

SMI – STEFAN MEYER INSTITUTE FOR SUBATOMIC PHYSICS

Luminosity measurements of the LHC experiments

The 10th Edition of the Large Hadron Collider Physics Conference, organised from Taipei

Roman Lavička on behalf of the ALICE, ATLAS, CMS and LHCb Collaborations

May 16, 2022, virtually from Vienna, Austria

Motivation

$$\sigma = \frac{N}{\mathcal{L}_{\mathrm{int}}}$$

 σ - cross section of a process, N - seen events of the process, $\mathcal{L}_{\mathrm{int}}$ - integrated luminosity

- Luminosity is key for:
 - experiment-independent evaluation of physics message (cross section),
 - experiment control (beam quality monitoring).
- Absolute accuracy is important:
 - challenging task with many sources of systematic uncertainties,
 - \blacksquare \rightarrow in some cases dominates the systematic uncertainty on cross section determination.
- Last summary talk at LHCP in 2020 by O. Karacheban, see HERE.
- List of new public documents since then in the backup (page 21.)

Content

- 1 How luminosity is determined
 - Definition
 - Measurement and calibration
 - van der Meer scan

2 Selected topics

- Luminosity-scale calibration
 - Length-scale calibration
 - Non-factorisation
 - Beam-beam interaction
 - Magnetic non-linearities
- Integrated luminosity
 - Calibration transfer to physics runs
 - Measurement stability
- 3 Summary of achieved accuracy4 Upgrades of luminometers

Luminosity definition and measurement

Luminosity definition

$$\mathcal{L} = \nu_{\mathrm{rev}} N_1 N_2 \int \rho_1(x, y) \rho_2(x, y) \mathrm{d}x \mathrm{d}y$$

 $u_{\rm rev}$ - revolution frequency, N_i - bunch intensity, ho_i - bunch density distribution in (x,y) plane

$$\int
ho_1(x,y)
ho_2(x,y)\mathrm{d}x\mathrm{d}y = rac{1}{2\pi\Sigma_X\Sigma_y}$$

 Σ_x, Σ_y are the effective widths of the bunch overlap region in the two transverse directions (standard deviation if Gaussian).

$$\mathcal{L} =
u_{
m rev} rac{N_1 N_2}{2\pi \Sigma_x \Sigma_y}$$

Luminosity accuracy:

- accuracy based on accelerator instrumentation $\mathcal{O}(10\%)$,
- ultimate accuracy used in physics analysis is based on dedicated calibration (vdM, BGI...).

Roman Lavička

• Luminosity is measured indirectly in physics data-taking using suitable reference process.

$$\mathcal{L} = rac{\mathrm{R}_{\mathrm{ref}}}{\sigma_{\mathrm{ref}}}$$

• Luminosity is measured indirectly in physics data-taking using suitable reference process.

$$\mathcal{L} = rac{\mathrm{R}_{\mathrm{ref}}}{\sigma_{\mathrm{ref}}}$$

 \blacksquare The reference cross section $\sigma_{\rm ref}$ can be taken from:

• Luminosity is measured indirectly in physics data-taking using suitable reference process.

$$\mathcal{L} = rac{\mathrm{R}_{\mathrm{ref}}}{\sigma_{\mathrm{ref}}}$$

- \blacksquare The reference cross section $\sigma_{\rm ref}$ can be taken from:
 - known physics process (i.e. Z-boson decay, EMD...; generally accuracy not good enough),

Luminosity is measured indirectly in physics data-taking using suitable reference process.

$$\mathcal{L} = rac{\mathrm{R}_{\mathrm{ref}}}{\sigma_{\mathrm{ref}}}$$

- \blacksquare The reference cross section $\sigma_{\rm ref}$ can be taken from:
 - known physics process (i.e. Z-boson decay, EMD...; generally accuracy not good enough),
 - visible cross section measurement by the vdM or BGI method.

