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Introduction

➔ Boosted jet tagging algorithm explores 
phase space where the resonance jet is 
Lorentz-boosted and decay products are 
collimated


❖ all decay products can be collected within a 
large-R jet


❖ goals: tagging resonances (W/Z/H/top) with 
hadronic decays and/or different flavour 
contents (X→bb̅/cc̅)


❖ technique: rule-based jet substructure 
variables, BDT/DNN w/ jet observables, DNN 
w/ low-level constituent input
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boosted object 
reconstructed by a 

large-R jet

figure from [link]

https://github.com/jet-universe/particle_transformer
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‣ Provide an overview of recent boosted algorithms 
developed in ATLAS and CMS


‣ Highlight advanced techniques: new DNN 
architecture, mass decorrelation methods, 
calibration methods, …


‣ Showcase applications in new physics searches and 
standard model measurements 


‣ Thoughts on future perspectives

Aim of this talk

boosted object 
reconstructed by a 

large-R jet

figure from [link]

https://github.com/jet-universe/particle_transformer
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➔ CMS


❖ Large-R PUPPI jets: particle-flow 
(PF) candidates ▶ pile-up 
suppressed by PUPPI algo (assign 
each PF candidate a factor to scale 
its 4-vec) ▶ clustered by anti-kT 
algo, R=0.8 ▶ groomed by soft-drop 
algo

How to reconstruct large-R jets?

➔ ATLAS


❖ LCTopo jets:  topological cluster ▶ 
clustered with by anti-kT algo, R=1.0 ▶ 
groomed with trimming algo


❖ UFO jets: Unified Flow Objects (a 
combination of particle-flow objects (PFO) 
and Track-CaloClusters (TCC)) ▶ pile-up 
mitigation by Constituent Subtraction (CS)/
SoftKiller (SK)/PUPPI algo ▶ clustered by 
anti-kT algo, R=1.0 ▶ groomed by soft-drop 
algo


‣ PFO better at low pT region; TCC benefits 
high pT—UFO jets has better resolution 
across all pT range


‣ latest tagging method applied to UFO jets 
and see further improvements
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Eur. Phys. J. C 81 (2021) 334
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PF: JINST 12 (2017) P10003

PUPPI: JINST 15 (2020) P09018

NEW

https://link.springer.com/article/10.1140/epjc/s10052-021-09054-3
http://JINST%2012%20(2017)%20P10003
https://iopscience.iop.org/article/10.1088/1748-0221/15/09/P09018
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Heavy resonance tagging
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W/Z → qq t → bW → bqq
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q q
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W/Z→qq tagging (I): theory-inspired variables

➔ Hadronic W/Z-tagged jets distinguished from QCD jets by 
their two-prong structure 
 

➔ Theory-inspired jet substructure variable


❖ [ATLAS] energy-correlation function (ECF) ratio:  (to 
identify two-prong structure)  
+ jet mass ( ) (trimmed mass for  
   LCTopo jet; soft-drop mass for UFO)  
+ # of inner detector track 


❖ [CMS]  N-subjettiness variable  or N-series of ECF ratio:  
+ soft-drop jet mass ( ) 


❖ hand-crafted variables have highlights in design (e.g. IRC 
safety, axis independence…), but performance cannot 
reach the multivariate approach
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JINST 15 (2020) P06005

JHEP 06 (2013) 108

http://cdsweb.cern.ch/record/2777009/files/ATL-PHYS-PUB-2021-029.pdf
https://iopscience.iop.org/article/10.1088/1748-0221/15/06/P06005
http://cdsweb.cern.ch/record/2724149/files/ATL-PHYS-PUB-2020-017.pdf
http://cdsweb.cern.ch/record/2724149/files/ATL-PHYS-PUB-2020-017.pdf
https://iopscience.iop.org/article/10.1088/1748-0221/15/06/P06005
https://link.springer.com/article/10.1007/JHEP06(2013)108
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W/Z→qq tagging (II): ML with high-level features

