

SMI – STEFAN MEYER INSTITUTE FOR SUBATOMIC PHYSICS

Luminosity measurements of the LHC experiments

The 10th Edition of the Large Hadron Collider Physics Conference, organised from Taipei

Roman Lavička on behalf of the ALICE, ATLAS, CMS and LHCb Collaborations

May 16, 2022, virtually from Vienna, Austria

Motivation

$$
\sigma = \frac{N}{\mathcal{L}_{\text{int}}}
$$

 σ - cross section of a process, N - seen events of the process, \mathcal{L}_{int} - integrated luminosity

- \blacksquare Luminosity is key for:
	- **E** experiment-independent evaluation of physics message (cross section),
	- **E** experiment control (beam quality monitoring).
- Absolute accuracy is important:
	- challenging task with many sources of systematic uncertainties,
	- $\blacksquare \rightarrow$ in some cases dominates the systematic uncertainty on cross section determination.
- **E** Last summary talk at LHCP in 2020 by O. Karacheban, see [HERE.](https://indico.cern.ch/event/856696/contributions/3742263/attachments/2045780/3427832/LHCP2020_Lumi_talk_v13_GSlides.pdf)
- **E** List of new public documents since then in the backup (page 21 .)

Content

- **1** [How luminosity is determined](#page-3-0)
	- **[Definition](#page-4-0)**
	- **[Measurement and calibration](#page-5-0)**
		- [van der Meer scan](#page-15-0)

2 [Selected topics](#page-17-0)

- **[Luminosity-scale calibration](#page-18-0)**
	- **[Length-scale calibration](#page-18-0)**
	- **[Non-factorisation](#page-19-0)**
	- **[Beam-beam interaction](#page-20-0)**
	- **[Magnetic non-linearities](#page-21-0)**
- **n** [Integrated luminosity](#page-22-0)
	- [Calibration transfer to physics runs](#page-22-0)
	- **[Measurement stability](#page-23-0)**
- **3** [Summary of achieved accuracy](#page-24-0)
- 4 [Upgrades of luminometers](#page-27-0)

Luminosity definition and measurement

Luminosity definition

$$
\mathcal{L} = \nu_{\text{rev}} N_1 N_2 \int \rho_1(x, y) \rho_2(x, y) \, \mathrm{d}x \, \mathrm{d}y
$$

 ν_{rev} - revolution frequency, N_i - bunch intensity, ρ_i - bunch density distribution in (x,y) plane

$$
\int \rho_1(x, y)\rho_2(x, y) \mathrm{d}x \mathrm{d}y = \frac{1}{2\pi \Sigma_x \Sigma_y}
$$

 Σ_{x} , Σ_{y} are the effective widths of the bunch overlap region in the two transverse directions (standard deviation if Gaussian).

$$
\mathcal{L} = \nu_{\text{rev}} \frac{N_1 N_2}{2\pi \Sigma_{\mathsf{x}} \Sigma_{\mathsf{y}}}
$$

Luminosity accuracy:

- accuracy based on accelerator instrumentation $\mathcal{O}(10\%)$,
- ultimate accuracy used in physics analysis is based on dedicated calibration (vdM, $BGL.$).

Roman Laviˇcka [LHCP 2022](#page-0-0) 5 / 19

Luminosity is measured indirectly in physics data-taking using suitable reference process.

$$
\mathcal{L} = \frac{R_{\text{ref}}}{\sigma_{\text{ref}}}
$$

Luminosity is measured indirectly in physics data-taking using suitable reference process.

$$
\mathcal{L} = \frac{R_{\rm ref}}{\sigma_{\rm ref}}
$$

The reference cross section σ_{ref} can be taken from:

Luminosity is measured indirectly in physics data-taking using suitable reference process.

$$
\mathcal{L} = \frac{R_{\rm ref}}{\sigma_{\rm ref}}
$$

The reference cross section σ_{ref} can be taken from:

h known physics process (i.e. Z-boson decay, EMD...; generally accuracy not good enough),

Luminosity is measured indirectly in physics data-taking using suitable reference process.

$$
\mathcal{L} = \frac{R_{\rm ref}}{\sigma_{\rm ref}}
$$

The reference cross section σ_{ref} can be taken from:

- **h** known physics process (i.e. Z-boson decay, EMD...; generally accuracy not good enough),
- visible cross section measurement by the vdM or BGI method.

