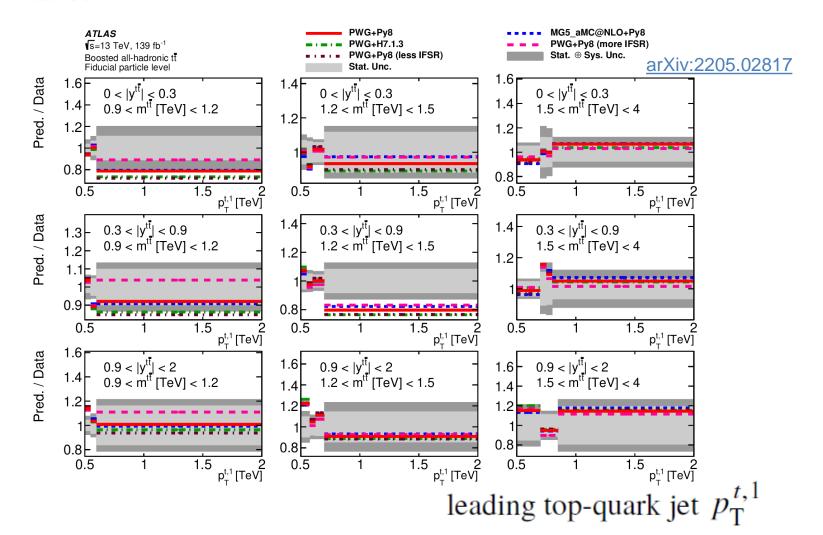
Used to improve MC generators modelling

Early Run 2 | Improved Run 2

arXiv:2205.02817

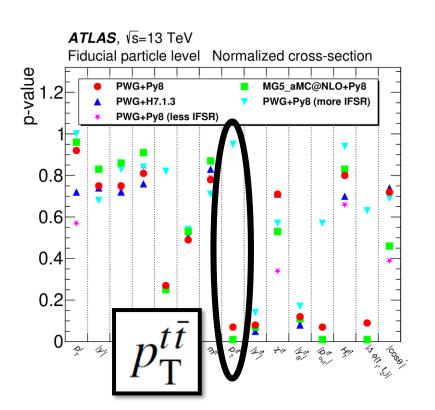


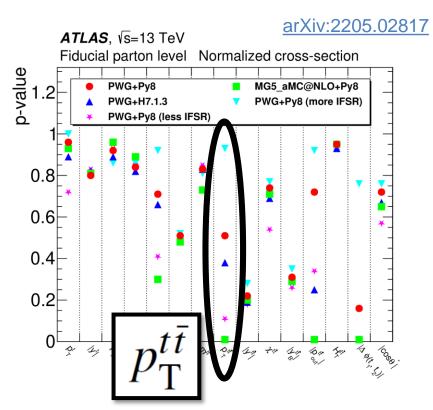
Differential ttbar in boosted all-hadronic events


- 2 high-p_T large-R DNN top-tagged jets
 - ✓ Data-driven multijet background
- Unfolding performed using Iterative Bayesian Unfolding (RooUnfold) at particle- and parton-level.
- Inclusive parton-level fiducial phasespace with 13% precision:

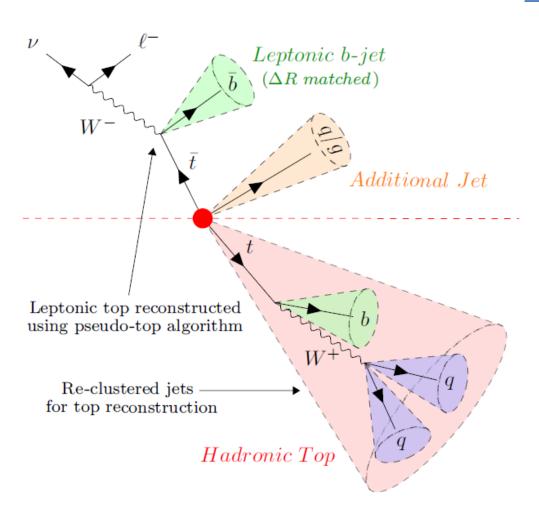
$$\sigma(tt) = 1.94 \pm 0.02 \text{ (stat) } \pm 0.25 \text{ (syst) pb}$$

