Physics at Future e⁺e⁻ Colliders

Frank Simon Max-Planck-Institute for Physics

> LHCP, virtual Taipeh May 2022

MAX-PLANCK-INSTITUT

Where we are

smaller constituents of our Universe have been established

• Over the last ~ three decades, a consistent view of the fundamental principles of the largest structures and

Where we are

smaller constituents of our Universe have been established

The Standard Model of Particle Physics describing the "Micro-World"

Physics at Future e⁺e⁻ Colliders - LHCP, May 2022

• Over the last ~ three decades, a consistent view of the fundamental principles of the largest structures and

Where we are

smaller constituents of our Universe have been established

The Standard Model of Particle Physics describing the "Micro-World"

Physics at Future e+e- Colliders - LHCP, May 2022

• Over the last ~ three decades, a consistent view of the fundamental principles of the largest structures and

 $\Lambda CDM + Inflation$

The Standard Model of Cosmology describing the evolution of the Universe

Where we are

smaller constituents of our Universe have been established

The Standard Model of Particle Physics describing the "Micro-World"

Physics at Future e+e- Colliders - LHCP, May 2022

• Over the last ~ three decades, a consistent view of the fundamental principles of the largest structures and

 $\Lambda CDM + Inflation$

The Standard Model of Cosmology describing the evolution of the Universe

The Big Questions

What we know we don't know

- How can the Higgs boson be so light?
- What is the mechanism behind electroweak symmetry breaking?
- What is Dark Matter made out of?
- What drives inflation?

. . .

- Why is the universe made out of matter?
- What generates Neutrino masses?

The Big Questions

What we know we don't know

- How can the Higgs boson be so light?
- What is the mechanism behind electroweak symmetry breaking?
- What is Dark Matter made out of?
- What drives inflation?

. . .

- Why is the universe made out of matter?
- What generates Neutrino masses?

The answers to these questions have to be *outside* of the Standard Model!

The Big Successes

How we got to where we are

SPEAR / AGS 1974 Fermilab 1977 Tevatron 1995

AGS 1962 SPEAR 1975 Fermilab 2000

PETRA 1979

SppS 1983

LHC 2012

The Big Successes

How we got to where we are

SPEAR / AGS 1974 Fermilab 1977 Tevatron 1995

AGS 1962 **SPEAR 1975** Fermilab 2000

The result of:

PETRA 1979

SppS 1983

LHC 2012

A success story of HEP.

- generations of accelerators: colliders and fixed target; leptons and hadrons
- generations of detectors with a wide range of different technologies
- the interplay of experiment and theory

Providing testable predictions, which informed the next generation of experiments.

Where to go from here

- What we do know:

 - Most hints for new phenomena come from the electroweak + Higgs sector: Expect some new particles to be charged under electroweak interactions
- What we don't know:
 - The energy scale of new particles / phenomena

• The Higgs is connected to all particles we know - and is at the center of some of our questions

The Business Model

Strategies for Discoveries

Direct observation of new particles: Requires sufficient energy for production

The Business Model

Strategies for Discoveries

Direct observation of new particles: Requires sufficient energy for production

Indirect discovery: **Deviations from** expectation hinting at new phenomena at (much) higher energy scale

The Case for Precision Measurements

An established discovery strategy - getting guidance early

Particle	Indirect			Direct				
ν	β decay	Fermi	1932	Reactor v-CC	Cowan, Reines	1956		
W	β decay	Fermi	1932	W→ev	UA1, UA2	1983		
С	$K^0 \rightarrow \mu\mu$	GIM	1970	J/ψ	Richter, Ting	1974		
b	СРV <i>К⁰→пп</i>	CKM, 3 rd gen	1964/72	Y	Ledermann	1977		
Z	v-NC	Gargamelle	1973	$Z \rightarrow e^+e^-$	UA1	1983		
t	B mixing	ARGUS	1987	$t \rightarrow Wb$	D0, CDF	1995		
н	e+e-	EW fit, LEP	2000	$H \rightarrow 4\mu/\gamma\gamma$	CMS, ATLAS	2012		
?	What's next ?		?			?		
$ \underbrace{ \begin{array}{c} & u \\ & e^{-} \\ & \bar{\nu}_{e} \\ & & \\ & $								
d μ^+ b d taken from N						n Niels		

Physics at Future e+e- Colliders - LHCP, May 2022

with a well-founded theoretical model, precision measurements can be turned into discoveries - and precision measurements can guide the development of new models.

