Physics at Future Hadron Colliders

.

BERKELEY LAB

Introduction

- Hadron colliders are general purpose machines and, as such, capable of making a wide range of physics measurements including
 - Precision measurements of the Standard Model
 - Profiting from large cross-sections and high-luminosity
 - Direct searches for **new particles** and **new physics**
 - Unique capability in direct reach to high mass and high-energies
- This talk will cover **selected topics** from both and highlight the capabilities of hadron colliders
 - see talk by A. Zaborowska for details of the machines and detectors
- Physics capabilities of hadron colliders are complementary to those of e⁺e⁻ colliders
 - see talk by F. Simon
- Will focus here on **physics studies** for the **FCC-hh**, but these also illustrate the potential for any **IOO TeV collider**

Cross sections vs collider energy

LO results nd best ons from tegy.

pering scattering

 $\frac{\sigma_Y}{\mathrm{mb}}$

b<u>b</u> mb

tion has ob contrib. 0 TeV eV).

Large increase in **cross sections** with collider energy

e.g.As increase is larger for heavier particles, ttH cross section becomes larger than WH/ ZH production at 100 TeV

Kinematic Coverage

 Processes at FCC-hh will be produced at higher rapidity than at the LHC

> Requirements on detector design and acceptance

CERN-FCC-PHYS-2020-0004

5

tat. only

tat. only

The Higgs Boson

- High precision measurements of all properties of Higgs boson are critical
- May prove to be a key to discovering physics beyond the Standard Model
- Hadron colliders are well-suited to provide
 - Higgs **coupling** measurements
 - Rare decays due to high luminosity
 - Higgs-top coupling
 - Higgs to invisible
 - Higgs self-coupling

σ(13 TeV) σ(100 TeV) $\sigma(100)/\sigma(13)$ ggH (N³LO) 49 pb 803 pb 16 VBF (N²LO) 3.8 pb 69 pb 16 VH (N²LO) 2.3 pb 27 pb 11 ttH (N²LO) 0.5 pb 55 34 pb

Many more Higgs bosons: large increase in cross sections

Cross sections vs energy

Higgs Coupling Measurements

- Hadron colliders cannot make absolute measurements of Higgs couplings
- Either make **model dependent** measurements or measure coupling **ratios** wrt $H \rightarrow ZZ$ (and use precise ee measurement) with high statistics
- e.g. $H \rightarrow \gamma \gamma$
 - 0.1% stat
 - 1.45% stat + syst + lumi
- Can reduce systematics (incl. impact of pile up) by used boosted Higgs ($>10^6$ with $p_T>1\,{\rm TeV}$) $^{\rm 10^8}$

106

104

10²

- Also measurements of Higgs p_T
 - Could probe new physics

Rare Higgs Decays

 Large production cross sections and high luminosity would allow precise measurements of rare Higgs decays

events / 0.3 GeV

events / 0.4 GeV

- $H \rightarrow \mu \mu$
 - 0.28% stat
 - 1.22% stat+syst+lumi
 - (8.2% @ HL-LHC)
- $H \to Z\gamma$
 - 0.55% stat
 - I.61% stat+syst+lumi
 - (19.1% @ HL-LHC)

 $H \rightarrow Z^* \gamma$

Higgs-Top Coupling

- Again due to the energy, 100 TeV colliders can make precise measurements of κ_t
 - ttH production cross section increases more rapidly than other production cross sections with energy
- Following <u>Mangano et al.</u> a precise measurement could be made by measuring the ratio *ttH/ttZ*
 - Cancellation of systematics including luminosity, theory & experimental systematics
- Expected precision of O(1%)
 - Assumes $\sigma(ttZ)$ is known, e.g. from FCC-ee

Higgs Decays to Invisible Particles

- Constraints on Higgs decays to invisible particles can be used as generic searches for (light) new particles coupling to the Higgs boson
- Profile likelihood fit to the E_T^{miss} in boosted Higgs events
 - Backgrounds **constrained** from Z and W control regions
- $BR(H \rightarrow inv) < 10^{-4}$
 - Depends on level to which backgrounds can be constrained
 - **Competitive at low mass** with direct detection experiments like LUX, PANDA, CDMS