Luminosity is measured indirectly in physics data-taking using suitable reference process.

$$
\mathcal{L} = \frac{R_{\rm ref}}{\sigma_{\rm ref}}
$$

The reference cross section σ_{ref} can be taken from:

- **h** known physics process (i.e. Z-boson decay, EMD...; generally accuracy not good enough),
- visible cross section measurement by the vdM or BGI method.

$$
\mathcal{L} = \frac{R_{\rm vis}}{\sigma_{\rm vis}}
$$

Luminosity is measured indirectly in physics data-taking using suitable reference process.

$$
\mathcal{L} = \frac{R_{\text{ref}}}{\sigma_{\text{ref}}}
$$

The reference cross section σ_{ref} can be taken from:

- **h** known physics process (i.e. Z-boson decay, EMD...; generally accuracy not good enough),
- visible cross section measurement by the vdM or BGI method.

$$
\mathcal{L} = \frac{R_{\rm vis}}{\sigma_{\rm vis}} = \frac{\mu_{\rm vis} \nu_{\rm rev}}{\sigma_{\rm vis}}
$$

 μ_{vis} is an average number of visible interactions per bunch crossing.

Luminosity is measured indirectly in physics data-taking using suitable reference process.

$$
\mathcal{L} = \frac{R_{\rm ref}}{\sigma_{\rm ref}}
$$

The reference cross section σ_{ref} can be taken from:

- **h** known physics process (i.e. Z-boson decay, EMD...; generally accuracy not good enough),
- visible cross section measurement by the vdM or BGI method.

$$
\mathcal{L} = \frac{R_{\rm vis}}{\sigma_{\rm vis}} = \frac{\mu_{\rm vis} \nu_{\rm rev}}{\sigma_{\rm vis}}
$$

 μ_{vis} is an average number of visible interactions per bunch crossing.

$$
\mathcal{L} = \nu_{\text{rev}} \frac{N_1 N_2}{2\pi \Sigma_x \Sigma_y} \quad \mathcal{L} = \frac{\mu_{\text{vis}} \nu_{\text{rev}}}{\sigma_{\text{vis}}} \quad \rightarrow \quad \sigma_{\text{vis}} = \frac{2\pi \mu_{\text{vis}} \Sigma_x \Sigma_y}{N_1 N_2}
$$

Luminosity is measured indirectly in physics data-taking using suitable reference process.

$$
\mathcal{L} = \frac{R_{\text{ref}}}{\sigma_{\text{ref}}}
$$

The reference cross section σ_{ref} can be taken from:

- **h** known physics process (i.e. Z-boson decay, EMD...; generally accuracy not good enough),
- visible cross section measurement by the vdM or BGI method.

$$
\mathcal{L} = \frac{R_{\rm vis}}{\sigma_{\rm vis}} = \frac{\mu_{\rm vis} \nu_{\rm rev}}{\sigma_{\rm vis}}
$$

 μ_{vis} is an average number of visible interactions per bunch crossing.

$$
\mathcal{L} = \nu_{\text{rev}} \frac{N_1 N_2}{2\pi \Sigma_x \Sigma_y} \quad \mathcal{L} = \frac{\mu_{\text{vis}} \nu_{\text{rev}}}{\sigma_{\text{vis}}} \quad \rightarrow \quad \sigma_{\text{vis}} = \frac{2\pi \mu_{\text{vis}} \Sigma_x \Sigma_y}{N_1 N_2}
$$

We need a session where we can measure μ_{vis} , N_i and Σ_i simultaneously!

Bunch intensity measurement

Bunch intensity measurement

- **Provided by LHC via current transformers:**
	- DC current transformer (DCCT)
		- total beam intensities,
	- \blacksquare fast beam current transformer (fBCT)
		- relative bunch intensities

- **Parasitic-charge correction:**
	- ghost charge (LHC, LHCb),
	- satellite charge (LHC).

Currently, per-mil level uncertainties.

Bunch overlap region measurement

Bunch overlap region measurement

- $\Sigma_{x}\Sigma_{y}$ Dedicated sessions: van der Meer scans (all experiments), beam-gas imaging (LHCb). **Factorization assumption applied**
- vdM: displaced beams move against each other in x and then in y direction.

Beam conditions (vdM vs. pp physics):

- low pile-up (∼ 0*.*5 vs. 30-60),
- \blacksquare isolated bunches vs. bunch trains,

■ low luminosity (
$$
\sim 10^{30}
$$
 vs. $\sim 10^{34}$).

 $\rho(x, y) = \rho(x)\rho(y)$

N1N2*/*2*π*

Selected topics

Length-scale calibration

- **EXECUTE:** Measures the scale factor between nominal beam displacement to actual one.
- **EXECUTERENT MEASUREM** Measurement of vertex position while moving beams with fixed distance.

Alternatively, beam-gas imaging can be used (large beam-gas vertex sample required).

Non-factorisation

 $\rho(x, y) \neq \rho(x)\rho(y)$

- Differs from bunch to bunch and in time. Effect up to \sim 5% in Run 1.
- Beam tailoring in the LHC injection chain reduces this effect under 2%.

- **ALICE, ATLAS: combined fit to the** beam-separation dependence of the luminosity and of the luminous-region parameters.
- CMS: beam-beam imaging.
- **LHCb:** beam-gas imaging, 2D vdM (Run 3?).
- Uncertainty now tamed to $0.5 1\%$ in Run 2.