Luminosity is measured indirectly in physics data-taking using suitable reference process.

$$\mathcal{L} = rac{\mathrm{R}_{\mathrm{ref}}}{\sigma_{\mathrm{ref}}}$$

- \blacksquare The reference cross section σ_{ref} can be taken from:
 - known physics process (i.e. Z-boson decay, EMD...; generally accuracy not good enough),
 - visible cross section measurement by the vdM or BGI method.

$$\mathcal{L} = rac{\mathrm{R}_{\mathrm{vis}}}{\sigma_{\mathrm{vis}}}$$

Luminosity is measured indirectly in physics data-taking using suitable reference process.

$$\mathcal{L} = rac{\mathrm{R}_{\mathrm{ref}}}{\sigma_{\mathrm{ref}}}$$

- \blacksquare The reference cross section $\sigma_{\rm ref}$ can be taken from:
 - known physics process (i.e. Z-boson decay, EMD...; generally accuracy not good enough),
 - visible cross section measurement by the vdM or BGI method.

$$\mathcal{L} = rac{\mathrm{R}_{\mathrm{vis}}}{\sigma_{\mathrm{vis}}} = rac{\mu_{\mathrm{vis}}
u_{\mathrm{rev}}}{\sigma_{\mathrm{vis}}}$$

• $\mu_{\rm vis}$ is an average number of visible interactions per bunch crossing.

Luminosity is measured indirectly in physics data-taking using suitable reference process.

$$\mathcal{L} = rac{\mathrm{R}_{\mathrm{ref}}}{\sigma_{\mathrm{ref}}}$$

 \blacksquare The reference cross section $\sigma_{\rm ref}$ can be taken from:

- known physics process (i.e. Z-boson decay, EMD...; generally accuracy not good enough),
- visible cross section measurement by the vdM or BGI method.

$$\mathcal{L} = rac{\mathrm{R}_{\mathrm{vis}}}{\sigma_{\mathrm{vis}}} = rac{\mu_{\mathrm{vis}}
u_{\mathrm{rev}}}{\sigma_{\mathrm{vis}}}$$

• μ_{vis} is an average number of visible interactions per bunch crossing.

$$\mathcal{L} = \nu_{\rm rev} \frac{N_1 N_2}{2\pi \Sigma_x \Sigma_y} \quad \mathcal{L} = \frac{\mu_{\rm vis} \nu_{\rm rev}}{\sigma_{\rm vis}} \quad \rightarrow \quad \sigma_{\rm vis} = \frac{2\pi \mu_{\rm vis} \Sigma_x \Sigma_y}{N_1 N_2}$$

Luminosity is measured indirectly in physics data-taking using suitable reference process.

$$\mathcal{L} = rac{\mathrm{R}_{\mathrm{ref}}}{\sigma_{\mathrm{ref}}}$$

 \blacksquare The reference cross section $\sigma_{\rm ref}$ can be taken from:

- known physics process (i.e. Z-boson decay, EMD...; generally accuracy not good enough),
- visible cross section measurement by the vdM or BGI method.

$$\mathcal{L} = rac{\mathrm{R}_{\mathrm{vis}}}{\sigma_{\mathrm{vis}}} = rac{\mu_{\mathrm{vis}}
u_{\mathrm{rev}}}{\sigma_{\mathrm{vis}}}$$

• $\mu_{\rm vis}$ is an average number of visible interactions per bunch crossing.

$$\mathcal{L} = \nu_{\rm rev} \frac{N_1 N_2}{2\pi \Sigma_x \Sigma_y} \quad \mathcal{L} = \frac{\mu_{\rm vis} \nu_{\rm rev}}{\sigma_{\rm vis}} \quad \rightarrow \quad \sigma_{\rm vis} = \frac{2\pi \mu_{\rm vis} \Sigma_x \Sigma_y}{N_1 N_2}$$

• We need a session where we can measure μ_{vis} , N_i and Σ_i simultaneously!

Bunch intensity measurement

Bunch intensity measurement

- Provided by LHC via current transformers:
 - DC current transformer (DCCT)
 - total beam intensities,
 - fast beam current transformer (fBCT)
 - relative bunch intensities.

- Parasitic-charge correction:
 - ghost charge (LHC, LHCb),
 - satellite charge (LHC).

fBCT

Currently, per-mil level uncertainties.

Bunch overlap region measurement

Bunch overlap region measurement

- Dedicated sessions: van der Meer scans (all experiments), beam-gas imaging (LHCb).
 vdM: displaced beams move against each
 Factorization assumption applied
- vdM: displaced beams move against each other in x and then in y direction.