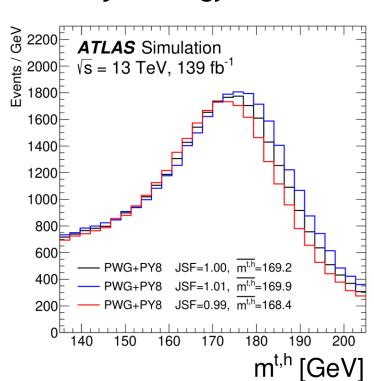
- Powheg+Pythia 8 MC predictions 20%
 larger, consistent within the theo. uncert.
- Better agreement for the NNLO Matrix predictions




• Triple-differential cross-section in y^{tt} , m^{tt} and $p_T^{t,1}$ exhibit a precision of 10-20% and are in agreement with several NLO+PS predictions for most of the observables.

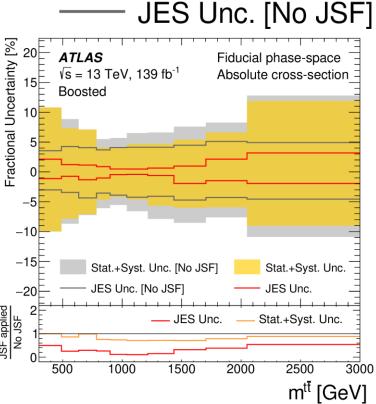
Differential ttbar in boosted all-hadronic events


• Most precise differential cross-sections in the boosted ttbar all-hadronic final state, uncertainty reduced by a 2x (and up to 5x) compared to previous ATLAS results [Phys. Rev. D 98, 012003 (2018)]

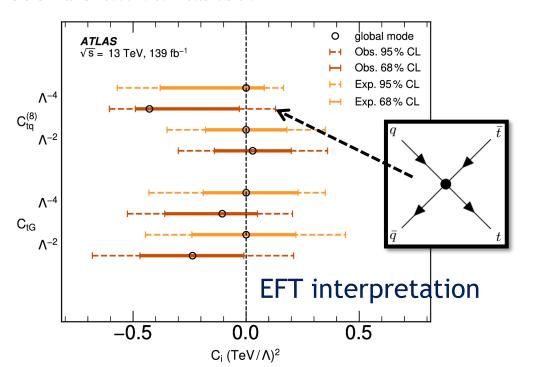


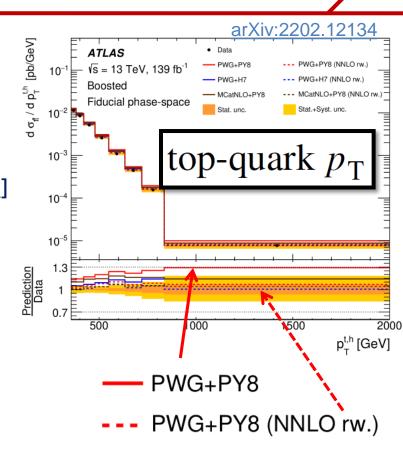
 p-values: deficit of radiation in MC prediction, not evident in the partonlevel comparisons: arise due to PS/hadronisation or ISR/FSR

