

LHCb Performance Highlights

Mark Tobin

Institute of High Energy Physics

Chinese Academy of Sciences

On behalf of the LHCb collaboration

See also Matteo Palutan (opening plenary, 16/5) +22 other speakers from LHCb!

Why LHCb?

- Dedicated heavy flavour experiment at LHC.
 - Measure CP-violation in *b*-sector.
 - Study rare b- and c- hadron decays.
 - Exploit forward production of *b*-pairs with low angle.

♦ Indirect searches for New Physics.

Physics program in Runs 1&2 was much much more.
 – Electroweak, QCD, direct searches, heavy ions.

♦ General Purpose Detector in forward region.

2008 JINST 3 S08005

LHCb detector

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2018

RUN 1 & 2

2019 JINST 14 P04006

LHCb Trigger (Run 2)

Int. J. Mod. Phys. A 30, 1530022 (2015) VErtex LOcator (VELO) 2014 JINST 9 P09007

- Two retractable halves
 - 5 mm from beam when closed.
 - 30 mm during injection.
 - First measurement at 8.13 mm.
- Operated in secondary vacuum.
 - 300 µm aluminium foils separates detector from beam vacuum.
- 21 R-Φ modules per half.
 - Silicon microstrip sensors.
 - Pitch: 38 101 μm.

- Hit resolution measured from unbiased residuals of cluster to track.
- Projected angle is the angle between track and strip in plane perpendicular to the track.
- Best resolution: 4 μm!

- Randomly split input VELO tracks into two subsets.
- Reconstruct primary vertex with each sample.
- Resolution given by width of distribution of difference of PV positions in each dimension.
- Improved resolution in z-coordinate by ~ 10% in Run 2.

2019 JINST 14 P04013

LHCb Tracker

Tracking efficiency

- Efficiency determined using tag-and-probe method.
 - Uses $J/\psi \rightarrow \mu^+\mu^-$ from decays of b-hadrons.
 - One muon reconstructed using full reconstruction.
 - Reconstruct second muon using sub-set of tracking stations.
- Lower track reconstruction efficiency in Run 2.
 - Bunch spacing changed from 50ns to 25ns.
 - − Read-out window in Outer Tracker > 25ns \rightarrow spillover.

2019 JINST 14 P04013

2015 JINST 10 P02007

Impact Parameter Resolution

- IP is distance of closest approach of track to PV.
 - Useful variable for selecting B meson decays.
- Depends mainly on 3 factors:
 - Multiple scattering in detector material.
 - Hit resolution.
 - Distance between PV and first measurement.
- No difference between Run 1 and Run 2.
- Offline quality reconstruction running online!
 16th May 2022 LHCP2022, Taipei, online edition

2019 JINST 14 P04013

2019 JINST 14 P04013 LHCb

Decay time resolution

Int. J. Mod. Phys. A 30, 1530022 (2015) *LHCb*

Detector Performance

- Separation of primary and secondary vertices.
 - Impact parameter resolution: (15 +29/ p_T [GeV]) μm.
- Proper time resolution.
 - − Decay time resolution: ~45 fs ($B_s \rightarrow J/\psi \varphi \& B_s \rightarrow D_s \pi$).
- Excellent momentum resolution:
 - $\Delta p / p = 0.5\%$ (<20 GeV) to 1.0% (200 GeV).
- Particle Identification:
 - Separation between γ, e^{\pm} , mu[±], π, K, p.
- Trigger Selection:
 - Efficient trigger for leptonic and hadronic final states.
 - Fast reconstruction of primary and secondary vertices

Run 1&2 performance is benchmark for Upgrades

Angle (mrad)