Beam conditions (vdM vs. pp physics):

- low pile-up (~ 0.5 vs. 30-60),
- isolated bunches vs. bunch trains,
- \blacksquare low luminosity ($\sim 10^{30}$ vs. $\sim 10^{34}).$

 $\mathcal{L} = \nu_{\rm rev} \frac{N_1 N_2 / 2\pi}{\sum \sum \nu}$

 $\rho(\mathbf{x}, \mathbf{y}) = \rho(\mathbf{x})\rho(\mathbf{y})$

Selected topics

Length-scale calibration

- Measures the scale factor between nominal beam displacement to actual one.
- Measurement of vertex position while moving beams with fixed distance.

Alternatively, beam-gas imaging can be used (large beam-gas vertex sample required).

Non-factorisation

 $\rho(x,y) \neq \rho(x)\rho(y)$

- \blacksquare Differs from bunch to bunch and in time. Effect up to $\sim 5\%$ in Run 1.
- Beam tailoring in the LHC injection chain reduces this effect under 2%.

- ALICE, ATLAS: combined fit to the beam-separation dependence of the luminosity and of the luminous-region parameters.
- CMS: beam-beam imaging.
- LHCb: beam-gas imaging, 2D vdM (Run 3?).
- Uncertainty now tamed to 0.5 1% in Run 2.

Beam-beam interaction

- Orbit and shape of colliding bunches distorted by mutual electromagnetic interaction.
- Beam-beam deflection: change in beam separation; estimated analytically.
- Optical distortion: change in beam profile; estimated with simulations.
- Beam-beam deflection + optical distortion = full effect; is estimated with simulation.

Magnetic non-linearities

- Difference between expected and measured positions with Beam-Position Monitors.
- \blacksquare Points to non-linear behaviour of steering magnets \rightarrow hysteresis.
- Impact on calibration precision is several per mil, currently being assessed.
- Precision calibration of BPMs could cure this problem.
- \blacksquare Effect studied with dedicated tests on Run 3 pilot run \rightarrow reproducible within that session.

Calibration transfer to physics conditions

- vdM condition: low pile-up and isolated bunches \rightarrow correction needed for ATLAS/CMS.
- ATLAS: calibration transfer based on track-counting luminosity.
- CMS: calibration transfer based on emittance scans (short vdM in physics conditions).
- Typical effect up to 10% and uncertainty up to 1%.

Stability and reproducibility over time

Roman Lavička

Summary of achieved accuracy

Summary: achieved uncertainties in pp collisions

$\sigma_{\mathcal{L}}/\mathcal{L}[\%]$	for pp	at 8 TeV
	2012	Run 1
ALICE	2.4	
ATLAS	1.9	
CMS	2.6	
LHCb		1.16

$\sigma_{\mathcal{L}}/\mathcal{L}$ [%]	for pp at 2.76 TeV
	2013
ALICE	3.8
ATLAS	3.1
CMS	3.7
LHCb	2.2

 $\leftarrow \mathsf{Run} \ 1$

$\sigma_{\mathcal{L}}/\mathcal{L}$ [%] for pp at 13 TeV					
	2015	2016	2017	2018	Run 2
ALICE	3.4	1.9	2.7	2.1	1.6
ATLAS	2	.1	2.4	2.0	1.7
ATLAS low- μ	1.5				
CMS	1.6	1.2	2.3	2.5	1.6
CMS low- μ			1.7		
LHCb			2.0		

$\sigma_{\mathcal{L}}/\mathcal{L}$ [%]	for pp	at 5 TeV
	2015	2017
ALICE	2.3	2.1
ATLAS		1.5
CMS	2.3	1.9
LHCb		2.0

 $\leftarrow \mathsf{Run} \ 2$

Preliminary in italics. Numbers without hypertext link are internal.

Summary: achieved uncertainties in heavy-ion collisions

- Larger uncertainties:
 - no time to tune vdM setup,
 - larger ghost charge,
 - large satellite charge,
 - statistical limitations.
- Smaller uncertainties:
 - beam-beam effects,
 - calibration transfer.

