Bayesian inference in heavy ion collisions

Jean-François Paquet (Duke University)

May 17, 2022

Live from Durham, North Carolina

After the collisions

Before the collision ²⁰⁸₈₂Pb Ref.: CERN

After the collisions

Ref: MADAI collaboration, Hannah Elfner and Jonah Bernhard

Many-body properties of nuclear matter

What properties of hot nuclear matter are consistent with the measurements?

- Properties of the quark-gluon plasma (equation of state, viscosity, ...)
- Properties of energetic partons interacting with the quark-gluon plasma (" \hat{q} ", ...)

Near-equilibrium properties of the quark-gluon plasma

- Equilibrium properties of fluid: thermodynamics, equation of state
- Near-equilibrium properties?

Perturbation
$$\propto \exp \left[i c_s k t - i \vec{k} \cdot \vec{x} - \left(\frac{4}{3} \frac{\eta}{s} + \frac{\zeta}{s}\right) \frac{k}{2T} k t\right]$$

Decay rate of perturbation

Ref: Wikipedia

• Specific shear viscosity η/s and bulk viscosity ζ/s are "transport coefficients" ("s" is the entropy density)

Ref.: Gale, JFP, Schenke and Shen, PRC 2021

Bayesian inference & inverse problem in heavy ion collisions

Simulation of the collisions

(Sensitive to many-body properties of nuclear matter)

After the collisions

Bayesian inference & inverse problem in heavy ion collisions

Simulation of the collisions

(Sensitive to many-body properties of nuclear matter)

After the collisions

Bayes' theorem

$$prob(obs) \times prob(param|obs) = prob(p,obs) = prob(param) \times prob(obs|param)$$

Evidence \times Posterior = Joint = Prior \times Likelihood

Outputs

Inputs

Bayesian inference & inverse problem in heavy ion collisions

Simulation of the collisions

(Sensitive to many-body properties of nuclear matter)

After the collisions

Bayes' theorem

```
 prob(obs) \times prob(param|obs) = prob(p,obs) = prob(param) \times prob(obs|param)   Evidence \times Posterior = Joint = Prior \times Likelihood   \times exp \left[ -\frac{(obs - model(param))^{T}(covariance\ matrix)^{-1}(obs - model(param))}{2} \right]
```


Data: all at midrapidity, from STAR Au-Au $\sqrt{s_{NN}}$ =200 GeV and ALICE Pb-Pb $\sqrt{s_{NN}}$ =2760 GeV

- Pion, kaon & proton multiplicity at midrapidity
- Pion, kaon & proton mean transverse momentum at midrapidity
- Charged hadron anisotropic flow $(v_{2/3/4}\{2\})$
- Mean transverse momentum fluctuations; transverse energy

Bulk viscosity

Shear viscosity

JETSCAPE Collaboration, PRC,PRL 2021

JETSCAPE Collaboration, PRC,PRL 2021

- Different lines = different transition models from hydrodynamics to hadronic transport
- Shaded average is "Bayesian model average": average weighted by degree of agreement with data ("Bayes factor"/evidence)

Bayesian inference in heavy ion collisions

Viscosity of the quark-gluon plasma

- Nijs, van der Schee, Gürsoy & Snellings, PRC, PRL
 2021
- Parkkila, Onnerstad, Taghavi, Mordasini & Bilandzic (arXiv:2111.08145)
- Auvinen, Eskola, Huovinen, Niemi, Paatelainen & Petreczky, PRC 2020
- Bernhard, Moreland & Bass, Nature Physics 2019:

Ref.: https://wp.stolaf.edu/it/gis-precision-accuracy/

Bayesian inference in heavy ion collisions: parton energy loss

How do (heavy quarks)/(light quarks)/gluons interact with quark-gluon plasma?

Summary

Heavy ion collisions well suited for Bayesian inference:

- Large number of measurements with variable uncertainties
- Mature but complex multistage models with multiple unknowns

Contributions from the JETSCAPE analysis:

- Theoretical uncertainty quantification
- Bayes factors & Bayesian model averaging
- Closure tests, priors, sensitivity analysis, ...

Outlook:

- Additional data
- Additional source of theoretical uncertainties must be accounted for
- Experimental uncertainties: correlations between uncertainties [2102.11337]

Acknowledgements

Bayesian inference results are from the JETSCAPE Collaboration, with **Derek Everett** (formerly OSU) & **Weiyao Ke** (LANL, formerly UC Berkeley, LBNL & Duke) driving the effort.