arXiv:2202.12134

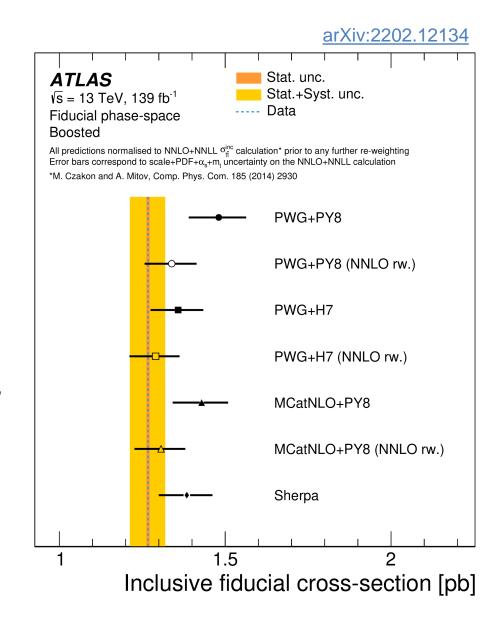


- One hadronically decaying boosted top quark and one leptonic decay
- Reclustered large-R jet used as a proxy for top quark
 - ✓ mass depends on the energy-scale of its small-R sub-jets
- The overall JES difference between data and simulation for small-R jets is parameterised with a jet energy scale factor (JSF)


Reduction: 4.2% to 0.7%


arXiv:2202.12134

JES Unc.


- Top quark kinematics and radiation probed in fiducial (particle) phase space.
 - ✓ ~50% more precise as previous ATLAS result [Eur. Phys. J. C 79 (2019) 2018] and CMS boosted result [Phys. Rev. D 103, 052008 (2021)]
- No single NLO+PS MC generators is able to describe all variables!

• 3D-iterative MC reweighting [arXiv:2105.03977] to NNLO in QCD and NLO EW prediction leads to better agreement.

- Inclusive particle-level fiducial cross-section with 4.2% precision: $\sigma(tt) = 1.267 \pm 0.005$ (stat) ± 0.053 (syst) pb
 - ✓ Exceeds the relative precision of NNLO+NNLL calculations
 - ✓ Same level of precision as in the resolved topologies!
- All MC predictions higher than data,
 2 std. dev. above data
- Significantly better agreement is seen after reweighting the MC simulations to the differential NNLO predictions

- The Run 2 data set of ATLAS continues to be a fruitful resource for high precision and innovative measurements.
- New measurement released for LHCP2022 of the ttbar production cross-section at 5.02 TeV in single-lepton and dilepton channels:
 - ✓ Optimisation of the analysis strategy, MVA, uncertainties and PLL fit in the single-lepton channel to achieve a high precision result.
 - ✓ Extension of the established dilepton eµ+b-tag method to include SF ee and µµ channels; combination keeping post-fit correlations
- Comprehensive measurements of differential cross-sections in boosted regimes in single-lepton and all-hadronic final states:
 - ✓ input for tuning of MC generators, basis for EFT interpretations
 - ✓ NNLO fixed-order computations provide significant improvement
- Looking forward for new inclusive and differential results at Run 3!

BACK-UP

Public links to ATLAS results

• Measurement of the inclusive ttbar production cross-section at \sqrt{s} =5.02 TeV in the single-lepton and dilepton final states.

CDS: https://cds.cern.ch/record/2809724

Public webpage: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-

CONF-2022-031/

• Measurements of differential cross-sections in top-quark pair events with a high transverse momentum top quark and limits on beyond the Standard Model contributions to top-quark pair production with the ATLAS detector at \sqrt{s} =13 TeV

CDS: https://cds.cern.ch/record/2802296

Public webpage: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2019-23/

 Differential tt cross-section measurements using boosted top quarks in the allhadronic final state with 139/fb of ATLAS data

