# Measurements of Higgs boson production in association with top quarks at the ATLAS experiment

#### **LHCP 2022**

May 16th, Taipei University (online)

Ana Luísa Carvalho on behalf of the ATLAS Collaboration











# Motivation and outline

Higgs boson production in association with top quarks offers a direct probe of the top Yukawa coupling

- Associated production with a pair of top quarks (ttH) observed in 2018 by <u>ATLAS</u> and <u>CMS</u> using a combination of decay channels
- Associated production with a single top quark (tH) not been observed yet (very small cross section in SM)
  - tH rate is particularly sensitive to deviations from SM due to destructive interference with tWH diagram









# Where to look for ttH and tH

#### ★ CP and STXS measurements included

t<del>t</del>H(H→bb) ★ 139 /fb

 $\overline{\text{tT}}$ H(H $\rightarrow$ WW\*,  $\tau\tau$ , ZZ\*) 80 /fb, "multilepton"  $t\overline{t}H(H \rightarrow \tau\tau)$  hadronic 139 /fb

 $\overline{\text{tt}}\text{H}(\text{H}\rightarrow\gamma\gamma)$   $\bigstar$   $(\text{H}\rightarrow\text{ZZ}^*\rightarrow4\ell)$  139 /fb

Simpler background modelling

#### Larger branching ratio

- Large irreducible background ttbb
- Final state with multiple b-jets



- Irreducible ttZ/W backgrounds
- Large non-prompt leptons background
- Allows to exploit hadronic decays of Higgs and top
- Dominated by  $Z \rightarrow \tau \tau$  and  $t\bar{t}$  backgrounds

- Clean signatures
- Low statistics
- Loop contribution in H→γγ decay



# Measurement of H→bb in associated production with a top-quark pair

 $\mathcal{L} = 139 \text{ /fb at } 13 \text{ TeV}, \ \underline{2111.06712} \text{ (submitted to JHEP)}$ 

- Target decays of the top quark pair to 2 (dilepton) or ≥1 leptons (single-lepton)
- Events in which Higgs boson has a high transverse momentum (p<sub>⊤</sub>>300 GeV) also included
- Analysis regions defined based on the number of jets and b-jets
- Signal enriched regions further split in bins of reconstructed Higgs boson p<sub>T</sub>: [0-120], [120-200], [200-300], [300-450], [450-∞] (STXS formalism) ⇒ Total of 16 analysis regions

| Region              | Dilepton $\mathrm{SR}^{\geq 4j}_{\geq 4b} \ \mathrm{CR}^{\geq 4j}_{3b \ \mathrm{hi}} \ \mathrm{CR}^{\geq 4j}_{3b \ \mathrm{lo}} \ \mathrm{CR}^{3j}_{3b \ \mathrm{hi}}$ |          |     | Single-lepton $\mathrm{SR}^{\geq 6j}_{\geq 4b}  \mathrm{CR}^{5j}_{\geq 4b \text{ hi}}  \mathrm{CR}^{5j}_{\geq 4b \text{ lo}} \; \mathrm{SR}_{\mathrm{boosted}}$ |                          |          |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------|
| #leptons            | : = 2                                                                                                                                                                  |          |     | =1                                                                                                                                                              |                          |          |
| #jets               |                                                                                                                                                                        | $\geq 4$ | = 3 | : ≥ 6                                                                                                                                                           | = 5                      | $\geq 4$ |
| @85%                | :                                                                                                                                                                      | -        |     | :                                                                                                                                                               | $\geq 4$                 |          |
| @77%                | -                                                                                                                                                                      |          | :   | -                                                                                                                                                               | $\geq 2^{\dagger}$       |          |
| # $b$ -tag @ $70\%$ | $\geq 4$                                                                                                                                                               | 4 = 3    |     | . ≥ 4                                                                                                                                                           |                          | _        |
| @60%                |                                                                                                                                                                        | = 3 < 3  | = 3 |                                                                                                                                                                 | $\geq 4$ < 4             | _        |
| #boosted cand.      |                                                                                                                                                                        | -        |     | :                                                                                                                                                               | 0                        | $\geq 1$ |
| Fit input           | BDT                                                                                                                                                                    | Yield    |     | BDT/Yield                                                                                                                                                       | $\Delta R_{bb}^{ m avg}$ | BDT      |