Roman Lavička $11/19$

Beam-beam interaction

- Orbit and shape of colliding bunches distorted by mutual electromagnetic interaction.
- Beam-beam deflection: change in beam separation; estimated analytically.
- Optical distortion: change in beam profile; estimated with simulations.
- **Beam-beam deflection + optical distortion = full effect; is estimated with simulation.**

Magnetic non-linearities

- Difference between expected and measured positions with Beam-Position Monitors.
- **Points to non-linear behaviour of steering magnets** \rightarrow hysteresis.
- Impact on calibration precision is several per mil, currently being assessed.
- **Precision calibration of BPMs could cure this problem.**
- **Effect studied with dedicated tests on Run 3 pilot run** \rightarrow reproducible within that session.

Calibration transfer to physics conditions

- **u** vdM condition: low pile-up and isolated bunches \rightarrow correction needed for ATLAS/CMS.
- **ATLAS:** calibration transfer based on track-counting luminosity.
- CMS: calibration transfer based on emittance scans (short vdM in physics conditions).
- **Typical effect up to 10% and uncertainty up to 1%.**

Stability and reproducibility over time

Roman Laviˇcka [LHCP 2022](#page-0-0) 15 / 19

Summary of achieved accuracy

Summary: achieved uncertainties in pp collisions

← Run 1

 $← Run 2$

Preliminary in italics. Numbers without hypertext link are internal.

Summary: achieved uncertainties in heavy-ion collisions

- Larger uncertainties:
	- \blacksquare no time to tune vdM setup,
	- larger ghost charge,
	- large satellite charge,
	- statistical limitations.
- Smaller uncertainties:
	- **beam-beam effects,**
	- calibration transfer.

 \leftarrow Run 1

 \leftarrow Run 2

Roman Laviˇcka [LHCP 2022](#page-0-0) 19 / 19

Roman Laviˇcka [LHCP 2022](#page-0-0) 19 / 19

BACK UP

References

Luminosity measurements

ALICE: pp 13 TeV 2016-2018: [ALICE-PUBLIC-2021-005.](https://cds.cern.ch/record/2776672) ALICE: Pb–Pb 5 TeV 2015/2018: [arXiv:2204.10148v1.](https://arxiv.org/abs/2204.10148) ATLAS: low-pileup pp 5/13 TeV: [ATLAS-CONF-2020-023.](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2020-023/) ATLAS: pp via Z-boson 13 TeV: [ATL-DAPR-PUB-2021-001.](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-DAPR-PUB-2021-001/)

CMS: pp 13 TeV 2015/2016: [EPJC 81, 800 \(2021\).](https://link.springer.com/article/10.1140/epjc/s10052-021-09538-2) CMS: pp 5 TeV 2017: [CMS-PAS-LUM-19-001 \(2021\)](http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/LUM-19-001/index.html) CMS: Pb–Pb 5 TeV 2018: [CMS-PAS-LUM-18-001 \(2022\).](http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/LUM-18-001/index.html)

Detector upgrades

ALICE FIT: [CERN-LHCC-2013-019.](https://cds.cern.ch/record/1603472)

CMS BCM1F: [CMS-PHO-GEN-2022-001.](https://cds.cern.ch/record/2809025) CMS BRIL: [CERN-LHCC-2021-008 \(2021\).](https://cds.cern.ch/record/2759074) ATLAS BCM': internal communication. ATLAS HGTD: [CERN-LHCC-2020-007.](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2020-007/) also poster by Fatima Bendebba at LHCP22. ATLAS LUCID-3: [LHCC-2021-016.](https://cds.cern.ch/record/2780604?ln=en) also poster by Jack Lindon at LHCP22. ATLAS PLR: internal communication.

LHCb BCM: internal communication. LHCb PLUME: [CERN-LHCC-2021-002.](https://cds.cern.ch/record/2750034/) LHCb RMS-3: [CERN-Poster-2021-1046.](https://cds.cern.ch/record/2770578) LHCb SMOG2: [CERN-LHCC-2019-005.](https://cds.cern.ch/record/2673690)

ATLAS uncertainties for pp 13 TeV (2015-2018)

ATLAS-CONF-2019-021 ATLAS-CONF-2019-021

Roman Lavička literatura († 1922)
19. marec – Andrej British, british skrivetski politik († 1922)

ALICE uncertainties for Pb–Pb 5 TeV (2015 and 2018)

arXiv:2204.10148v1 arXiv:2204.10148v1

CMS uncertainties for pp 13 TeV (2015 and 2016)

LHCb uncertainties for all collision systems in Run 1

JINST 9 P12005 (2014) JINST 9 P12005 (2014)

Orbit drift and beam-satellite event by event separation