➔ BDT/DNN using high-level jet observables as input

❖ [ATLAS] train a BDT/feedforward NN with jet observables as input

❖ [CMS] BEST: 59 jet inputs as “boosted event shape”, obtained by boosting the jet 

four times with a resonance assumption

7

Lorentz transform to the 
“assumed resonance”  (t/

W/Z/H) rest frame

BEST algo: JINST 15 (2020) P06005

ATL-PHYS-PUB-2021-029

https://iopscience.iop.org/article/10.1088/1748-0221/15/06/P06005
http://cdsweb.cern.ch/record/2777009/files/ATL-PHYS-PUB-2021-029.pdf


Boosted algorithms for searches

Congqiao Li (Peking University) 19 May, 2022LHCP2022 · Taipei

LHCP2022 - Performance and Tools

✓ permutational invariant: 
more effective representation  
of input data


✓ enable message passing to 
neighbouring nodes

W/Z→qq tagging (III): ML with low-level input

➔ DNN with low-level constituent inputs

❖ Why low-level input?—empowered by recent ML 

achievements, we are able to explore the full 
correlation of jet constituents by a network!


❖ [CMS] DeepAK8 
organize “PF candidates” and “secondary vertices 
(SV)” as two sequences ▶  input to two 1D CNNs ▶ 
concatenate, pass to dense layer, output multiple (17) 
scores (multi-classification)


❖ [CMS] ParticleNet (current state-of-the-art in CMS) 
represent PF candidates and SVs in a point cloud ▶  
use GNN architecture, apply edge convolutions to 
exploit geometric features ▶  output multiple 
scores

8

sequence 
representation 
(by some order)

point cloud 
representation

JINST 15 (2020) P06005

CMS-DP-2020-002

NEW

https://iopscience.iop.org/article/10.1088/1748-0221/15/06/P06005
https://cds.cern.ch/record/2707946/files/DP2020_002.pdf
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Performance of boosted W→qq taggers
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DNN performed 
on high-level 
inputs performs 
the best

CMS: benefits of using 
low-level inputs:

→DeepAK8 has a huge 

improvement

→x10 BKG rejection 

compared to DNN for 
high-level inputs 
approach, e.g. BEST 
(applying no mass 
decorrelation)

7

0 0.2 0.4 0.6 0.8 1
Signal efficiency

4−10

3−10

2−10

1−10

1

Ba
ck

gr
ou

nd
 e

ffi
ci

en
cy

 (13 TeV)

CMS
Simulation Preliminary

DeepAK8
DeepAK8-MD
ParticleNet
ParticleNet-MD
DeepAK8-DDT (5%)
DeepAK8-DDT (2%)

W boson vs. QCD multijet
| < 2.4gen

η < 1000 GeV, |gen
T

500 < p
 < 105 GeVSD65 < m

Figure 2. Performance of the algorithms for identifying hadronically decaying W bosons. A selection on the jet
mass, 65 < mSD < 105 GeV, is applied in addition to the ML-based identification algorithm when evaluating the
signal and background efficiencies. For the signal (background), the generatedW bosons (quarks and gluons) are
required to satisfy 500 < pT < 1000 GeV and |η| < 2.4. For each of the two DeepAK8-DDT algorithms, the marker
indicates the performance of the nominal working point, DeepAK8-DDT > 0, and its background efficiency
(shown in the vertical axis) is different from the design value (5% or 2%) due to the additional selection on the jet
mass. The training of the ParticleNet-MD algorithm did not use any samples with hadronic decays of W bosons
as other algorithms did, thus its performance is not optimal forW boson identification.