Iring, ICHEP 2018

The Case for Precision Measurements

An established discovery strategy - getting guidance early

A Higgs Factory

An Energy Frontier e+e- Collider

Higgs-Strahlung The key process

• The unique feature of e⁺e⁻ colliders: *model independence*

... allows tagging Higgs production without reconstructing the full final state. No assumptions of how the Higgs boson decays are needed!

Higgs-Strahlung The key process

• The unique feature of e⁺e⁻ colliders: *model independence*

Z recoil mass provides hameasurement of the $m_{rec}^2 = s + m_Z^2 - 2E_Z\sqrt{s}$ 9 total cross section Pross section maximum ~ 250 GeV

Physics at Future e+e- Colliders - LHCP, May 2022

... allows tagging Higgs production without reconstructing the full final state. No assumptions of how the Higgs boson decays are needed!

Higgs-Strahlung The key process

• The unique feature of e⁺e⁻ colliders: *model independence*

Z recoil mass provides here a measurement of the $m_{rec}^2 = s + m_Z^2 - 2E_Z\sqrt{s}$ 9 total cross section Pross section maximum ~ 250 GeV

Physics at Future e+e- Colliders - LHCP, May 2022

... allows tagging Higgs production without reconstructing the full final state. No assumptions of how the Higgs boson decays are needed!

Exploring the Higgs Sector

Precision measurements of couplings

directly constrain the coupling of Higgs to Z in a model-independent way

Exploring the Higgs Sector

Precision measurements of couplings

directly constrain the coupling of Higgs to Z in a model-independent way

Frank Simon (fsimon@mpp.mpg.de)

Exploring the Higgs Sector

Precision measurements of couplings

measure couplings to fermions and bosons using production and decay \sim can be made model-independent in combination with the measurement of the HZ coupling in recoil total width with identical particles in production and decay: WW, ZZ \rightarrow Physics at Future ete Colliders - LHCP, May 2022

at LHC

of Higgs produced: ~4,000,000 significance: 5.4o

- ~400
- 5.2σ

• Also: Precise measurement of H -> cc, H -> gg

Richness of Higgs Processes in e⁺e⁻

Richness of Higgs Processes in e⁺e⁻

250 GeV: Maximum of ZH production

Frank Simon (fsimon@mpp.mpg.de)

Richness of Higgs Processes in e⁺e⁻

250 GeV:

Maximum of ZH production

350 GeV:

WW fusion becomes sizeable

Richness of Higgs Processes in e⁺e⁻

250 GeV:

Maximum of ZH production

350 GeV:

WW fusion becomes sizeable

500 - 1000+ GeV:

ttH: direct access to top Yukawa coupling

Richness of Higgs Processes in e⁺e⁻

250 GeV:

Maximum of ZH production

350 GeV:

WW fusion becomes sizeable

500 - 1000+ GeV:

ttH: direct access to top Yukawa coupling

500 GeV; 1+ TeV:

Double-Higgs production: Direct access to Higgs selfcoupling

Richness of Higgs Processes in e⁺e⁻

- Polarisation plays a role as well:
 - Boosting of signal, reduction of background (or vice versa)
 - Adds additional input for global fits & increases sensitivity to new phenomena

Physics at Future e⁺e⁻ Colliders - LHCP, May 2022

250 GeV:

Maximum of ZH production

350 GeV:

WW fusion becomes sizeable

500 - 1000+ GeV:

ttH: direct access to top Yukawa coupling

500 GeV; 1+ TeV:

Double-Higgs production: Direct access to Higgs selfcoupling

Richness of Higgs Processes in e⁺e⁻

- Polarisation plays a role as well:
 - Boosting of signal, reduction of background (or vice versa)
 - Adds additional input for global fits & increases sensitivity to new phenomena

Physics at Future e⁺e⁻ Colliders - LHCP, May 2022

250 GeV:

Maximum of ZH production

350 GeV:

WW fusion becomes sizeable

500 - 1000+ GeV:

ttH: direct access to top Yukawa coupling

500 GeV; 1+ TeV:

Double-Higgs production: Direct access to Higgs selfcoupling

125 GeV:

S-Channel Higgs production: **Electron Yukawa**

Projections of Global Fits

Physics at Future e⁺e⁻ Colliders - LHCP, May 2022

Frank Simon (fsimon@mpp.mpg.de)