$\sigma_{\mathcal{L}}/\mathcal{L}$ [%]	for p–Pb/Pb–p at 8 TeV
	2016
ALICE	1.9/2.0
ATLAS	2.4
CMS	3.7/3.2
LHCb	2.6/2.5

$\sigma_{\mathcal{L}}/\mathcal{L}[\%]$	for p–Pb/Pb–p at 5 TeV
	2013
ALICE	3.7/3.4
ATLAS	2.7
CMS	3.6/3.4
LHCb	2.3/2.5

 $\leftarrow \mathsf{Run} \ 1$

$\sigma_{\mathcal{L}}/\mathcal{L}$ [%] for Pb–I	^D b at 2.76 TeV
	2010	2011
ALICE	5.8	4.2

$\sigma_{\mathcal{L}}/\mathcal{L}$ [%] for Pb–Pb at 5 TeV				
	2015	2018		
ALICE		2.3		
ATLAS	1.5	1.9		
CMS		1.5		
LHCb		4.2		

 $\leftarrow \mathsf{Run} \ 2$

Roman Lavička

Roman Lavička

BACK UP

References

Luminosity measurements

ALICE: pp 13 TeV 2016-2018: ALICE-PUBLIC-2021-005. ALICE: Pb–Pb 5 TeV 2015/2018: arXiv:2204.10148v1. ATLAS: low-pileup pp 5/13 TeV: ATLAS-CONF-2020-023. ATLAS: pp via Z-boson 13 TeV: ATL-DAPR-PUB-2021-001.

CMS: pp 13 TeV 2015/2016: EPJC 81, 800 (2021). CMS: pp 5 TeV 2017: CMS-PAS-LUM-19-001 (2021) CMS: Pb-Pb 5 TeV 2018: CMS-PAS-LUM-18-001 (2022).

Detector upgrades

ALICE FIT: CERN-LHCC-2013-019.

CMS BCM1F: CMS-PHO-GEN-2022-001. CMS BRIL: CERN-LHCC-2021-008 (2021). ATLAS BCM': internal communication. ATLAS HGTD: CERN-LHCC-2020-007. also poster by Fatima Bendebba at LHCP22. ATLAS LUCID-3: LHCC-2021-016. also poster by Jack Lindon at LHCP22. ATLAS PLR: internal communication.

LHCb BCM: internal communication. LHCb PLUME: CERN-LHCC-2021-002. LHCb RMS-3: CERN-Poster-2021-1046. LHCb SMOG2: CERN-LHCC-2019-005.

ATLAS uncertainties for pp 13 TeV (2015-2018)

2015+16	2017	2018	Comb.
36.2	44.3	58.5	139.0
0.8	1.0	1.2	2.4
0.2	0.2	0.2	0.1
0.1	0.1	0.1	0.1
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.5	0.4	0.5	0.4
0.2	0.2	0.2	0.1
0.1	0.2	0.1	0.1
0.3	0.3	0.2	0.2
0.3	0.3	0.2	0.3
0.2	0.2	0.2	0.2
0.4	0.2	0.5	0.4
0.3	0.3	0.4	0.2
0.1	0.1	0.1	0.1
0.2	0.2	0.4	0.2
0.5	1.2	0.6	0.5
0.2	0.2	0.4	0.2
1.1	1.5	1.2	-
1.6	1.3	1.3	1.3
0.1	0.1	0.1	0.1
0.7	1.3	0.8	0.6
0.6	0.0	0.0	0.2
2.1	2.4	2.0	1.7
	2015+16 36.2 0.8 0.2 0.1 0.0 0.0 0.5 0.2 0.1 0.3 0.3 0.2 0.4 0.3 0.1 0.2 0.4 0.3 0.1 0.2 0.1 1.1 1.6 0.1 0.7 0.6 0.2 0.1 0.0 0.5 0.2 0.1 0.3 0.2 0.1 0.3 0.2 0.1 0.3 0.2 0.1 0.3 0.2 0.1 0.3 0.2 0.1 0.3 0.2 0.1 0.3 0.2 0.1 0.3 0.2 0.1 0.3 0.2 0.1 0.3 0.2 0.1 0.4 0.5 0.2 0.1 0.4 0.5 0.2 0.1 0.5 0.2 0.1 0.3 0.2 0.1 0.4 0.5 0.2 0.1 0.5 0.2 0.1 0.3 0.2 0.1 0.3 0.2 0.1 0.3 0.2 0.1 0.5 0.2 0.1 0.5 0.2 0.1 0.3 0.2 0.1 0.5 0.2 0.1 0.5 0.2 0.1 0.5 0.2 0.1 0.5 0.2 0.1 0.5 0.2 0.1 0.5 0.2 0.1 0.5 0.2 0.1 0.5 0.2 0.2 0.1 0.5 0.2 0.2 0.1 0.5 0.2 0.2 0.1 0.5 0.2 0.2 0.1 0.5 0.2 0.2 0.1 0.5 0.2 0.2 0.1 0.5 0.2 0.2 0.1 0.5 0.2 0.2 0.2 0.1 0.5 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	$\begin{array}{cccc} 2015{+}16 & 2017 \\ 36.2 & 44.3 \\ 0.8 & 1.0 \\ \\ \hline \\ 0.2 & 0.2 \\ 0.1 & 0.1 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.5 & 0.4 \\ 0.2 & 0.2 \\ 0.1 & 0.2 \\ 0.3 & 0.3 \\ 0.2 & 0.2 \\ 0.4 & 0.2 \\ 0.3 & 0.3 \\ 0.2 & 0.2 \\ 0.4 & 0.2 \\ 0.4 & 0.2 \\ 0.5 & 1.2 \\ 0.5 & 0.2 \\ 0.5 &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ATLAS-CONF-2019-021