# Measurement of H→bb in associated production with a top-quark pair

 $\mathcal{L} = 139 \text{ /fb at } 13 \text{ TeV}, \ \underline{2111.06712} \text{ (submitted to JHEP)}$ 

- BDT trained to distinguish between ttH and backgrounds used as discriminant in signal enriched regions
- $t\bar{t}+\ge 1b$  background dominant in most analysis regions  $\Rightarrow$  Normalization measured in data  $1.28\pm 0.08$
- Maximum likelihood fit performed including all signal and control regions
- ullet Measured inclusive signal strength:  $\mu=0.35^{+0.36}_{-0.34}$ , dominated by  $t\overline{t}$  modeling uncertainties





### Study of CP properties of the top-Higgs interaction in H→bb decay channel

 $\mathcal{L} = 139 \text{ /fb at } 13 \text{ TeV}, \underline{\text{ATLAS-CONF-2022-016}}$ 

- Follows closely strategy of ttH(H→bb) STXS analysis: same control regions and background modeling
  - o tH treated as signal: rate sensitive to coupling deviations from SM
- Higgs characterization model provides EFT framework to constrain 2D phase space given by (k<sub>+</sub>, α)

$$\mathcal{L} = -\frac{m_t}{v} \left\{ \bar{\psi_t} \kappa_t \left[ \cos(\alpha) + i \sin(\alpha) \gamma_5 \right] \psi_t \right\} H$$
CP-even (SM) CP-odd

- Signal regions split based on output of classification BDT
- CP-sensitive angular variables calculated **between the top quarks** used as discriminant in signal regions





# Study of CP properties of the top-Higgs interaction in H→bb decay channel

 $\mathcal{L} = 139 \text{ /fb at } 13 \text{ TeV}, \text{ ATLAS-CONF-} 2022-016$ 

- Dedicated dilepton control region containing events for which top-quark pair reconstruction is not possible
  - Fit  $\Delta \eta$  between leptons
- Simultaneous maximum likelihood fit in all (12) analysis regions with free-floating  $t\bar{t}+\ge 1b$  normalization

#### Top-Yukawa coupling results

- ullet Measured value of CP-mixing angle:  $lpha=11^{\circ+56^{\circ}}_{-77^{\circ}}$  (stat contribution  $^{+34^{\circ}}_{-51^{\circ}}$ )
- Overall coupling strength:  $\kappa_t' = 0.83^{+0.30}_{-0.46}$
- Pure CP-odd hypothesis disfavoured at 1.2  $\sigma$
- ttH signal strength compatible with STXS measurement within  $1\sigma$
- Dominated by systematic uncertainties in modeling of tt+≥1b
   background



# Analysis of ttH and ttW production in multilepton final states (H $\rightarrow$ WW\*, $\tau\tau$ , ZZ\*)

 $\mathcal{L}$  = 80 /fb at 13 TeV, <u>ATLAS-CONF-2019-045</u>



- Targets events with leptons in the final state and leptonic decays of tt pair
- 6 channels based on number and flavor of lepton candidates:  $2\ell$  same-sign (SS),  $3\ell$ ,  $4\ell$ ,  $1\ell+2\tau_{\rm had}$ ,  $2\ell$ SS+ $1\tau_{\rm had}$ ,  $3\ell+1\tau_{\rm had}$



- Main irreducible backgrounds: ttZ/W, VV
- Reducible backgrounds: non-prompt ℓ, charge misID electrons, electrons from photon conversions

# Analysis of ttH and ttW production in multilepton final states

 $\mathcal{L}$  = 80 /fb at 13 TeV, <u>ATLAS-CONF-2019-045</u>

- Simultaneous maximum likelihood fit in all analysis regions with 7 independent normalization factors
  - 3 ttW: measured in 2lSS high/low no. jets regions and 3l channel
  - o 1 internal conversions: measured by fitting yield 3\ell ttZ, VV CR's
  - 3 non-prompt leptons: e, μ and material conversion candidates): measured in 2ℓSS and 3ℓ regions, H<sub>T,lep</sub> and ΔR(ℓ,ℓ) provide separation against ttW and internal conversion candidates
- BDT discriminant used in signal regions of 2 $\ell$ SS, 3 $\ell$  and 1 $\ell$ +2 $\tau_{\rm had}$  channels
- Event yield fitted in remaining regions