Projections of Global Fits

Physics at Future e⁺e⁻ Colliders - LHCP, May 2022

Frank Simon (fsimon@mpp.mpg.de)

Projections of Global Fits

Physics at Future e⁺e⁻ Colliders - LHCP, May 2022

Frank Simon (fsimon@mpp.mpg.de)

Projections of Global Fits

Physics at Future e⁺e⁻ Colliders - LHCP, May 2022

Frank Simon (fsimon@mpp.mpg.de)

Projections of Global Fits

Physics at Future e+e- Colliders - LHCP, May 2022

Frank Simon (fsimon@mpp.mpg.de)

Projections of Global Fits

Physics at Future e⁺e⁻ Colliders - LHCP, May 2022

Frank Simon (fsimon@mpp.mpg.de)

Take a Step back: Beyond the Higgs

The full panorama of e⁺e⁻ collisions

• A high-energy e⁺e⁻ collider is more than just a Higgs Factory: A Higgs-Electroweak-Top Factory

Physics at Future e⁺e⁻ Colliders - LHCP, May 2022

Frank Simon (fsimon@mpp.mpg.de)

Take a Step back: Beyond the Higgs

The full panorama of e⁺e⁻ collisions

• A high-energy e⁺e⁻ collider is more than just a Higgs Factory: A Higgs-Electroweak-Top Factory

Physics at Future e⁺e⁻ Colliders - LHCP, May 2022

Thresholds and cross sections set collider energy targets:

91.2 GeV - The Z pole

160 GeV - The WW threshold

250 GeV - The ZH maximum

350 GeV - The top threshold, **VBF** Higgs production

500 GeV - ttH, ZHH

1+ TeV - VBF double Higgs

Take a Step back: Beyond the Higgs

The full panorama of e⁺e⁻ collisions

 A high-energy e⁺e⁻ collider is more than just a Higgs A Higgs-Electroweak-Top Factory

Physics at Future e⁺e⁻ Colliders - LHCP, May 2022

s Factory:	Thresholds and cross se collider energy targets:	ections s	set	
91.2 Ge 160 Ge	V - The Z pole I - The WW threshold	Precisic Flavour,	on el QCI	ectrov),
250 Ge	V - The ZH maximum	Higgs coupli	prop ngs	oertie
350 Ge\	V - The top threshold, VBF Higgs production	Тор р Тор а	rope s pro	erties, obe
500 Ge	V - ttH, ZHH	Direct t	op Y	'ukaw
1+ TeV	- VBF double Higgs	Higgs s	selfc	ouplir
► Есм / GeV	energy frontier			
			т \	

Frank Simon (fsimon@mpp.mpg.de)

oweak,

Interlude: Physics Emphasis & Collider Geometry

In broad strokes

• e⁺e⁻ collider geometry determines experimental focus beyond the core Higgsstrahlung program:

Circular:

extreme statistics at the Z pole and W threshold: precision electroweak

Linear:

reach to (multi-)TeV energy - double higgs production, high energy exploration

The Self-Couplina

Direct and Indirect Mea

• Direct measurement requires high energy:

nts

 Indirect, model-dependent sensitivity in single Higgs production and decay

The Self-Coupling

Direct and Indirect Mea

Direct measurement requires high energy:

nts

 Indirect, model-dependent sensitivity in single Higgs production and decay

Full potential unfolds in the (multi-)TeV region, combining ZHH and VBF double Higgs production

Single-Higgs observables can provide ~35% sensitivity in combination with HL-LHC.

