(t)tX (X = anything but H) Production on ATLAS

Kenneth Johns University of Arizona (A) On Behalf of the ATLAS Collaboration

LHCP2022 Taipei City, Taiwan May 16-20, 2022

Associated $t\bar{t}$ Production

- Small production cross sections but important for
 - Sensitivity to beyond (BSM) contributions
 - Searches for anomalous tV couplings
 - As input for constraining SM effective field theory (EFT) coefficients, ...

$t \bar{t} \gamma$ and $t W \gamma$ Cross-Sections

- Probe of the $t\gamma$ electroweak coupling and sensitivity to anomalous dipole moments of the top quark
- ➤ With 139 fb⁻¹, measurements of the inclusive and differential cross-sections are made
 - $e\mu$ channel only
 - Plus photon, ≥ 2 *jets*, ≥ 1 *b* − *jet*
- ➤ Full NLO calculation available including resonant and non-resonant diagrams, interferences and off-shell effects

JHEP 09 (2020) 049

$t \bar{t} \gamma$ and $t W \gamma$ Inclusive Cross-Section

- \triangleright A binned profile likelihood fit to the S_T distribution is used to extract the number of events
 - S_T is the scalar sum of all p_T in the event (leptons, photons, jets, MET)
 - The fiducial cross-section σ_{fid} is the parameter of interest in the fit
 - Signal and background modelling uncertainties dominate the systematic errors

$$\sigma_{fid}^{meas} = 39.6 \pm 0.8 (stat)_{-2.3}^{+2.6} (syst) \text{fb}$$

$$\sigma_{fid}^{NLO} = 39.6_{-2.18}^{+0.56} (scale)_{-1.18}^{+1.04} (PDF) \text{fb}$$

Good agreement with full NLO calculation

 S_T

Uncertainty
3.8%
2.1%
1.9%
1.8%
1.6%
1.3%
1.1%
1.1%
0.4%
0.2%
2.8%
6.3%

<u>JHEP 09 (2020) 049</u>

$t \bar t \gamma$ and $t W \gamma$ Differential Cross-Sections

- ➤ Both absolute and normalized
- The data are corrected for the detector response and acceptance to the parton level using an <u>iterative Bayesian unfolding</u> procedure (RooUnfold)

➤ Photon and lepton variables

JHEP 09 (2020) 049

Variable	Sensitivity
p_T^{γ}	NLO prediction
$ \eta^{\gamma} $	NLO prediction
$\Delta R(\gamma,\ell)_{min}$	$t\gamma$ coupling
$\Delta arphi(\ell,\ell)$	$tar{t}$ spin correlation
$ \Delta\eta(\ell,\ell) $	$tar{t}$ spin correlation

$t ar t \gamma$ and $t W \gamma$ Differential Cross-Section

- ➤ For these two variables, the full NLO prediction describes the data slightly better than MadGraph5_aMC@NLO
- All absolute differential measurements are found to kenneth Johns, be in good agreement with NLO predictions

$t\bar{t}Z$ Cross-Sections

EPJC 81 (2021) 737

- Can be used to set constraints on SM EFT operator coefficients
- Important to understand as an irreducible background in several SM and BSM searches
- Important as input for Monte Carlo tuning
- ➤ Now with 139 fb⁻¹, new measurements of the inclusive and differential cross-sections are produced

$t\bar{t}Z$ Inclusive Cross-Section

 \triangleright Uses final state with 3 or 4 isolated leptons (e or μ), ≥ 3

jets, \geq 1 b-jet, Z mass

➤ Six signal regions and two control regions for WZ and ZZ background

Uncertainty	$\Delta \sigma_{t\bar{t}Z}/\sigma_{t\bar{t}Z}$ [%]
ttZ parton shower	3.1
tWZ modelling	2.9
b-tagging	2.9
WZ/ZZ + jets modelling	2.8
tZq modelling	2.6

- > Profile likelihood fit to the number of events all regions
 - $\sigma(pp \to t\bar{t}Z) = 0.99 \pm 0.05 (stat) \pm 0.08 (syst) \text{ pb}$

$$\sigma^{NLO}(pp \to t\bar{t}Z) = 0.84 + 0.09 \text{ pb}$$
Kenneth Johns, University of Arizona

EPJC 81 (2021) 737

$t\bar{t}Z$ Differential Cross-Sections

- ➤ Both absolute and normalized EPJC 81 (2021) 737
- ➤ Both parton and particle levels, after correction for detector response using an iterative Bayesian unfolding procedure (RooUnfold)
- ≥ 10 variables

```
t\bar{t}Z generator modelling and BSM effects
          Absolute value of the rapidity of the Z boson
          Number of selected jets with p_T > 25 \text{ GeV} and |\eta| < 2.5
                                                                                QCD modelling in MC
          Transverse momentum of the lepton which is not associated with the Z boson
                                                                                Top quark modelling
3ℓ
          Azimuthal separation between the Z boson and the top quark (antiquark) featuring the W \to \ell \nu decay
                                                                                                      tZ couplina
          Absolute rapidity difference between the Z boson and the top quark (antiquark) featuring the W \to \ell \nu decay
          Number of selected jets with p_T > 25 \text{ GeV} and |\eta| < 2.5
                                                                               QCD modelling in MC
4l
          Azimuthal separation between the two leptons from the t\bar{t} system
                                                                               BSM effects on t\bar{t} spin
          Azimuthal separation between the Z boson and the t\bar{t} system
                                                                               tZ coupling
```

Transverse momentum of the $t\bar{t}$ system

Hard scatter and QCD modelling in MC

$t\bar{t}Z$ Differential Cross-Sections

\triangleright BSM effects and $t\bar{t}Z$ coupling

► In general, good agreement between data and predictions everywhere EPJC 81 (2021) 737