Cherenkov

30E-µ

20

16th May 2022

LHCP2022, Taipei, online edition

200

LHCD CONCERCE 2013

- **CERN-LHCC-2008-007** 1.
- **CERN-LHCC-2011-001** 2.
- 3. **CERN-LHCC-2012-007**
- **CERN-LHCC-2013-021** 4.
- **CERN-LHCC-2013-022** 5.
- **CERN-LHCC-2014-001** 6.
- **CERN-LHCC-2014-016** 7.
- 8. **CERN-LHCC-2018-007**
- **CERN-LHCC-2018-014** 9.
- 10. CERN-LHCC-2019-005
- 11. CERN-LHCC-2020-006
- 12. CERN-LHCC-2021-002

RUN 3

LHCD UICE Lal THCD 7 March 2011 LHCD CERVENCE 20 LHCD 25 May 2012 **UPGRADE** Framework **LHCb** Expression of Interest for an LHCb Upgrade LHCb UPGRADE UPGRADE **Technical Design Report** Technical Design Report Letter of Intent Wich . HCh HCH HCD al ferrar UPGRAD GRADE Particle Identification omputin IIII IIII Technical Design Report **Technical Design Report Technical Design Report** HICK LHCb unch UPGRADE PLUME mputing Mode

Technical Design Report

15

Technical Design Report

LHCP2022, Taipei, online edition

Technical Design Report

LHCP2022, Taipei, online edition

Luminosity: 2×10³³ cm⁻²s⁻¹ (inst.), 50 fb⁻¹ (int.)
5.2 visible interactions / crossing.

Challenge:

- Install and commission a brand new detector & read-out during LS2!
- Maintain current reconstruction performance in harsher environment.
- Read out the complete detector at 40 MHz \rightarrow full software trigger.
- Run HLT1 reconstruction on GPUs in event builder servers.
 16th May 2022 LHCP2022, Taipei, online edition

Event Builder

- RTA is integral part of DAQ chain in upgrade data processing.
 - Offline reconstruction in HLT2 à la Run 2.
- TURBO model for exclusive selections.
 - High-level physics objects directly from the HLT → fraction of raw event size.
- HLT1 reconstruction will run on GPUs.

16th May 2022

LHCP2022, Taipei, online edition

HLT 1 & 2

19

LHCP2022, Taipei, online edition

Expected Performance

CERN-LHCC-2013-021 *LHCb*

- HLT tracking studies without UT.
- Slightly improved efficiency but higher ghost rates.

16th May 2022

Summary

CONCLUSIONS

16th May 2022

LHCP2022, Taipei, online edition

22

Summary

- LHCb version 1 (1995 2018):
- Excellent performance in Run 1 & 2.
- Many interesting physics results made possible.

LHCb version 2 (2008 – 2022+):

- We are (almost) up and running with a completely new detector!
- Sub-detector commissioning on-going.
 - Much less time to prepare w.r.t. Run 1.
- Many data-driven tools from Run 1&2 can re-used.
 - e.g. Tag-and-probe methods for tracking efficiency.
- Waiting for first Run 3 collision data!

The 10th Annual Large Hadron Collider Physics Conference May 16–20, 2022

2022 LHCP TAIPE

MORE?

BACK UP

16th May 2022

RUN 1 & 2

16th May 2022

LHCb Tracker

Track Types

2019 JINST 14 P04013 LHCb

Alignment & Calibration

((~7min),(~12min),(~3h),(~2h)) - time needed for both data accumulation and running the task

Aim to have offline-quality reconstruction running online.

16th May 2022

等院高能物理研究所

HLT1 Reconstruction

RECONSTRUCTION STEP

OUTPUT OBJECTS

EXECUTION ORDER

HLT2 Reconstruction

RECONSTRUCTION STEP

OUTPUT OBJECTS

EXECUTION ORDER

16th May 2022

LHCP2022, Taipei, online edition

RUN 3

16th May 2022

- Two retractable halves
 - 3.5 mm from beam when closed.
 - First measurement at 5.1 mm.
- Operates in secondary vacuum.
 - Aluminium R.F. foils separate detector from beam vacuum.
 - Milled to 250 μ m thick then chemically etched to 150 μ m.
- 52 hybrid-pixel modules.
 - 41M pixels covering total area ~ 1.2 m².

