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physics with machine learning

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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There are two complementary paths forward:

The Path Forward

(1) Identify new, specific, well-motivated places to look

(2) Look in many places all at once

Focus of today’s talk!

There is no free lunch: for any particular model, (2) will be 
less sensitive than (1).  We need both search paradigms!

This is still an incredibly important direction and has 
resulted in new directions like long-lived particle searches
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(a) There are a lot of places to look
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Table 1: Top-level organization of BSM particle A by its two-body decays into B and C, showing
examples of theoretical motivations for each case. Z

0 and W
0 denote additional gauge bosons, /R

represents R-parity violating SUSY, L⇤
, Q

⇤ are excited leptons and quarks, respectively, and T
0 and

B
0 are a vector-like top and bottom quarks, respectively. The symbol ZKK denotes Kaluza-Klein

excitation of SM Z. The SM case in the upper left box is reproduced from Ref. [14].

quarks, respectively. ZKK denotes Kaluza-Klein excitation of SM Z.
We categorize the rest of Table 1 in terms of nine additional subtables, which are denoted by

Roman numerals II through X, and present each table in the sequential order. Note that generally
we suppress electric charges of each SM particle and focus on the diversity of decay products,
although we mention a few interesting examples of such kinds. Similarly we will not distinguish
light jets from gluon and generically denote them as j but occasionally we distinguish them for some
interesting decays. We denote the bottom quark, and top quark by b/b̄ and by t/t̄, respectively.
The V represents SM gauge bosons Z and W

± and H is a SM Higgs boson. Throughout the
manuscript, a primed particle X

0 represents a BSM particle, whose properties are similar to the
corresponding SM particle X.

Table 2 shows example for A ! BC, where A and B are BSM particles and C is a SM particle,
which is the Group II in Table 1. We consider two similar SM particles in theB decays. For example,
the jj denotes B decays to two quarks (qq̄, qq̄0 or qq), while `` includes both two opposite-charged
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(a) There are a lot of places to look
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t [61] ? [62] [63] ? ? ? [64] [60] ? ? ? ?
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Table 14: References to existing searches for two-body resonances, where one decay product is from
the first column and one is from the first row. Only the most recent searches are considered. The
box BSM ! SM1 ⇥ SM2 represents cases where the primary resonance decays to a BSM particle,
which itself decays into two SM particles that are not the same. Colored cells indicate searches
that were covered by

p
s = 8 TeV searches reported in Ref. [14].

dedicated searches will likely need to be complimented with more model agnostic searches. Machine
learning methods may be able to automate this approach and solve significant statistical challenges
like large trails factors [15,16]. In particular, techniques such as neural networks can readily analyze
high-dimensional spaces and approaches with cross-validation can avoid over-training.

This work has focused on two-body decays into visible final states. Future work will consider
cases where there are undetectable particles (such as neutrinos and dark sectors) as well as multi-
body decays.

The LHC experiments have and will continue to collect rich datasets that may contain answers
to key questions about the fundamental properties of nature. Many well-motivated fundamental
theories have provided guiding principles to analyses these data. However, a more diversified
perspective will be required to full exploit the data - in fact, there may be something new already
hiding in the existing datasets!

5 Acknowledgments

This work was supported by the U.S. Department of Energy, O�ce of Science under contract
DE-AC02-05CH11231, DE-SC0017988 and DE-SC0019474.
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search for resonant A → B C
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13Why not just look everywhere?

(a) There are a lot of places to look

(b) You would find a lot of excesses

Best to cast a wide net in a smart way !



14Outline: Casting a Wide Net(work)

1. The landscape of model dependence 

2. Overview of new ideas 

3. Resonant anomaly detection 

4. The future (and why you should be part of it!)

Anomaly in this talk means unanticipated new physics (!)
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Suppose you want to search for a new signal process
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Standard 
Model G. Karagiorgi, G. Kasieczka, S. Kravitz, BN, D. Shih, 

Nature Reviews Physics (2022), 2112.03769

Landscape of Model Dependence
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Standard 
Model

> 99% of searches at 
the LHC and elsewhere 

are of this type

Landscape of Model Dependence

Most 
searches

(“train” with 
simulations)

“train” is in quotes 
because such searches 

may or may not use 
machine learning
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Standard 
Model

Landscape of Model Dependence

Most 
searches

(“train” with 
simulations)

Some 
searches

(train signal 
versus data)

e.g. signal 
simulation versus 
calibration data

standard approach 
when signal is clean 
and well-understood, 

but background is 
not, e.g. h → 𝛄𝛄
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Standard 
Model

signal model 
independent

background model 
dependent

Landscape of Model Dependence

Most 
searches

(“train” with 
simulations)

Some 
searches

(train signal 
versus data)

Train data 
versus 

background 
simulation There is a history of these 

searches at the LHC, 
Tevatron, HERA, LEP
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For a recent review, see G. Karagiorgi, G. Kasieczka, S. Kravitz, 
BN, D. Shih, Nature Reviews Physics (2022), 2112.03769

Most 
searches

(“train” with 
simulations)

Some 
searches

(train signal 
versus data)

Train data 
versus 

background 
simulation

many 
new 

ideas!

Standard 
Model

There are many new 
ideas that make use 
of modern machine 

learning

The goal is to learn 
directly from data, 

injecting as little bias 
as possible



23Overview of New Ideas

I like to categorize new ideas based on the 
core assumption about the BSM, which is 

intimately related to the technique supervision

Unsupervised = no labels 
Weakly-supervised = noisy labels 
Semi-supervised = partial labels 

Supervised = full label information

This is most searches.  You simulate the signal (label 
= 1), simulate the background (label = 0) and “train” 

a classifier to distinguish the 1’s from the 0’s.