CMS-DP-2020-002

CMS: further 
improvement in 
ParticleNet

→  additional 

x1.2 BKG 
rejection

better

better

better better

http://cdsweb.cern.ch/record/2777009/files/ATL-PHYS-PUB-2021-029.pdf
https://iopscience.iop.org/article/10.1088/1748-0221/15/06/P06005
https://cds.cern.ch/record/2707946/files/DP2020_002.pdf
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➔ Previous top taggers include

❖ [ATLAS] TopoDNN (on LCTopo jets): up to 10 

topoclusters with highest pT as input ▶  feed to 
feedforward NN ▶  binary classification for top vs. QCD


❖ [CMS] ImageTop: create a jet image from PF candidates 
▶  feed to 2D CNN (as image recognition task) ▶  also 
uses a DeepFlavour score which passes PF candidates 
and SVs to 1D CNN+LSTM to infer flavour scores ▶  
concatenate and output two scores for top vs. QCD

Boosted top tagging
➔ Hadronically decayed top jets are distinguished by their three-prong 

structure


➔ Summarise only the baseline taggers in ATLAS and CMS


❖ [ATLAS] DNN-based tagger for UFO jets: pass jet substructure observables as 
input to feedforward DNN


❖ [CMS] DeepAK8 & ParticleNet: same tagger for W/Z applies to top tagging as well

‣ the model is designed to output multiple (17) scores covering W/Z/top/H decay 

modes
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Eur. Phys. J. C 79 (2019) 375
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https://link.springer.com/article/10.1140/epjc/s10052-019-6847-8
https://iopscience.iop.org/article/10.1088/1748-0221/15/06/P06005
https://cds.cern.ch/record/2707946/files/DP2020_002.pdf
http://cdsweb.cern.ch/record/2776782/files/ATL-PHYS-PUB-2021-028.pdf
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Mass decorrelation (I)
➔ Crucial to decorrelate with jet mass


❖ as the DNN would learn from the jet kinematics and “sculpt a peak 
structure” in the background mass spectrum


➔ By manual decorrelation: spirit is to adopt different tagger 
working points for different bins


❖ [ATLAS] decorrelation of  tagger: define jet bins on 
 ▶  manual bin-dependent working point 

 at BKG eff = 8% ▶  define new tagger 


❖ [CMS] same method, denoted as “designed decorrelated tagger 
(DDT)”: e.g. 


➔ By adversarial training

❖ [ATLAS] decorrelate the DNN  

score with mass by adding  
an additional adversarial  
network which contributes  
an adversarial loss


❖ [CMS] same method adopted  
for DeepAK8 tagger (denoted  
DeepAK8-MD)

D2
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T), pT)

D8%
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2
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D8%
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the adversarial loss

the original 
classification 
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NEW

http://cdsweb.cern.ch/record/2777009/files/ATL-PHYS-PUB-2021-029.pdf
https://iopscience.iop.org/article/10.1088/1748-0221/15/06/P06005
https://iopscience.iop.org/article/10.1088/1748-0221/15/06/P06005
http://cdsweb.cern.ch/record/2777009/files/ATL-PHYS-PUB-2021-029.pdf
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Mass decorrelation (II)
➔ By training with flat-mass sample


❖ [CMS] mass decorrelation approach for ParticleNet-MD:  
construct X→bb/cc/qq sample for training: X=spin-0 scalar with variable-mass 
▶  dedicated reweighting on  from signal to QCD jets ▶ training 
performed on same ParticleNet model


‣ fewer performance loss w.r.t. adversarial training approach

(pT, mSD)
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NEW

https://cds.cern.ch/record/2707946/files/DP2020_002.pdf
http://cdsweb.cern.ch/record/2777009/files/ATL-PHYS-PUB-2021-029.pdf
https://iopscience.iop.org/article/10.1088/1748-0221/15/06/P06005
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Heavy flavour tagging

14

H/Z → bb̅ H/Z → cc̅

b

b

c

c
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X→bb̅/cc̅ tagging
➔ Double-b/c flavour tagging techniques are crucial to recover sensitivity in boosted X→bb̅/cc̅ phase-

space (X=H/Z/BSM particles)


❖ only includes recent advanced developments


➔ [ATLAS] double b-tagger (for LCTopo jets associated to up to 3  
variable-radius (VR) track-jets): use flavour tagging info DL1r of  

3 track-jets + jet kinematics ▶  feedforward NN ▶  produce  

three scores: p(Higgs), p(multijet), p(top)