Interaction point

(indicative)

16th May 2022

LHCP2022, Taipei, online edition

34

VErtex LOcator II

- Hybrid pixel detector.
 - 200 μm n-on-p sensor tiles.
- New read-out ASIC (VeloPix).
 - 256x256 pixel array (55 μm x 55 μm)
 - 12 per module.
- Evaporative CO₂ cooling in silicon microchannel substrates (T < -20°C).
- High bandwidth:
 - 20 Gbit/s in hottest ASICs with ~ 3 Tbit/s overall.
- Non-uniform irradiation:
 - 8 × 10¹⁵ n_{eq} / cm² which falls as ~ r^{-2.1}.

16th May 2022

LHCP2022, Taipei, online edition

Upstream Tracker

• Silicon micro-strip detector.

科学院高能物理研究所

- Four layers (x, u, v, x) upstream of magnet.
- Finer granularity, closer to beam.
- Four types of sensors.
 - n- and p-type with 512 or 1024 strips.
 - 320/250 μm thick; 190/95 μm pitch.
- Modules mounted on double-sided staves.
 - 68 staves / 968 sensors.
 - Bi-phase CO₂ cooling pipe integrated in stave.
- New read-out ASIC (SALT).
 - 128 channels with 6-bit ADC.
 - Pedestal & common-mode subtraction, zerosuppression.
 - Output up to 6 SLVS e-links per ASIC.
 - 1048 4-asic read-out sectors = 4192 ASICs.
- Read-out electronics mounted on detector frame.

Upstream Tracker

- Silicon micro-strip detector.
 - Four layers (x, u, v, x) upstream of magnet.
 - Finer granularity, closer to beam.
- Four types of sensors.
 - n- and p-type with 512 or 1024 strips.
 - 320/250 μm thick; 190/95 μm pitch.
- Modules mounted on double-sided staves.
 - 68 staves / 968 sensors.
 - Bi-phase CO₂ cooling pipe integrated in stave.
- New read-out ASIC (SALT).
 - 128 channels with 6-bit ADC.
 - Pedestal & common-mode subtraction, zerosuppression.
 - Output up to 6 SLVS e-links per ASIC.
 - 1048 4-asic read-out sectors = 4192 ASICs.
- Read-out electronics mounted on detector frame.

Scintillating Fibre Tracker

- Scintillating fibres read out with SiPMs.
 - 2.4 m long, 250 μm diameter, 6 layers of fibres in module.
 - 12 detection planes $3 \times (x, u, v, x)$.
 - SiPMs outside acceptance.
 - 128 channels with width 250 μm
 - Require cooling to -40°C (neutron radiation).
- New ASIC for read-out (PACIFIC).
 - 64 channels, 130 nm CMOS (TSMC).
 - ADC with three hardware thresholds.
- Clustering on FPGA board in front-end box.

Cold boxes

C-Frame

16th May

<u>Particle</u> <u>ID</u>

MaPMTs (Hamamatsu)

R13742 (1")

RICH1&2

Elementary cell

Cherenkov detectors:

- RICH 1: C₄F₁₀ (10 65 GeV/c).
 - Replace everything (mirrors, gas enclosure, quartz windows).
- RICH 2: CF₄ (15 100 GeV/c).
- Replace Hybrid Photon Detectors (HPDs) with Multi Anode Photomultiplier Tubes (MaPMTs).
- New 8-channel read-out ASIC (CLARO).

Calorimeters & Muon System

- Remove unnecessary detectors.
- Replace read-out electronics.

LHCP2022, Taipei, online edition

RICH2 columns (need 24 in total)

Comput Softw Big Sci 4, 7 (2020) LHCD

HLT1 on GPUs

- Each event builder server has two GPU slots = 500 GPUs.
- HLT1 *must* run at visible collision rate (30 MHz).
 - Minimum throughput rate per GPU is 60 kHz.