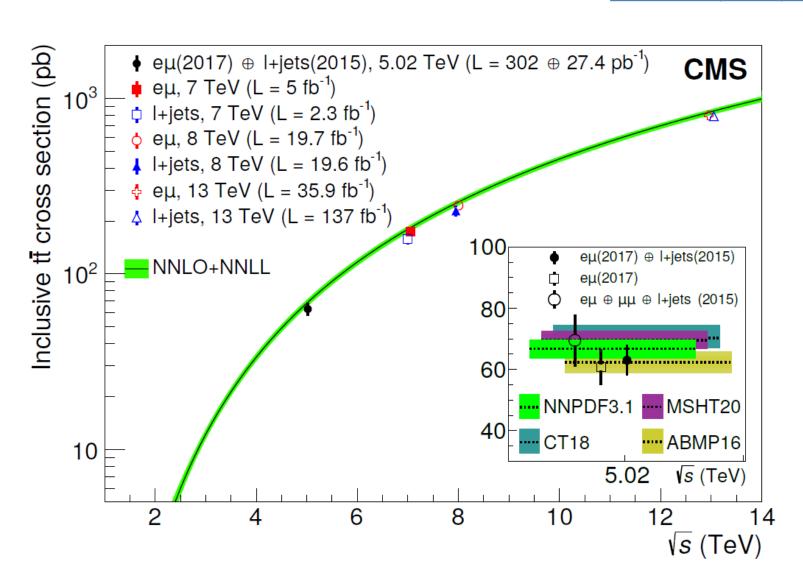
CDS: http://cds.cern.ch/record/2808775

Public webpage: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2018-11/

CMS Collaboration results at $\sqrt{s}=5.02$ TeV

JHEP 04 (2022) 144

CMS dilepton (eµ) channel using 304 pb⁻¹ of data at 5.02 TeV


Source	$\Delta \sigma_{t\overline{t}}/\sigma_{t\overline{t}}$ (%)
Electron efficiency	1.6
Muon efficiency	0.6
Trigger efficiency	1.3
JES	2.2
JER	1.2
L1 prefiring	1.4
$\mu_{\rm R}, \mu_{\rm F}$ scales	0.2
Final-state radiation	1.1
Initial-state radiation	< 0.1
$h_{ m damp}$	1.0
$\mathrm{PDF} \oplus \alpha_{\mathrm{S}}(m_{\mathrm{Z}})$	0.3
Underlying event tune	0.7
${ m t}{f W}$	1.0
Nonprompt leptons	0.4
Drell-Yan	1.8
VV	0.8
Total systematic uncertainty	4.3
Integrated luminosity	1.9
Statistical uncertainty	8.2

JHEP 03 (2018) 115

CMS l+jets channel using 27.4 pb⁻¹ of data at 5.02 TeV

Course	Δ	μ/μ
Source	Distr.	Count
Statistical uncertainty	0.095	0.100
Experimental systematic uncertainty	0.085	0.160
Individual experimental unce	rtainties	
W+jets background	0.035	0.025
QCD multijet background	0.024	0.044
Other background	0.013	0.013
Jet energy scale	0.030	0.031
Jet energy resolution	0.006	0.023
b tagging	0.034	0.045
Electron efficiency	0.011	0.028
Muon efficiency	0.017	0.022
Theoretical uncertainte	ies	
Hadronization model of tt signal	0.028	0.069
$\mu_{\rm R}, \mu_{\rm F}$ scales of ${\rm t\bar{t}}$ signal (PS)	0.044	0.115
$\mu_{\rm R}, \mu_{\rm F}$ scales of ${\rm t} \overline{\rm t}$ signal (ME)	< 0.010	< 0.010
Total uncertainty	0.127	0.189

JHEP 04 (2022) 144

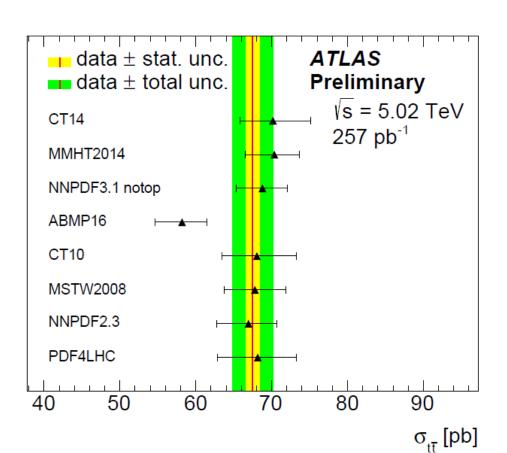
Comparison with ATLAS single-lepton 13 TeV result