Higgs Self-coupling

- Direct access to Higgs potential
 - Confirm mechanism of electroweak symmetry breaking
- Tiny cross section due to negative interference
- Key channels include
 - bbττ
 - bbyy
 - bbbb
- Expect to react a precision of ~50% by the end of HL-LHC
 - Depends strongly on assumptions about systematics

ATL-PHYS-PUB-2022-005

Higgs self-coupling at FCC-hh

- Highest precision channel: $bb\gamma\gamma$
- Expected combined precision on κ_{λ} of 3-8%
- Depends on detector performance and systematic assumptions
 - Studied for 3 different detector performance and systematic scenarios

@68% CL	Scenario I	Scenario II	Scenario III
Stat only	3.0	4.1	5.6
Stat + syst	3.4	5.1	7.8

Detector performance/systematic assumptions

- Scenario I: Optimistic target detector performance, similar to Run 2 LHC conditions.
- Scenario II: Realistic intermediate detector performance.
- Scenario III: Conservative pessimistic detector performance, assuming extrapolated HL-LHC performance using present-day algorithms.

Summary of Higgs Self-Coupling Measurements

FCC-hh can make the **most precise measurement** of the Higgs self-coupline of future colliders under consideration

Summary of Higgs Measurements

- Highlights include
 - Higgs **coupling** measurements
 - Rare decays due to high luminosity
 - Higgs-top coupling
 - Higgs to **invisible**
 - Higgs self-coupling

Comparison to other hadron colliders

$\delta R/R$	HE-LHC	LE-FCC	FCC-hh
$R = B(H \rightarrow \gamma \gamma)/B(H \rightarrow 2e2\mu)$	1.7%	1.5%	0.8%
$R = B(H \rightarrow \mu \mu)/B(H \rightarrow 4\mu)$	3.6%	2.9%	1.3%
$R = B(H \rightarrow \mu \mu \gamma) / B(H \rightarrow \mu \mu)$	8.4%	6%	1.8%
$R = B(H \rightarrow \gamma \gamma)/B(H \rightarrow 2\mu)$	3.5 %	2.8%	1.4%

Observable	Parameter	Precision	Precision
		(stat)	(stat+syst+lumi)
$\mu = \sigma(\mathbf{H}) \times \mathbf{B}(\mathbf{H} \to \gamma \gamma)$	$\delta \mu / \mu$	0.1%	1.45%
$\mu = \sigma(\mathbf{H}) \times \mathbf{B}(\mathbf{H} \rightarrow \mu \mu)$	$\delta \mu / \mu$	0.28%	1.22%
$\mu = \sigma(\mathbf{H}) \times \mathbf{B}(\mathbf{H} \to 4\mu)$	$\delta \mu / \mu$	0.18%	1.85%
$\mu = \sigma(\mathbf{H}) \times \mathbf{B}(\mathbf{H} \to \gamma \mu \mu)$	$\delta \mu / \mu$	0.55%	1.61%
$R = B(H \rightarrow \mu \mu) / B(H \rightarrow 4\mu)$	$\delta R/R$	0.33%	1.3%
$R = B(H \rightarrow \gamma \gamma) / B(H \rightarrow 2e2\mu)$	$\delta R/R$	0.17%	0.8%
$R = B(H \rightarrow \gamma \gamma) / B(H \rightarrow 2\mu)$	$\delta R/R$	0.29%	1.38%
$R = B(H \rightarrow \mu \mu \gamma) / B(H \rightarrow \mu \mu)$	$\delta R/R$	0.58%	1.82%
$R = \sigma(t\bar{t}H) \times B(H \rightarrow b\bar{b}) / \sigma(t\bar{t}Z) \times B(Z \rightarrow b\bar{b})$	$\delta R/R$	1.05%	1.9%
$B(H \rightarrow invisible)$	B@95%CL	1×10^{-4}	$2.5 imes 10^{-4}$
HH production	$\delta\lambda/\lambda$	3.0 – 5.6%	$3.4 ext{-}7.8\%$

All Colliders: Top squark projections

Searches for New Physics

New physics prospects at 100 TeV

- I00 TeV colliders can directly probe new physics at very high energies
- PDF luminosity ratio increasing strongly as a function of the mass of the new particle
 - e.g. 100 @ 1 TeV
 - 106 @ 8 TeV
- Translates into discovery potential for high mass particles