❖ N.B. DL1r: track inputs passed to feedforward NN to output three  
scores p(b), p(c), p(light)


❖ final score 


➔ [CMS] DeepAK8-MD: as detailed, flavour category also included (H→bb/cc/qq scores)


➔ [CMS] DeepDoubleX: PF candidates, SVs (organised as sequences) and jet-level inputs ▶  1D CNN+GRU 

▶  two scores in 3 schemes (BvsL, CvsL, CvsB)


➔ [CMS] ParticleNet-MD: reweight variable-mass Higgs signal & QCD backgrounds ▶  use PF candidates 

and SV inputs as point cloud ▶  GNN with edge convolution ▶  X→bb/cc/qq scores and 5 QCD scores

DXbb = ln
pHiggs

ftop ⋅ ptop + (1 − ftop) ⋅ pmultijet
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ATL-PHYS-PUB-2020-019

ATL-PHYS-PUB-2017-013

CMS-DP-2018-046 (for v1 tagger)

CMS-DP-2020-002

NEW

NEW

NEW

ATL-PHYS-PUB-2020-019

http://cdsweb.cern.ch/record/2724739/files/ATL-PHYS-PUB-2020-019.pdf
https://cds.cern.ch/record/2273281/files/ATL-PHYS-PUB-2017-013.pdf
https://cds.cern.ch/record/2630438/files/DP2018_046.pdf
https://cds.cern.ch/record/2707946/files/DP2020_002.pdf
http://cdsweb.cern.ch/record/2724739/files/ATL-PHYS-PUB-2020-019.pdf
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Performance of X→bb̅/cc̅ taggers
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Applications and beyond
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➔ Deriving scale factors (SF) on tagging efficiency crucial in the real application


❖ , i.e., ratio of the tagger efficiency passing a specific working point 
between data and MC, usually binned by pT

SF = ϵdata /ϵMC

Calibration of boosted W/top taggers

➔ hadronic top/W taggers calibrated with tt̅ 
events

❖ [ATLAS] (separate for top/W tagging) 

→ decompose MC jets into “tt̅ top-matched”, “tt̅ 
top-unmatched”, “others” (for top tagging) or 
“tt̅ W-matched”, “others” (for W tagging)  
▶ simultaneous fit on mass for pass/fail tagger 
region


‣ extrapolate SF with its uncertainties to higher pT


‣ calibrate the BKG tagging efficiency (rejection) for 
QCD/γ+jet events as well


❖ [CMS] similar method: categorize MC jets to “top-
matched”, “W-matched”, “others” and apply 
simultaneous fit

18
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Calibration of boosted flavour taggers
➔ hadronic X→bb̅/cc̅ taggers calibrated with 

“proxy”

❖ [ATLAS] use Z→bb̅ jets as a proxy to H→bb̅ jets 

Z→bb̅ events with additional γ or jet ▶ data-
driven estimation of QCD/γ+jet shape from mass 
sideband ▶ simultaneous fit on mass for pass & 
fail tagger region


❖ [CMS] use “BDT selected g→bb̅/cc̅ jets” as a 
proxy to H→bb̅/cc̅ 
QCD jets categorised to b, c, light flavour ▶ 
simultaneous fit on  for pass & fail tagger 
region


‣ BDT trained on QCD jets to veto jets with large 
gluon contamination, so as to select more H→bb̅/
cc̅-like jets 

ln(mSV)
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Applications
➔ Highlight only a few from many recent analyses that benefit from the advanced boosted 

tagging techniques
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Resonance tt̅ search in 
fully hadronic mode
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Figure 3: Observed <
reco
C C̄

distributions in data for (a) SR11 and (b) SR21, shown together with the result of the fit
with the three-shape-parameter function. The shaded bands around the fits indicate the e�ect of the fit parameter
uncertainty on the background prediction. The bin width of the distributions is chosen to be the same as that used in
the background parameterization (Section 5.2). The predicted /

0

TC2 signal distributions with masses of 2 and 4 TeV
(multiplied by a factor of 5) are superimposed on the background prediction. The lower panel shows the significance
of data with respect to the background prediction from the fit, calculated in continuous mass intervals scanned over
the binned <

reco
C C̄

distributions. The two vertical lines extending between the upper and lower panel represent the most
significant deviation interval. The global ?-value of the interval is 0.45 (0.56) for SR11 (SR21).