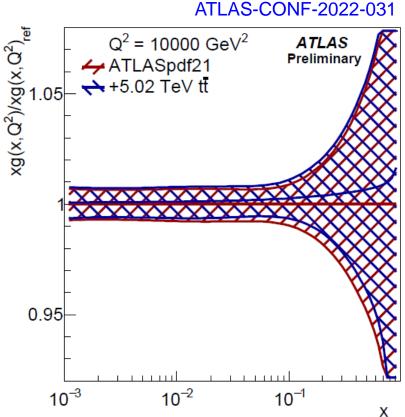
Phys. Lett. B 810 (2020) 135797

ATLAS l+jets channel using 139 fb⁻¹ of data at 13 TeV

Category	$\frac{\Delta \sigma_{\rm inc}}{\sigma_{\rm inc}}$ [%]
Signal modelling	
tt shower/hadronisation	± 2.9
tt̄ scale variations	± 2.0
Top p_T NNLO reweighting	±1.1
tī h _{damp}	± 1.4
tī PDF	±1.5
Background modelling	
MC background modelling	± 2.0
Multijet background	± 0.6
Detector modelling	
Jet reconstruction	± 2.6
Luminosity	±1.7
Flavour tagging	±1.3
$E_{\rm T}^{\rm miss}$ + pile-up	± 0.3
Muon reconstruction	± 0.5
Electron reconstruction	± 0.6
Simulation stat. uncertainty	± 0.7
Total systematic uncertainty	±4.6
Data statistical uncertainty	±0.05
Total uncertainty	±4.6

ATLAS-CONF-2022-031


ATLAS l+jets channel using 257 pb⁻¹ of data at 5.02 TeV


Category	$\delta\sigma_{tar{t}}$ [%] Single lepton
$t\bar{t}$ generator [†]	1.0
$t\bar{t}$ parton-shower/hadronisation*,†	0.9
$t\bar{t}$ $h_{\rm damp}$ and scale variations [†]	1.1
$t\bar{t}$ parton-distribution functions [†]	0.2
Single-top background	0.8
W/Z+jets background*	2.4
Diboson background	0.1
Misidentified leptons*	0.3
Electron identification/isolation	1.2
Electron energy scale/resolution	0.1
Muon identification/isolation	0.2
Muon momentum scale/resolution	0.1
Lepton-trigger efficiency	0.9
Jet-energy scale/resolution	1.1
$\sqrt{s} = 5.02 \text{ TeV JES correction}$	0.6
Jet-vertex tagging	0.2
Flavour tagging	1.1
$E_{ m T}^{ m miss}$	0.4
Simulation statistical uncertainty*	0.6
Data statistical uncertainty*	1.3
Total systematic uncertainty	4.2
Integrated luminosity	1.6
Beam energy	0.3
Total uncertainty	4.5

PDF studies with the new result at 5.02 TeV

• The measured value is compatible with the predictions of several PDFs considered, except ABMP16 (expected since has softer gluon PDF and predicts lower cross-section)

• Addition of new data shows a 5% reduction in the gluon PDF uncert. in the region of Bjorken-x of 0.1

Differential ttbar in boosted all-hadronic events

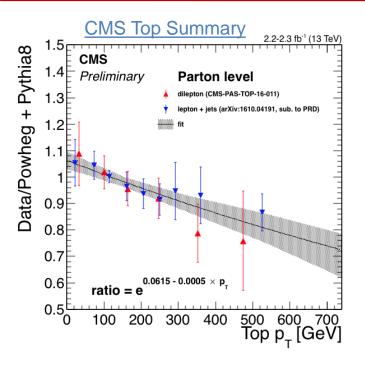
Unfolding performed using Iterative Bayesian Unfolding

arXiv:2205.02817

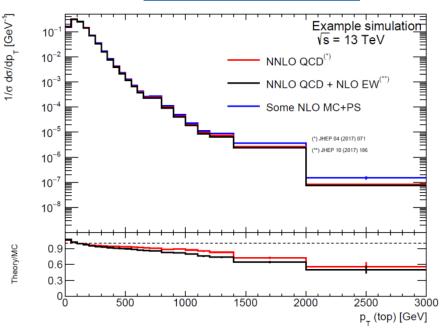
$$\frac{d\sigma^{\text{fid}}}{dX^{i}} \equiv \frac{1}{\int \mathcal{L} dt \cdot \Delta X^{i}} \cdot \frac{1}{\epsilon_{\text{eff}}^{i}} \cdot \sum_{j} \mathcal{M}_{ij}^{-1} \cdot f_{\text{acc}}^{j} \cdot \left(N_{\text{reco}}^{j} - N_{\text{bg}}^{j}\right)$$