24Unsupervised

Typically, the goal of these methods is to look 
for events with low p(background)

Unsupervised = no labels

M. Farina, Y. Nakai, D. Shih, 1808.08992; T. Heimel, G. 
Kasieczka, T. Plehn, J. Thompson, 1808.08979; + many more

One strategy (autoencoders) is to try to compress 
events and then uncompress them.  When x = 

uncompres(compress(x)), then x probably has low p(x).



25Weakly-supervised

Typically, the goal of these methods is to look for events with 
high p(possibly signal-enriched)/p(possibly signal-depleted)

Weakly-supervised = noisy labels

E. Metodiev, BN, J. Thaler, 1708.02949; J. Collins, K. Howe, BN, 1805.02664; + many more
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –

Signal enriched Signal depleted



26Semi-supervised

Typically, these methods use some signal 
simulations to build signal sensitivity

Semi-supervised = partial labels

vs

e.g. SM background 
versus many signals
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Unsupervised Weakly 
supervised

Signal is rare  
(low p)

Signal is an 
over density 
(high p ratio)

Approach:

BSM 
assumption

Main 
drawback

rare is not invariant* 
under coordinate 
transformations!  

need two samples 

*for a detailed discussion about this, see K. Desai, BN, J. Thaler, 2112.05722
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Unsupervised Weakly 
supervised

Signal is rare  
(low p)

Signal is an 
over density 
(high p ratio)

Approach:

BSM 
assumption

Main 
drawback

rare is not invariant* 
under coordinate 
transformations!  

*for a detailed discussion about this, see K. Desai, BN, J. Thaler, 2112.05722

Cannonical example: 
resonances!
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A relatively general, but powerful assumption is that the 
anomaly is localized somewhere in phase space.

background / noise

Resonant Anomalies 29Resonant Anomalies

Generically true when there are on-shall new particles.
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signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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A first version of this 
search has been 

performed by ATLAS!

Phys. Rev. Lett. 125 (2020) 131801, 2005.02983
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The approach doesn’t work if 
mres and x are strongly related. 

For instance, consider the extreme 
case where mres  is part of x.

K. Benkendorfer, L. Le Pottier, BN, 2009.02205 
A. Hallin et al., 2109.00546 

A. Andreassen, BN, D. Shih, PRD 101 (2020) 095004, 2001.05001 
BN and D. Shih, PRD 101 (2020) 075042, 2001.04990See also e.g. J. Raine et al., 2203.09470
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FIG. 6. Background rejection (left) and significance improvement (right) of the various anomaly classifiers as a function of
the signal e�ciency. The solid lines are deduced from a median value of 10 fully independent trainings on the same training,
validation and evaluation set. The uncertainty bands quantify the variance from retraining the NNs on the same, fixed dataset
and are defined such that they contain 68% of the runs around the median.

FIG. 7. Left: Median maximum significance improvement of each method with 10 di↵erent signal injections (leading to a
di↵erent split of training, validation and evaluation sets in each run) at each decreasing value of signal/background ratios.
Here, the 68% hatched uncertainty bands quantify the variance (around the median) from both retrainings of the NN and

random realizations of the training and validation data, including di↵erent realizations of the 1,000 injected signal events.
Right: Achieved maximum significance, which is computed by multiplying the uncut significance by the maximum significance
improvement. Both plots feature the significance without any cut applied in the upper horizontal axis. The dotted lines on the
right hand side denote 3 and 5 sigma significance values.

and the simulation-dependent methods. The fact
that Cathode is only marginally worse than the
idealized anomaly detector (in fact, they are over-
lapping within their respective error bands al-
most everywhere) is truly striking. The idealized
anomaly detector is meant to provide an upper
bound on the performance of any data vs. back-
ground anomaly detection method. The fact that
the Cathode method is nearly saturating it in-
dicates that Cathode is achieving close to opti-
mal performance on the LHCO R&D dataset. Evi-

dently, the background in the SR is being extremely
well modeled by the interpolated conditional den-
sity estimator.

• Finally, we see from Fig. 6 that while Cathode and
the idealized anomaly detector are outperformed
by the supervised classifier at higher signal e�cien-
cies, at lower signal e�ciencies their performances
are all increasingly comparable. The behavior at
high signal e�ciency may be explained by the fact
that there is simply too much background to find
the signal; meanwhile, at low signal e�ciency, the

2

m

a.u.

SB SR SB

x

pdata(x|m 2 SB)
= pbg(x|m 2 SB)

x

pdata(x|m 2 SR)

x

pdata(x|m 2 SB)
= pbg(x|m 2 SB)

FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.
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While powerful, the approach I’ve just described 
has multiple challenges when scaling up.

We also need to benchmark new approaches.

G.  Kasieczka, BN, D. Shih  et al., 2101.08320

Comparing model 
independent approaches is 
difficult, which is why we put 
together the LHC Olympics 

datasets + challenge 
(see also Dark Machines and ADC2021)

https://arxiv.org/abs/2105.14027
https://mpp-hep.github.io/ADC2021/
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It is an exciting time to work on anomaly 
detection for the LHC and beyond!

We will need many 
approaches to achieve 

broad coverage

This is a rapidly 
growing area with lots 
of room for innovation 
(and from physicists!)

See the Living Review for more refs!

http://iml-wg.github.io/hepml-livingreview
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