8 Results

The observed <
reco
C C̄

distributions in the two SRs with fits using the three-shape-parameter function are
shown in Figure 3. The observed number of data events is 26 964 (8160) in SR11 (SR21). The BumpHunter
tests for the compatibility of the data and the background prediction show that the fit describes the data well
for both SRs. The interval with the most significant deviation is 5.44–5.69 TeV for SR11 and 5.44–5.82 TeV
for SR21 with the corresponding global ?-values of 0.45 and 0.56, respectively. The parameter values of
the fit functions determined from the fits to the data are provided in HEPData [84]. The parameter values
are consistent with those obtained from fits to the (bkg set of expected background distributions, used in
Section 5.2.

With the /
0

TC2 signal used in this analysis, the minimum local ?0-value is found to be 0.06 (1.6f) at / 0

TC2
mass of 1.88 TeV in the mass range between 1.75 and 5 TeV. In the absence of a significant excess above
the background prediction, 95% CL upper limits on f · ⌫ are calculated at each mass value of the /

0

TC2
signal model. The expected and observed upper limits on the f · ⌫ of / 0

TC2 ! CC̄ are presented in Figure 4.
The results from the two SRs are statistically combined to obtain these limits. From the comparison with
the f · ⌫ at NLO for the /

0

TC2 with �/< = 1% and 3%, the /
0

TC2 masses up to 3.9 and 4.7 TeV, respectively,
are excluded at 95% CL. For the /

0

TC2 with �/< = 1.2% and the LO f · ⌫ multiplied by 1.3 (scaled to
NLO prediction), masses up to 4.1 TeV are excluded at 95% CL. The upper limits on f · ⌫ are provided
only up to 5 TeV for the /

0

TC2 signal mass because of the large spurious-signal uncertainty exceeding
200% at masses beyond 5 TeV, making the limit calculation unreliable at masses larger than ⇠ 5.2 TeV.
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Figure 4: Observed and expected upper limits on the cross-section times branching fraction of the /
0

TC2 ! CC̄ as a
function of the /

0

TC2 mass. The NLO theory cross-sections times branching fraction for the /
0

TC2 with �/< = 1% and
3% are shown by the red dotted and blue dashed lines, respectively. Shown by the red solid line is a NLO prediction,
obtained by multiplying the LO theory cross-section times branching fraction by a factor 1.3 [41], for the /

0

TC2 with
�/< = 1.2%.

The expected sensitivity of the present analysis is limited by the statistical uncertainty of the background
prediction over the full mass range, except at high mass beyond 4.5 TeV where the systematic uncertainty
due to the spurious signal dominates the statistical uncertainty.

9 Conclusion

This paper presents a search for new massive particles decaying into CC̄ in the fully hadronic final state using
139 fb�1 of ?? collision data recorded at

p
B = 13 TeV with the ATLAS detector at the LHC. The search

focuses on the mass range above 1.4 TeV. It uses an improved top-quark tagging based on a multivariate
classification algorithm with a deep neural network and 1-hadron identification with variable-radius
track-jets for highly boosted top quarks. The background is estimated from a fit to data. No significant
deviation from the background expectation is observed over the search range. Upper limits are set on the
production cross-section times branching fraction for the /

0

TC2 boson in the topcolor-assisted-technicolor
model, resulting in the exclusion of / 0

TC2 masses up to 3.9 and 4.7 TeV for decay widths of 1% and 3%,
respectively. Compared to the previous analysis with the 2015–2016 data set, the improved analysis
techniques presented here provide a 65% improvement in the expected cross-section limit at 4 TeV when
using the same data set.
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• boosted top tagging 
with DNN trained on jet-
level features + DL1 b-
tagging on VR track-jets 
→ improve σ limit by 
65%!