Fiducial efficiency

Correct for bin-by-bin migrations


Acceptance correction

Observable	PWG-	+Py8	MG5_aMC@NLO+Py8		PWG+	H7.1.3	PWG+Py8	(more IFSR)	PWG+Py8 (less IFSR)	
	NNPDF		NNPDF30 UE-EE-5		NNPDF30 A14		NNPDF30 A14		NNPDF30 A14	
	χ^2 /NDF	<i>p</i> -value	χ^2/NDF	<i>p</i> -value	χ^2 /NDF	<i>p</i> -value	χ^2 /NDF	<i>p</i> -value	χ^2/NDF	<i>p</i> -value
p_{T}^{t}	3.9/9	0.92	3.1/9	0.96	6.2/9	0.72	1.2/9	1.00	7.7/9	0.57
$ v^t $	6.8/10	0.75	5.8/10	0.83	6.8/10	0.74	7.5/10	0.68	5.9/10	0.83
$p_{\mathrm{T}}^{t,1}$ $ y^{t,1} $	5.1/8	0.75	3.9/8	0.86	5.3/8	0.72	4.3/8	0.83	5.3/8	0.72
$ y^{t,1} $	6.1/10	0.81	4.7/10	0.91	6.7/10	0.76	5.7/10	0.84	5.6/10	0.84
$p_{\mathrm{T}}^{t,2}$ $ y^{t,2} $	9.9/8	0.27	10.2/8	0.25	13.9/8	0.08	4.4/8	0.82	16.0/8	0.04
$ y^{t,2} $	9.4/10	0.49	9.0/10	0.53	9.4/10	0.50	8.9/10	0.54	9.3/10	0.50
$m^{tar{t}}$	8.1/12	0.78	6.9/12	0.87	7.4/12	0.83	8.9/12	0.71	7.9/12	0.79
$p_{\mathrm{T}}^{tar{t}}$	14.3/8	0.07	35.2/8	< 0.01	24.5/8	< 0.01	2.7/8	0.95	33.5/8	< 0.01
$ y^{tt} $	16.7/10	0.08	17.3/10	0.07	18.1/10	0.05	14.8/10	0.14	17.9/10	0.06
$\chi^{t\bar{t}}$	8.0/11	0.71	10.0/11	0.53	8.1/11	0.71	9.5/11	0.57	12.4/11	0.34
$ y_{\mathrm{R}}^{tt} $	15.3/10	0.12	15.7/10	0.11	16.6/10	0.08	14.1/10	0.17	16.6/10	0.08
$ p_{\mathrm{out}}^{tt} $	17.1/10	0.07	53.6/10	< 0.01	30.9/10	< 0.01	8.6/10	0.57	32.7/10	< 0.01
$H_{ m T}^{tar{t}}$	5.4/9	0.80	5.0/9	0.83	6.4/9	0.70	3.6/9	0.94	6.8/9	0.66
$ \Delta\phi(t_1,t_2) $	12.2/7	0.09	73.4/7	< 0.01	23.6/7	< 0.01	5.3/7	0.63	28.5/7	< 0.01