$t\bar{t}t\bar{t}$ Cross-Section

- > Rare but potentially impactful process
 - SM prediction at NLO $12.0^{+2.0}_{-2.5}$ fb
 - Several possible BSM contributions
 - Sensitive to tH Yakawa coupling
 - Sensitive to 4-fermion EFT operators

- Measurements using leptonic final states
 - Evidence for using 2LSS / ML
 - New results using 1L/2LOS

EPJC 80 (2020) 1085 JHEP 11 (2021) 118

$t\bar{t}t\bar{t}$ Cross-Sections (1L/2LOS)

- Events are categorized by the number of jets and b-tagging requirements
- ightharpoonup Significant attention to $t\bar{t}+jets$ modelling
 - $t\bar{t} + jets$ flavor rescaling using dedicated profile likelihood
 - Sequential kinematic reweighting for N_{jets} , $N_{LR-jets}$, ΔR_{avg}^{jj} , and H_T^{all}

$t\bar{t}t\bar{t}$ Cross-Sections (1L/2LOS)

- \succ A boosted decision tree (BDT) is used to discriminate the $t\bar{t}t\bar{t}$ signal from the large background
 - 14 input variables including global event variables, kinematic properties of reconstructed objects and pairs of objects, multiplicity and substructure variables of large-R jets, missing E_T , and pseudocontinuous b-tagging score
- ightharpoonup A binned profile likelihood fit is used to extract the $t\bar{t}t\bar{t}$ signal strength
 - BDT distribution for signal regions
 - H_T^{all} for the control regions

JHEP 11 (2021) 118

$t\bar{t}t\bar{t}$ Cross-Sections (1L/2LOS)

Post-fit predictions

JHEP 11 (2021) 118

14

ightharpoonup Largest systematic errors on $\sigma_{t\bar{t}t\bar{t}}$ are $t\bar{t}t\bar{t}$ and $t\bar{t}+1b/1c$ modeling and jet energy scale uncertainties

$t \bar{t} t \bar{t}$ Cross-Section

> 1L/2LOS and Combination (with 2LSS/3L)

Four top production summary

$t \rightarrow qX \ (q = u, c) \ with \ X \rightarrow b\overline{b}$

- Search for strongly suppressed FCNC
 - Several BSM theories predict large FCNC enhancements in top decays

- \triangleright Event selection is one e or μ , plus ≥ 4 jets, at least three of which are b-tagged
 - Also, $E_T^{miss} > 20$ GeV and $E_T^{miss} + m_T^W > 60$ GeV
- > Three signal regions (4j3b, 5j3b, 6j3b)
 - Three control regions ($\geq 4b$) and three reweighting regions (2b+1 looser b) are also used

$t \rightarrow qX (q = u, c) with X \rightarrow bb$

- > NN (5 hidden layers) is used to separate signal from background, mainly $t\bar{t} + jets$
 - 32 input variables including m_X and b-tagging scores

$t \rightarrow qX \ (q = u, c) \ with \ X \rightarrow b\overline{b}$

- ➤ A binned maximum likelihood fit to the NN output distribution in the three signal regions and yields in the three control regions is used
- \succ Similar procedure to $t\bar{t}t\bar{t}$ measurement is used to reweight $t\bar{t}$ + jets distributions

 μ is the signal strength

Uncertainty source	$\Delta\mu(uX_{30})$	$\Delta\mu(uX_{80})$	$\Delta\mu(uX_{120})$
$t\bar{t}+\geq 1b$ modelling	0.040	0.060	0.098
$t\bar{t}+\geq 1c$ modelling	0.033	0.055	0.091
$t\bar{t}$ +light modelling	0.034	0.058	0.040
$t\bar{t}+\geq 1b$ normalisation	0.012	0.011	0.039
$t\bar{t}+\geq 1c$ normalisation	0.017	0.036	0.087
$W \rightarrow cb$ modelling	0.001	0.010	0.017
Reweighting	0.005	0.013	0.017
Other backgrounds	0.008	0.026	0.023
Luminosity, JVT, pile-up	0.002	0.006	0.012
Lepton trigger, identification, isolation	0.001	0.004	0.007
Jet energy scale and resolution	0.008	0.037	0.040
b-tagging efficiency for b-jets	0.007	0.008	0.041
b-tagging efficiency for c-jets	0.014	0.027	0.079
b-tagging efficiency for light jets	0.007	0.008	0.010

ATLAS-CONF-2022-027

LHCP2022

$t \rightarrow qX (q = u, c) \text{ with } X \rightarrow bb$

> Expected and observed 95% limits

- No significant excess is observed
 - $t \rightarrow uX UL$ (%): 0.019 (0.017) 0.062 (0.056)
 - $t \rightarrow cX UL$ (%): 0.018 (0.015) 0.078 (0.056)
- > Expected limits are 3x better compared with previous ATLAS $t \rightarrow qH$ search results scaled to the same integrated luminosity

ATLAS-CONF-2022-027

Conclusions

- \triangleright Highlights of $t\bar{t}X$ production
 - New inclusive and differential cross-section measurements in $t\bar{t}\gamma$, $tW\gamma$, and $t\bar{t}Z$ channels
 - Improved significance (4.7σ) for $t\bar{t}t\bar{t}$ production upon combining 1L/2LOS results with previous 2LSS/3L
 - New results on $t \to qX$, $X \to b\bar{b}$ FCNC searches
- ➤ Looking forward to even more rare top physics with 200 fb⁻¹at 13.6 TeV in LHC Run 3

20