Supersymmetry: Squarks and Gluinos

European Strategy

Large extension in reach of SUSY models with FCC-hh

FCC-hh probes squarks up to 10 TeV extends HL-LHC mass

reach by a factor of

2-3

FCC-hh probes gluinos up to 17 TeV extends HL-LHC mass reach by a factor of 4-5

All Colliders: squark projections

Hadron Colliders: gluino projections

Update		serving SUSY, prompt searches)	onserving	rity cons	(R-pa	
Conditions	Mass limit (95% CL exclusion)	¹] √s [TeV]	$t[ab^{-1}] \sqrt{s} [TeV]$	∫ <i>L dt</i> [ab ⁻	Model	
$m(\widetilde{\mathcal{X}}_1^{0,\mathbf{c}})$	3.2 TeV	14	3 14	3	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$	
$m(ilde{g}) \sim m(ilde{\chi}_1^0)$ +10 G	1.5 TeV	14	3 14	3	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$	ЧЧ
$m(\widetilde{\mathcal{X}}_1^0)$	2.5 TeV	14	3 14	3	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_1^0$	Ŧ
$m(\tilde{\chi}_{1}^{0})=500 G$	2.6 TeV	14	3 14	3	$\tilde{g}\tilde{g}, \tilde{g} {\rightarrow} t \bar{c} \tilde{\chi}_1^0$	
$m(\widetilde{\mathcal{X}}_{1}^{0})$	5.7 TeV	27	15 27	15	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$	0
$m(\tilde{g}) \sim m(\tilde{\chi}_1^0)$ +10 G	2.6 TeV	27	15 27	15	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$	CH4
$m(\widetilde{\mathcal{X}}_{1}^{0})$	5.9 TeV	27	15 27	15	NUHM2, $\tilde{g} \rightarrow t\tilde{t}$	Ψ
$m(ilde{\mathcal{X}}_1^0)$	17.0 TeV	100	30 100	30	$\tilde{g}\tilde{g},\tilde{g}{\rightarrow}q\bar{q}\tilde{\chi}_{1}^{0}$	
$m(ilde{g}) \sim m(ilde{\chi}_1^0)$ +10 GeV	7.5 TeV	100	30 100	30	$\tilde{g}\tilde{g},\tilde{g}{ ightarrow}q\bar{q}\tilde{\chi}_{1}^{0}$	C-hh
$m(ilde{\mathcal{X}}_1^0)$	11.0 TeV	100	30 100	30	$\tilde{g}\tilde{g}, \tilde{g} {\rightarrow} t \bar{t} \tilde{\chi}_1^0$	ñ
$m(\tilde{\chi}_1^0)=0$	7.4 TeV	37.5	15 37.5	15	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$	U
$m(\tilde{g}) \sim m(\tilde{\chi}_1^0)$ +10 GeV	3.6 TeV	37.5	15 37.5	15	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$	Б.FC
$m(\tilde{\chi}_1^0)=0$, , , , , , , , , , , , , , , , 7.6,TeV	37.5	15 37.5	15	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_1^0$	_
	10 Mass scale [TeV]	- or HE-LHC studies	om HL- or HE-LHC s	olated from HL	(*): extrap	
$\begin{split} m(\tilde{\chi}_{1}^{0}) &\sim m(\tilde{\chi}_{1}^{0}) + 10 \text{ GeV} \\ m(\tilde{g}) &\sim m(\tilde{\chi}_{1}^{0}) + 10 \text{ GeV} \\ &\qquad m(\tilde{\chi}_{1}^{0}) = 0 \\ m(\tilde{g}) &\sim m(\tilde{\chi}_{1}^{0}) + 10 \text{ GeV} \\ &\qquad m(\tilde{\chi}_{1}^{0}) = 0 \end{split}$	17.0 TeV 7.5 TeV 11.0 TeV 7.4 TeV 3.6 TeV 3.6 TeV 10 Mass scale [TeV]	100 100 100 37.5 37.5 37.5 - or HE-LHC studies	30 100 30 100 30 100 15 37.5 15 37.5 15 37.5 15 37.5 15 37.5	30 30 30 15 15 15 4 from HL	olated	$\begin{split} \tilde{g}\tilde{g}, \; \tilde{g} \to q \tilde{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \; \tilde{g} \to q \tilde{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \; \tilde{g} \to t \tilde{t} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \; \tilde{g} \to t \tilde{t} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \; \tilde{g} \to q \tilde{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \; \tilde{g} \to q \tilde{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \; \tilde{g} \to t \tilde{t} \tilde{\chi}_{1}^{0} \\ \end{split}$