A New Era of Electroweak Precision

Tera-Z and Oku-W

- The high luminosities of circular colliders at low energy enable a program with ~ 10^{12} events at the Z pole
 - $\sim 10^8$ events at the WW threshold

- A full suite of measurements
- from the Z pole and line shape
- α_s to 1.2 x 10⁴ (0.1%)

A New Era of Electroweak Precision

Tera-Z and Oku-W

- The high luminosities of circular colliders at low energy enable a program with ~ 10^{12} events at the Z pole
 - $\sim 10^8$ events at the WW threshold

- A full suite of measurements from the Z pole and line shape

- W measurements around the pair production threshold of
- m_W to ~ 1 MeV (CDF: 9 MeV)

Beyond Z and W A rich program at the Z pole

- High statistics at the Z also imply very large samples of
 - bb pairs: 5 x 10¹² Z -> 10¹² b pairs
 - τ⁺τ⁻ pairs: ~ 1.7 x 10¹¹ pairs

CKM, CPV, rare decays & anomalies, ...

Physics at Future e+e- Colliders - LHCP, May 2022

A next-generation e⁺e⁻ flavour physics program beyond Belle II / SuperKEKB

lepton universality test, electroweak precision, ...

Frank Simon (fsimon@mpp.mpg.de)

Understanding the Top, using the Top

Understanding the Top, using the Top

- Measuring the top quark mass (and other parameters) in theoretically welldefined frameworks
- Search for BSM decays in clean environment

Understanding the Top, using the Top

- Measuring the top quark mass (and other parameters) in theoretically welldefined frameworks
- Search for BSM decays in clean environment
- Electroweak couplings of the top quark as a probe for New Physics

Understanding the Top, using the Top

ž

Examples - Mass at Threshold; Asymmetries to probe New Physics

Examples - Mass at Threshold; Asymmetries to probe New Physics

Examples - Mass at Threshold; Asymmetries to probe New Physics

Examples - Mass at Threshold; Asymmetries to probe New Physics

Examples - Mass at Threshold; Asymmetries to probe New Physics

- Exploit precise theoretical calculations of cross section in the threshold region, in well-defined mass schemes (mt^{PS}, mt^{1S}...) -> Can be converted directly into MSbar mass.
 - The potential for a measurement of the mass with < 50 MeV total uncertainty (dominated by theory)

Examples - Mass at Threshold; Asymmetries to probe New Physics

Physics at Future e+e- Colliders - LHCP, May 2022

- The potential for a measurement of the mass

Into the Unknown

Endless possibilities...

Dark matter, dark sectors...

Physics at Future e⁺e⁻ Colliders - LHCP, May 2022

Into the Unknown

• Endless possibilities...

Dark matter, dark sectors...

Physics at Future e+e- Colliders - LHCP, May 2022

DAN

Into the Unknown

• Endless possibilities...

Dark matter, dark sectors...

Physics at Future e+e- Colliders - LHCP, May 2022

Heavy neutral leptons (HNL)

...

Into the Unknown

Physics at Future e+e- Colliders - LHCP, May 2022

A Higgs-Electroweak-Top Factory

The next facility in HEP

• Update of the European Strategy for Particle Physics 2020: An electron-positron Higgs factory is the highest-priority next collider.

Summary: The expected Harvest

Towards a New Era of Precision and Discovery

- A next-generation energy frontier e⁺e⁻ collider promises a rich and diverse scientific harvest
 - A comprehensive exploration of the Higgs sector, with model-independent measurements of couplings to fermions and bosons at the (sub-) percent level
 - Precision top quark physics: Mass and other properties, top quarks as a tool for BSM searches A broad electroweak program - far beyond the precision achieved with LEP

 - Flavour physics
 - QCD
 - and the search for new phenomena in many regions of unexplored phase space

Summary: The expected Harvest

Towards a New Era of Precision and Discovery

- A next-generation energy frontier e⁺e⁻ collider promises a rich and diverse scientific harvest
 - A comprehensive exploration of the Higgs sector, with model-independent measurements of couplings to fermions and bosons at the (sub-) percent level
 - Precision top quark physics: Mass and other properties, top quarks as a tool for BSM searches A broad electroweak program - far beyond the precision achieved with LEP

 - Flavour physics
 - QCD
 - and the search for new phenomena in many regions of unexplored phase space
- The relative weight and reach of the different scientific avenues depends on the details of the collider: Circular or Linear? Which maximum luminosity, which maximum energy, which energy stages?

Join us to contribute to this decision - and to making such a facility a reality!

Physics at Future e+e- Colliders - LHCP, May 2022

S Channel Higgs Production

A challenge of luminosity and energy spread

Physics at Future e⁺e⁻ Colliders - LHCP, May 2022