Source	Uncertainty (%)
	ZED V0M
Statistical	0.04 0.09
$h_{x0}h_{y0}$ consistency (V0M vs ZED)	0.13
Length-scale calibration	1
Non-factorisation	1.1
Bunch-to-bunch consistency	$0.4 \mid 0.1$
Scan-to-scan consistency	1
Background subtraction	$0.8 \mid 0.5$
Bunch intensity	0.8
Magnetic non-linearities	0.2
Orbit drift	0.15
Beam-beam deflection and distortion	0.1
Fitting scheme	0.4
Total of visible cross section	2.2 2.1
Stability and consistency	0.7
Total of luminosities	2.3 2.2

ALICE uncertainties for Pb–Pb 5 TeV (2015 and 2018)

arXiv:2204.10148v1

CMS uncertainties for pp 13 TeV (2015 and 2016)

Source	2015 [%]	2016 [%]	Corr
Normalization	uncertainty		
Bunch population			
Ghost and satellite charge	0.1	0.1	Yes
Beam current normalization	0.2	0.2	Yes
Beam position monitoring			
Orbit drift	0.2	0.1	No
Residual differences	0.8	0.5	Yes
Beam overlap description			
Beam-beam effects	0.5	0.5	Yes
Length scale calibration	0.2	0.3	Yes
Transverse factorizability	0.5	0.5	Yes
Result consistency			
Other variations in $\sigma_{ m vis}$	0.6	0.3	No
Integration u	ncertainty		
Out-of-time pileup corrections			
Type 1 corrections	0.3	0.3	Yes
Type 2 corrections	0.1	0.3	Yes
Detector performance			
Cross-detector stability	0.6	0.5	No
Linearity	0.5	0.3	Yes
Data acquisition			
CMS deadtime	0.5	< 0.1	No
Total normalization uncertainty	1.3	1.0	_
Total integration uncertainty	1.0	0.7	_
Total uncertainty	1.6	1.2	_

Roman Lavička

LHCb uncertainties for all collision systems in Run 1

Source	BGI	VDM	Correlated		
Bunch population uncertainties (section 3)					
FBCT offset	0.04	0.05	yes		
BPTX cross-check	n.a.	0.09	yes		
DCCT population product	0.22	0.23	yes		
Ghost charge	0.02	0.04	yes		
Satellite charge	0.06	0.02	yes		
Missing satellite measurements	n.a.	0.23	no		
Rate measure	ment				
Background subtraction	0.20	0.14	yes		
Ratio of observables Track to Vertex	0.20	n.a.	no		
Efficiency of rate observables	negl.	0.09	no		
Fit model	0.	.50	yes		
VELO transverse scale	0.	.05	yes		
BGI specific (se	ction 6)				
Beam-beam resolution	0.93		no		
Beam-gas resolution	0.55		no		
Detector alignment	0.45		no		
Measurement spread	0.54		no		
Bunch length	0.05		no		
Reconstruction efficiency	0.04		no		
Pressure gradient	0.03		no		
VDM specific (see	ection 7)			
Length scale		0.50	no		
Beam-beam effects		0.28	no		
Fit bias		0.20	no		
Linear correlation		0.08	no		
Parameter assumptions		0.74	no		
Constraints from BGI		0.30	yes		
Scan variation and drift		0.32	no		
Non-reproducibility		0.80	no		
Statistical		0.04	no		
Uncorrelated	1.31	1.32			
Correlated	0.59	0.65			

JINST 9 P12005 (2014)

Orbit drift and beam-satellite event by event separation