(**): extrapolated from FCC-hh prospects

Supersymmetry: Top squarks

All Colliders: Top squark projections

(R-parity conserving SUSY, prompt searches)

(*) indicates projection of existing experimental searches
 (**) extrapolated from FCC-hh prospects

 ϵ indicates a possible non-evaluated loss in sensitivity

ILC 500: discovery in all scenarios up to kinematic limit $\sqrt{s}/2$

European Strategy

FCC-hh probes stops up to 11 TeV, relevant range for naturalness extends HL-LHC mass reach by a factor of 5-12

Disco Disappea

Generic WII **long-lived DM candidates**

- Wino (2-3 TeV region)
- Higgsino (1-1.2 TeV region)
- Can be probed using disappearing track analyses

Average number of interactions per bunch crossing

20₁

18

16

14

12

10

8

6

Sensitivity depends strongly on detector Higgsino design (layers timing information) and the Default layout (#1), <u> = 200FCC-hh Default layout (#1), $<\mu> = 200$ FCC-hh amount of **p** Alternative layout (#3), <u> = 200Alternative layout (#3), $<\mu> = 200$ $\sqrt{s} = 100 \text{ TeV}, 30 \text{ ab}^{-1}$ $\sqrt{s} = 100 \text{ TeV}, 30 \text{ ab}^{-1}$ Default layout (#1), $<\mu>$ = 500 Default layout (#1), <u> = 500Alternative layout (#3), $<\mu>$ = 500 Alternative layout (#3), $<\mu>$ = 500 20 □ 20_{1} **Discovery significance** • Most optimi 18 Higgsino 16 probe the er $N_{layer}^{hit} = 5$, Time-fit 14 12 Discovery 10 10⁻ 10⁻ 10⁻ Wino $N_{layer}^{hit} = 5$, Time-fit 2 3500 4000 800 1000 1200 1400 2500 3000 Chargino mass [GeV] Chargino mass [GeV] native layout (#2) native lavout (#3 Assumes 50 ps timing resolution 300 400 500 200 1000 2000

Dark Matter Summary

Higgsino

Wino

Largest reach from FCC-hh; covers theoretically interesting range Complemented by indirect reach from lepton colliders

Conclusion

- A 100 TeV proton-proton collider would provide us with a number of **unique opportunities**
 - Probe the multi-TeV range for new particles and new interactions (including generic models and supersymmetry)
 - Search for **dark matte**r candidates
 - Precision measurements of Higgs boson properties, including rare decays, Higgs-top coupling and the Higgs self-coupling
- It would be capable of a broad spectrum of physics studies, including many not discussed here
 - vector boson scattering, FCNC neutral currents, rare decays, multi-boson production, etc.
- Key challenges for physics measurements would be the large amount of pile up (perhaps up to 1000 interactions per collisions)
 - Will require detailed studies of detectors and mitigation techniques

References

- Mangano et al, Physics at the FCC-hh, a 100 TeV pp collider, 2017
- FCC-hh: The Hadron Collider : Future Circular Collider Conceptual Design Report Volume 3,2018
- FCC Physics Opportunities, 2019
- European Strategy Group, Physics Briefing Book, 2019
- Mangano et al, Measuring the Higgs self-coupling via Higgs-pair production at a 100 TeV p-p collider, 2020
- <u>Selvaggi et al, Requirements from physic for the FCC-hh detector design, 2020</u>
- <u>Selvaggi, A DELPHES parameterisation of the FCC-hh detector, 2020</u>
- <u>Conceptual Design of an Experiment at the FCC-hh, a future 100 TeV Hadron Collider,</u> 2022, in preparation
- The Future Circular Collider: a Summary for the US 2021 Snowmass Process, 2022
- Harris et al, Sensitivity to Dijet Resonances at Proton-Proton Colliders, 2022
- <u>M. d'Onofrio, FCC Physics Workshop</u>
- <u>M. Selvaggi, Snowmass Agora</u>