$ \cos \theta^* $	7.0/10	0.72	9.8/10	0.46	6.8/10	0.74	7.4/10	0.69	10.5/10	0.39
$p_{\mathrm{T}}^{t,1} \otimes p_{\mathrm{T}}^{t,2}$	27.1/15	0.03	27.0/15	0.03	36.7/15	< 0.01	12.0/15	0.68	41.0/15	< 0.01
$ y^{t,1} \otimes y^{t,2} $	11.6/19	0.90	9.8/19	0.96	12.0/19	0.88	14.3/19	0.77	9.7/19	0.96
$ y^{t,1} \otimes p_{\mathrm{T}}^{t,1}$	8.5/15	0.90	7.6/15	0.94	9.4/15	0.85	9.5/15	0.85	8.4/15	0.91
$ y^{t,2} \otimes p_{\mathrm{T}}^{t,2}$	15.9/20	0.72	17.1/20	0.65	19.5/20	0.49	10.8/20	0.95	20.7/20	0.41
$p_{\mathrm{T}}^{t,1} \otimes p_{\mathrm{T}}^{t\bar{t}}$	16.1/15	0.37	12.6/15	0.63	26.7/15	0.03	7.3/15	0.95	30.7/15	< 0.01
$p_{\mathrm{T}}^{t,1} \otimes m^{t\bar{t}}$	23.1/18	0.19	21.9/18	0.24	26.7/18	0.08	13.8/18	0.74	30.5/18	0.03
$ y^{t\bar{t}} \otimes p_{\mathrm{T}}^{t,1}$	14.4/15	0.50	14.5/15	0.49	15.0/15	0.45	12.8/15	0.62	15.6/15	0.41
$ y^{t\bar{t}} \otimes y^{t,1} $	14.7/15	0.47	18.0/15	0.26	15.6/15	0.41	11.6/15	0.71	19.1/15	0.21
$ y^{t,1} \otimes m^{t\bar{t}}$	20.0/19	0.40	20.1/19	0.39	20.0/19	0.39	19.5/19	0.42	20.3/19	0.38
$ y^{t\bar{t}} \otimes m^{t\bar{t}}$	12.5/18	0.82	12.1/18	0.84	13.2/18	0.78	12.5/18	0.82	12.9/18	0.80
$p_{\mathrm{T}}^{t\bar{t}}\otimes m^{t\bar{t}}$	20.2/18	0.32	17.9/18	0.46	30.9/18	0.03	9.4/18	0.95	35.2/18	< 0.01
$ y^{t\bar{t}} \otimes p_{\mathrm{T}}^{t\bar{t}}$	19.1/15	0.21	14.5/15	0.49	29.4/15	0.01	12.2/15	0.66	33.4/15	< 0.01
$ y^{t\bar{t}} \otimes m^{t\bar{t}} \otimes p_{\mathrm{T}}^{t,1}$	21.9/31	0.88	24.1/31	0.81	24.6/31	0.79	18.0/31	0.97	26.9/31	0.68