#### Results

- ullet Measured signal strength:  $\mu=0.58^{+0.36}_{-0.33}$
- Observed excess above background-only hypothesis: 1.8  $\sigma$
- ullet ttW normalization factors:  $1.56^{+0.30}_{-0.28}, 1.26^{+0.19}_{-0.18}$   $1.68^{+0.30}_{-0.28}$
- Similar contributions from statistical and systematic uncertainties



# Higgs boson production cross-section measurement in the $H \rightarrow \tau \tau$ decay channel

 $\mathcal{L} = 139 \text{ /fb at } 13 \text{ TeV}, \ \underline{2201.08269} \text{ (submitted to JHEP)}$ 

- Targets hadronic decays of top quark pair and  $\tau$  leptons from Higgs decay
- Hadronic  $\tau$  candidates ( $\tau_{\rm had}$ ) reconstructed from jets and identified by RNN

Includes multiple Higgs production modes, focus on ttH part only

#### $H \rightarrow \tau \tau$ selection

≥2  $au_{\mathsf{had}} \; \mathsf{p}_{\mathsf{T}}\!\!>\!\!40,\,30 \; \mathsf{GeV}$ Opposite sign Angular requirements ( $\Delta\mathsf{R},\,\Delta\eta$ )

#### Hadronic tt selection

≥6 jets ≥1 b-jet or ≥5 jets ≥2 b-jet



- Dominant backgrounds: Z→ττ, tt̄
   (independent normalization factors)
- Simultaneous maximum likelihood fit to 32 signal regions and 36 control regions
- Measured  $t\overline{t}H(0\ell)$  signal strength:  $\mu=1.06^{+1.28}_{-1.08}$
- Signal and Z+jets and tt background modelling are the leading systematic uncertainties

2 ttH signal regions (signal enriched and depleted)



# Measurement of Higgs boson production in $H\rightarrow \gamma\gamma$ decay channel

 $\mathcal{L}$  = 139 /fb at 13 TeV, ATLAS-CONF-2020-026



- BDT's trained using multiplicity and kinematic properties of photons, jets and leptons and event-level quantities
- Variables with a correlation with m<sub>yy</sub> above 5% are removed

 Targets ttH and tH processes in the STXS framework

**Multiclass BDT** trained on Higgs events from multiple production processes



# Measurement of Higgs boson production in $H\rightarrow \gamma\gamma$ decay channel

 $\mathcal{L}$  = 139 /fb at 13 TeV, <u>ATLAS-CONF-2020-026</u>

- Signal modeled as double-sided Crystal ball function
- Background modelled as power law, Bernstein polynomials or exponential function of polynomial
  - Chosen by spurious signal test
- Simultaneous maximum likelihood fit performed in 88 analysis categories (10 dedicated to ttH/tH) to m

#### Results

- Observed significance of ttH+tH processes: 4.7σ
- ullet Measured t $\overline{ ext{t}}$ H+tH signal strength:  $\mu=0.92^{+0.27}_{-0.24}$
- Upper limit for tH at 95% CL: 8 x SM (most stringent to date)
- Dominated by statistical uncertainty
- Leading experimental uncertainty is photon energy resolution





# CP properties of Higgs boson interaction with top quarks in $H\rightarrow\gamma\gamma$

 $\mathcal{L}$  = 139 /fb at 13 TeV, Phys. Rev. Lett. 125 (2020) 061802

- Shares some similarities with STXS analysis: diphoton vertex, signal modelling and discriminant variable (m<sub>m</sub>)
- Targets **leptonic** and fully **hadronic** of the tt pair: defined based on number of jets and leptons
- 2 sets of BDT's to discriminate ttH from backgrounds and CP-even/odd ttH+tH production
  - Trained separately in the hadronic and leptonic channels
- Categories defined in 2D BDT space ⇒ Total of 20 analysis categories
   (12 hadronic and 8 leptonic)
- Simultaneous maximum likelihood fit in all categories

# Top-Yukawa coupling results

- $|\alpha| > 43^{\circ}$  is excluded at 95% CL
- Pure CP-odd coupling ( $\alpha$ =90°) is excluded at 3.9 $\sigma$







# Higgs boson production cross-section measurement in the $H\rightarrow ZZ^*\rightarrow 4\ell$ decay channel

 $\mathcal{L}$  = 139 /fb at 13 TeV, Eur. Phys. J. C 80 (2020) 957

Targets leptonic
 and fully hadronic
 of the tt pair and
 events consistent
 with a 4ℓ vertex