PHYSICAL REVIEW C

Multisystem Bayesian constraints on the transport coefficients of QCD matter

D. Everett *et al.* (JETSCAPE Collaboration) Phys. Rev. C **103**, 054904 – Published 14 May 2021

PHYSICAL REVIEW LETTERS

Editors' Suggestion

Phenomenological Constraints on the Transport Properties of QCD Matter with Data-Driven Model Averaging

D. Everett et al. (JETSCAPE Collaboration)
Phys. Rev. Lett. **126**, 242301 – Published **17** June 2021

This work was supported by:

J.-F.P. was supported by the U.S. Department of Energy (DOE) under award number DE-FG02-05ER41367 and by the National Science Foundation (NSF) under award number ACI-1550300

Extreme Science and Engineering Discovery Environment

Computational resources from XSEDE & TACC

Latest constraints

Bulk visc

Multi-system Bayesian constraints on the transport coefficients of QCD matter

D. Everett, W. Ke, ^{2,3} J.-F. Paquet, ⁴ G. Vujanovic, ⁵ S. A. Bass, ⁴ L. Du, ¹ C. Gale, ⁶ M. Heffernan, ⁶ U. Heinz, ¹ D. Liyanage, ¹ M. Luzum, ⁷ A. Majumder, ⁵ M. McNelis, ¹ C. Shen, ^{5,8} Y. Xu, ⁴ A. Angerami, ⁹ S. Cao, ⁵ Y. Chen, ^{10,11} J. Coleman, ¹² L. Cunqueiro, ^{13,14} T. Dai, ⁴ R. Ehlers, ^{13,14} H. Elfner, ^{15,16,17} W. Fan, ⁴ R. J. Fries, ^{18,19} F. Garza, ^{18,19} Y. He, ²⁰ B. V. Jacak, ^{2,3} P. M. Jacobs, ^{2,3} S. Jeon, ⁶ B. Kim, ^{18,19} M. Kordell II, ^{18,19} A. Kumar, ⁵ S. Mak, ¹² J. Mulligan, ^{2,3} C. Nattrass, ¹³ D. Oliinychenko, ³ C. Park, ⁶ J. H. Putschke, ⁵ G. Roland, ^{10,11} B. Schenke, ²¹ L. Schwiebert, ²² A. Silva, ¹³ C. Sirimanna, ⁵ R. A. Soltz, ^{5,9} Y. Tachibana, ⁵ X.-N. Wang, ^{20,2,3} and R. L. Wolpert ¹²

XI. Bayesian Model Selection

CONTENTS

I. Introduction

		2	A. Overview and estimation of Bayes factors	30
II.	Inference using Bayes' Theorem	3	 Bayes factor definition and interpretation Numerical methods for estimating the Ba 	yes
III.	Model Overview	5	evidence	30
	A. Initial stage model	5	B. Comparing viscous correction models C. Comparing hydrodynamic models	30 32
	 Energy deposition at τ = 0+: T_RENTO 	5	Temperature independent specific shear	22
	2. Free-streaming	6	viscosity	32 32
	 Relativistic viscous hydrodynamics 	7	 Zero specific shear viscosity Quantifying tension between LHC and RHIO 	_
	C. Particlization 1. Linear viscous corrections: Grad &	8	No common parameters between collision systems	
	Chapman-Enskog	9	Different transverse length scales in the ir conditions	
	Exponentiated viscous corrections: Pratt-Torrieri-McNelis and			
	Pratt-Torrieri-Bernhard	10	XII. Predicting p_T -differential observables	33
	D. Hadronic transport	11	XIII. Summary	34
IV.	Specifying prior knowledge	11	XIV. Outlook	36
V.	Bayesian Parameter Estimation with a Statistical			
	Emulator	13	Acknowledgments	37
	A. Overview of Bayesian Parameter Estimation	13	Acknowledgments	31
	B. Physical model emulator	14	A. Full posterior of model parameters	37
	C. Treatment of uncertainties	16		
	D. Sampling of the posterior	17	 B. Posterior for LHC and RHIC independently 	37
	E. Maximizing the posterior	17		22
VI	Closure Tests	17	 C. Validation of principal component analysis 	37
* 1.	A. Validating Bayesian inference with closure tests		D. Experimental covariance matrix	38
	B. Guiding analyses with closure tests	18		
VII	Bayesian parameter estimation		E. Reducing experimental uncertainty	39
	using RHIC and LHC measurements A. Constraints on η/s and ζ/s	19	F. Bulk relaxation time	39
	from Pb-Pb measurements at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$	19	G. Comparison to previous studies	40
	B. Constraints on η/s and ζ/s	.,	1. Physics models	41
	from Au-Au measurements at $\sqrt{s_{\rm NN}} = 0.2 \text{TeV}$	20	2. Prior distributions	42
	C. Viscosity estimation and model accuracy for		Experimental data	42
	combined RHIC & LHC data	21		
VIII.	Parameter estimation and systematic model		H. Multistage model validation	42
	uncertainties	22	Validation of second-order viscous	42
	A. Mapping hydrodynamic fields to hadronic		hydrodynamics implementation	42
	momentum distributions	22	 Validation against cylindrically symmetric external solution 	43
	B. Transition to and from hydrodynamics: initial		2. SMASH	43
	state and switching temperature	23	Comparison of JETSCAPE with hic-eventge	
	C. Second-order transport coefficients: shear		4. The σ meson	46
	relaxation time	26	5. Sampling particles on mass-shell	47
IX	Sensitivity to prior knowledge and assumptions	27	QCD equations of state with different hadron	
			resonance gases	47
Α.	Model Sensitivity	27	References	48

-gluo

JETSCAPE Collaboration, PRC,PRL 2021

Bayesian model selection

JETSCAPE Collaboration.

Validation against additional data

Posterior tion gain

30

Validation of hydrodynamics against external solutions

Hadronic transport validation

Questions?