• smooth background 
template estimated 
from data


• Z’(→tt̅) mass 
excluded up to 
3.9 TeV for decay 
width=1%

tt̄ W/Z
γ

JHEP 10 (2020) 061 ATLAS-CONF-2021-041
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• boosted W/Z tagging 
with  variable + b-
tagging on VR track-jets 
(for Z→bb̅)


• data-driven BKG 
modelling


• results: upper limit on σ: 
10–0.05 fb in the range 
1.0–6.8 TeV


D2

https://link.springer.com/article/10.1007/JHEP10(2020)061
https://cds.cern.ch/record/2779176/files/ATLAS-CONF-2021-041.pdf
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Applications (II)
➔ Highlight only a few from many recent analyses that benefit from the advanced boosted 

tagging techniques

21

VH→cc search Boosted HH→4b search

• Boosted H→cc̅ jet jet 
tagged by ParticleNet-
MD → x5 improvement 
in BKG (QCD & V+jets) 
rejection!


• Fit on “jet mass” 
(merged topology) and 
an event BDT variable 
(resolved topology)


• Most stringent limit on 
H-c coupling to date: 
1.1<|κc|<5.5

H
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• H→bb̅ jet jet tagged by ParticleNet-MD →  
x2 improvement in BKG rejection


• Regression on H→bb̅ jet mass based on 
ParticleNet → 40% improvement in resolution 


• Most stringent limit on κ2V to date: 0.6<κ2V<1.4
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More studies and beyond

➔ More developments in boost algorithms


❖ boosted di-τ tagging


❖ boosted di-gluon tagging


❖ boosted jet mass regression


❖ application of DNN-based boost tagging to trigger-level, …


➔ Where to seek for more improvement for future taggers?

❖ learn from known ML experiences which bring benefits: training with low-

level inputs, end-to-end training & optimisation, multi-classification


❖ cooperate with physics inspiration—latest pheno studies post interests on: jet 
symmetries [Shimmin. arXiv:2107.02908;  Gong et al. 2201.08187;  Murnane et al. 2202.06941], 
pairwise features [Qu et al. 2202.03772], …


❖ borrow new advancements from ML: GNN/Transformer-based model [Qu et al. 

2202.03772], training data engineering, …

22

JHEP 11 (2020) 163

ATL-PHYS-PUB-2021-027

CMS-DP-2021-017

https://arxiv.org/abs/2107.02908
https://arxiv.org/abs/2201.08187
https://arxiv.org/abs/2202.06941
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https://arxiv.org/abs/2202.03772
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https://link.springer.com/article/10.1007/JHEP11(2020)163
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Summary & outlook
➔ Recent advances in boost algorithms start to impose huge impact on 

analyses at LHC

❖ ATLAS and CMS explore new possibilities in the boosted phase-space

‣ in context of W/Z/top/H resonance tagging, and/or with flavour contents


❖ novel ML approaches greatly improve the sensitivity

‣ developing path: single/few rule-based jet observables → “shallow ML” using jet 

inputs → directly using low-level input to train deep NN


‣ results in more precise SM measurements, more stringent limit; or even accelerate 
the finding of a new particle!


❖ correction of performance between data and MC still tractable


➔ …while facing new challenges in future developments

❖ model training will be more data thirsty

❖ real deployment requires fast/on-the-fly tagger inference

❖ eager for more precise and robust calibration methods


➔ Long but optimistic journey ahead!
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Backup
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ParticleNet: details
➔ ParticleNet: A multi-class jet classifier for t/H/W/Z tagging based on 

graph NN [Phys.Rev.D 101, 056019 (2020)]


❖ achieve state-of-the-art performance for large-R jet tagging at CMS [CMS-
DP-2020-002]


➔ Architecture:

❖ treat a jet as an unordered set of particles in the  

η–φ space

❖ use graph NN that maintains the permutation-invariant symmetry: model 

based on Dynamic Graph CNN (DGCNN) architecture with EdgeConv 
operation


➔ Input: low-level features of PF candidates / SVs

25
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.056019
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https://cms-ml.github.io/documentation/inference/particlenet.html
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DeepDoubleX(-MD): details
➔ DeepDoubleX (V1): a bb/cc-flavour tagger based on 1D CNN+GRU [CMS-DP-2018-046]


❖ NN similar with DeepJet (for R=0.4 jet tagging) architecture [JINST 15 (2020) P12012]

❖ MD version: introduce additional “adversarial loss” in training: use KL divergence to 

quantify the shape difference


➔ Architecture:

❖ separate 1D CNNs to process low-level features

❖ gated recurrent units (GRU) applied after CNNs to handle the variable-length sequence

❖ additional path to process the global features then concatenate all paths in a fully 

connected layer


➔ Inputs: low-level features from PF candidates / SVs and global features

➔ Model upgraded to V2:


❖ optimize and add more input features; drop irrelevant features to shorten inference time

❖ achieve up to 40% improvement from the V1 performance

26

(V1)Conv1D
2 layers (32+32)

Dropout = 0.1
BN

GRU
1 layer (50)

Dropout = 0.1

Dense
1 layer (100)

Dropout = 0.1

Conv1D
2 layers (32+32)

Dropout = 0.1
�E

GRU
1 layer (50)

Dropout = 0.1

Conv1D
2 layers (32+32)

Dropout = 0.1
BN

GRU
1 layer (50)

Dropout = 0.1

BN

Output
2 nodes

(softmax)

3 variations:
തďď vs light
ҧĐĐ vs light
ҧĐĐ vs തďď

Charged PF candidates 
60| particles x 30 features

EĞƵƚƌĂů�W&�ĐĂŶĚŝĚĂƚĞƐ�
ϭϬϬ | ƉĂƌƚŝĐůĞƐ�ǆ�ϭϬ�ĨĞĂƚƵƌĞƐ�

Secondary vertices 
10 | vertices x 5 features 

Expert (jet-level)
1 jet x 27 features

NN architecture for DeepDoubleX (V2)
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mass sculpting effect for 
the bb vs. light tagger

https://cds.cern.ch/record/2630438/files/DP2018_046.pdf
https://iopscience.iop.org/article/10.1088/1748-0221/15/12/P12012
https://cds.cern.ch/record/2630438/files/DP2018_046.pdf
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Mass decorrelation plots
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mass sculpting effect in various taggers 
[JINST 15 (2020) P06005]

Jensen–Shannon divergence (JSD) as a function of BKG efficiency 
[JINST 15 (2020) P06005]

KLD(P∥Q) = ∑
i

P(i)log10
P(i)
Q(i)

, where JSD(P∥Q) =
1
2 (KLD (P∥M) + KLD (Q∥M)) M =

P + Q
2

smaller JSD  
⇒ better decorrelation

http://dx.doi.org/10.1088/1748-0221/15/06/P06005
http://dx.doi.org/10.1088/1748-0221/15/06/P06005
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Data/MC comparison

➔ using 2016 single-μ data

➔ SM (Herwig) shows the 

MC prediction using 
Herwig (instead of Pythia) 
for hadronization
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Calibration of W/top taggers
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Calibration of W/top taggers
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Figure 12: The mjet distribution for data and simulation in the passing (left) and failing (right)

categories for the mass decorrelation version of the top tagging (1% mis-identification rate) on

the pT window 600 < pAK8JetT < 1200 GeV. The solid lines correspond to the contribution of

each category after performing maximum likelihood fit. The contribution from QCD multijet

events is included in the total SM. The dashed lines are the expectation from simulation before

the fit. The lower panel shows the data-to-simulation ratio. The ”top/W matched” convention

used here indicate that a simulated top quark/W boson is overlapping with the large-radius jet,

but not necessarily all of its decay products.

CMS Collaboration 21
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https://cds.cern.ch/record/2718978/files/DP2020_025.pdf
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Calibration of X→bb̅/cc̅ taggers
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