arXiv:2202.12134

Observable	PWG	+PY8	PWG+PY8(NNLO weight)	MC@N	LO+PY8	MC@NLO	+PY8(NNLO weight)	PWC	G+H7	PWG+H7(N	NNLO weight)
	χ^2/NDF	<i>p</i> -value	χ^2/NDF	<i>p</i> -value	χ^2/NDF	p-value	χ^2/NDF	<i>p</i> -value	χ^2 /NDF	p-value	χ^2/NDF	<i>p</i> -value
$p_{\mathrm{T}}^{t,h}$	26/8	< 0.01	5/8	0.79	18/8	0.03	4/8	0.85	7/8	0.56	3/8	0.94
$p_{\mathrm{T}}^{i,\ell}$	78/8	< 0.01	28/8	< 0.01	144/8	< 0.01	10/8	0.27	43/8	< 0.01	18/8	0.02
$p_{\mathrm{T}}^{tar{t}}$	162/7	< 0.01	46/7	< 0.01	171/7	< 0.01	22/7	< 0.01	122/7	< 0.01	39/7	< 0.01
$H_{\mathrm{T}}^{t\bar{t}}$	36/7	< 0.01	7/7	0.42	17/7	0.02	23/7	< 0.01	21/7	< 0.01	12/7	0.10
$H_{ m T}^{tar{t}}$	86/10	< 0.01	37/10	< 0.01	110/10	< 0.01	16/10	0.10	47/10	< 0.01	28/10	< 0.01
$ y^{t,h} $	47/17	< 0.01	27/17	0.06	37/17	< 0.01	23/17	0.15	30/17	0.03	26/17	0.07
$ y^{t,\ell} $	40/14	< 0.01	17/14	0.26	29/14	0.01	12/14	0.58	28/14	0.01	19/14	0.16
$ y^{t\bar{t}} $	30/10	< 0.01	8/10	0.58	23/10	0.01	6/10	0.81	14/10	0.19	7/10	0.74
$m^{t\bar{t}}$	52/10	< 0.01	24/10	< 0.01	81/10	< 0.01	7/10	0.74	29/10	< 0.01	22/10	0.02
$p_{T}^{j,1} \\ p_{T}^{j,2} \\ N^{j}$	115/15	< 0.01	38/15	< 0.01	413/15	< 0.01	194/15	< 0.01	143/15	< 0.01	69/15	< 0.01
$p_{\mathrm{T}}^{\tilde{j},2}$	46/9	< 0.01	19/9	0.02	25/9	< 0.01	74/9	< 0.01	42/9	< 0.01	29/9	< 0.01
N^{j}	32/5	< 0.01	12/5	0.03	76/5	< 0.01	78/5	< 0.01	57/5	< 0.01	62/5	< 0.01
$\Delta \phi(j_1, t_h)$	17/9	0.05	8/9	0.53	150/9	< 0.01	80/9	< 0.01	42/9	< 0.01	30/9	< 0.01
$\Delta \phi(j_2, t_h)$	8/9	0.56	5/9	0.84	8/9	0.57	25/9	< 0.01	85/9	< 0.01	76/9	< 0.01
$\Delta \phi(b_{\ell}, t_h)$	95/13	< 0.01	34/13	< 0.01	145/13	< 0.01	16/13	0.23	52/13	< 0.01	25/13	0.02
$\Delta \phi(t_h, t_\ell)$	111/5	< 0.01	36/5	< 0.01	134/5	< 0.01	82/5	< 0.01	90/5	< 0.01	36/5	< 0.01
$\Delta \phi(j_1, j_2)$	24/11	0.01	16/11	0.13	31/11	< 0.01	69/11	< 0.01	237/11	< 0.01	215/11	< 0.01
$m(j_1,t_h)$	50/12	< 0.01	20/12	0.06	221/12	< 0.01	48/12	< 0.01	41/12	< 0.01	19/12	0.08
$p_{\mathrm{T}}^{j,1} \text{ vs } N^{j}$	355/21	< 0.01	205/21	< 0.01	633/21	< 0.01	316/21	< 0.01	263/21	< 0.01	159/21	< 0.01
$p_{\mathrm{T}}^{j,1} \text{ vs } p_{\mathrm{T}}^{t,h}$	115/17	< 0.01	53/17	< 0.01	383/17	< 0.01	152/17	< 0.01	121/17	< 0.01	74/17	< 0.01
$\Delta \phi(j_1, t_h) \text{ vs } p_{\mathrm{T}}^{t,h}$	69/21	< 0.01	43/21	< 0.01	427/21	< 0.01	223/21	< 0.01	78/21	< 0.01	60/21	< 0.01
$\Delta \phi(j_1, t_h) \text{ vs } N^j$	109/19	< 0.01	64/19	< 0.01	545/19	< 0.01	250/19	< 0.01	85/19	< 0.01	60/19	< 0.01

Iterative reweighting of ttbar MC to theory predictions

arXiv:2105.03977

- General trend of the NLO predictions to overestimate the data at high pT(top)
- ATLAS and CMS reweight parton-level kinematics (usually top and anti-top pT) to the best available fixed-order prediction (NNLO QCD + NLO EW)
- Proposal in <u>arXiv:2105.03977</u>: reweight the different distributions iteratively and repeat the procedure recursively (3 x 3) gives MC prediction that matches both top pT, ttbar pT and ttbar mass NNLO predictions