≥2 same-flavour, opposite charge lepton pairs

Quadruplet:  $m_{12}$ ,  $m_{34}$ 

# Higgs candidates selection

50<m $_{12}$ <106 GeV, m $_{\rm min}$ <m $_{34}$ <115 GeV  $\Delta$ R( $\ell,\ell$ )>0.1 and lepton isolation Impact parameter and common vertex

# Leptonic

≥1 add. ℓ, ≥2 b-jets (@85%) ≥5 jets, ≥1 b-jet (@85%) ≥2 jets, ≥1 b-jet (@60%)

#### Hadronic

≥5 jets, ≥2 b-jet (@85%) ≥4 jets, ≥1 b-jet (@60%)

Taken inclusively due to low stats

NN trained to separate ttH from ttV and ggF





# Higgs boson production cross-section measurement in the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel

 $\mathcal{L}$  = 139 /fb at 13 TeV, Eur. Phys. J. C 80 (2020) 957

- In ttH enriched regions backgrounds containing top quarks and electroweak bosons are dominant
- In the remaining regions, non-resonant ZZ\* production is the dominant background
- Backgrounds with non-prompt leptons are significantly smaller



 Simultaneous maximum likelihood fit to regions enriched in different Higgs production modes

#### Results

- Measured ttH signal strength:  $\mu=1.7^{+1.7}_{-1.2}$
- Largely statistically limited
- Significantly less precise than other production modes



Highlights challenges and opportunities in ttH production

# **Conclusions**

- Presented new measurements of ttH and tH with the ATLAS experiment
  - Analyses targeting H $\rightarrow$ bb,  $\gamma\gamma$ , ZZ( $\rightarrow$ 4 $\ell$ ),  $\tau_{\rm bad}\tau_{\rm bad}$  already updated with full Run-2 dataset (139 /fb)
- Higgs boson associated production with top quarks leads to complex final states
  - Sensitivity enhanced by multivariate analysis techniques and precise background modeling
- Largest ever dataset allows for measurements of the structure of the top Yukawa coupling
  - Charge-parity measurements performed in H $\rightarrow$ bb,  $\gamma\gamma$
- All measurement compatible with the SM expectations
- Better (theoretical and experimental) understanding of ttbb, ttW and ttZ backgrounds is crucial
  - Limiting factor in H→bb and multilepton analyses

# **Backup**

# Measurement of Higgs boson production in association with tt pair in $H \rightarrow \gamma \gamma$ decay channel

 $\mathcal{L}$  = 139 /fb at 13 TeV, <u>ATLAS-CONF-2019-004</u>

 Targets leptonic and fully hadronic of the tt pair and events with a primary diphoton vertex





# Measurement of Higgs boson production in association with tt pair in $H \rightarrow \gamma \gamma$ decay channel

 $\mathcal{L}$  = 139 /fb at 13 TeV, <u>ATLAS-CONF-2019-004</u>

- Signal modeled as double-sided Crystal ball function
- Background modelled as power law or exponential
  - Chosen by spurious signal test
  - Single-parameter functions chosen due to low stats
- Simultaneous maximum likelihood fit performed in the 7 analysis categories

#### Results

- Observed significance: 4.9  $\sigma$
- ullet Observed signal strength:  $\mu=1.43^{+0.33}_{-0.31}( ext{stat})^{+0.21}_{-0.15}( ext{sys})$
- Upper limit for tH at 95% CL: 12 x SM
- Dominated by statistical uncertainty
- Photon energy scale and resolution are the leading experimental uncertainties





# CP properties of Higgs boson interaction with top quarks in $H \rightarrow \gamma \gamma$

 $\mathcal{L}$  = 139 /fb at 13 TeV, Phys. Rev. Lett. 125 (2020) 061802

- Follows closely strategy of rate analysis, with tH included as signal
- CP-odd contribution parameterized as a function of (k<sub>+</sub>, α)
- Additional BDT's to discriminate CP-even/odd ttH+tH production
  - Trained separately in the hadronic and leptonic channels
- Categories defined in 2D BDT space ⇒ Total of 20 analysis categories
   (12 hadronic and 8 leptonic)
- Simultaneous maximum likelihood fit in all categories

# Top-Yukawa coupling results

- |α| > 43° is excluded at 95% CL
- Pure CP-odd coupling ( $\alpha$ =90°) is excluded at 3.9 $\sigma$
- Signal strength and cross section also extracted ⇒ Compatible with cross-section analysis



Hadronic Bkg. Rej. Discriminant

