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Questions in particle physics
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exploration of the fundamental structure of nature

We have performed thousands of hypothesis tests & have no
significant evidence for physics beyond the Standard Model
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Questions in particle physics

Theoretical and experimental guestions motivate a deep
exploration of the fundamental structure of nature

We have performed thousands of hypothesis tests & have no
significant evidence for physics beyond the Standard Model

Three This is what keeps me up at night!
possibilities

(3) We are not looking in the right place




The Path Forward

There are two complementary paths forward:

(1) Identify new, specific, well-motivated places to look

This is still an incredibly important direction and has
resulted in new directions like long-lived particle searches
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The Path Forward

There are two complementary paths forward:

(1) Identify new, specific, well-motivated places to look

This is still an incredibly important direction and has
resulted in new directions like long-lived particle searches

(2) Look in many places all at once

Focus of today's talk!

There is no free lunch: for any particular model, (2) will be
less sensitive than (1). We need both search paradigms!
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Consider just the di-object
search for resonant A = B C

J. Kim, K. Kong, BN, D. Whiteson,
JHEP 04 (2020) 30, 1907.06659
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BSM — SM1 X SM1

di-objec

BSM — SM1 X SM2

...most cases are uncovered!

J. Kim, K. Kong, BN, D. Whiteson,
JHEP 04 (2020) 30, 1907.06659

BSM — complex




Why not just look everywhere?

(a) There are a lot of places to look

(b) You would find a ot of excesses

Best to cast a wide net In a smart way |



Outline: Casting a Wide Net(work)

1. The landscape of model dependence
2. Overview of new ideas
3. Resonant anomaly detection

4. The future (and why you should be part of it!)

Anomaly in this talk means unanticipated new physics (!)



Landscape of Model Dependence

Suppose you want to search for a new signal process
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Suppose you want to search for a new signal process



Landscape of Model Dependence
g

Standard
Model

background model independence

signal model independence signal model independence

Signal sensitivity Background specificity

G. Karagiorgi, G. Kasieczka, S. Kravitz, BN, D. Shih,
Nature Reviews Physics (2022), 2112.03769
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> 99% of searches at
the LHC and elsewhere

are of this type
Most

searches
(“train” with
simulations)

signal model independence
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Some
searches
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versus data)

Most
searches
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Model

signal model independence

Signal sensitivity

e.g. signal
simulation versus
calibration data

standard approach
when signal is clean
and well-understood,

but background is

not, e.g. h = vy



Landscape of Model Dependence

Some
searches
(train signal
versus data)

Most Train data
searches Versus
(“train” with  background
simulations)  simulation
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Landscape of Model Dependence
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For a recent review, see G. Karagiorgi, G. Kasieczka, S. Kravitz,
BN, D. Shih, Nature Reviews Physics (2022), 2112.03769



Overview of New ldeas

| like to categorize new ideas based on the
core assumption about the BSM, which is
intimately related to the technigue supervision

Unsupervised = no labels
Weakly-supervised = noisy labels
Semi-supervised = partial labels
Supervised = full label information

This is most searches. You simulate the signal (label
= 1), simulate the background (label = 0) and “train”
a classifier to distinguish the 1°s from the 0's.



Unsupervised

Unsupervised = no labels

Typically, the goal of these methods is to look
for events with low p(background)

44

o

One strategy (autoencoders) is to try to compress

events and
uncompres(com

then uncompress them. When x =

oress(x)), then x probably has low p(x).

M. Farina, Y. Nakai, D. Shih, 1808.08992; T. Heimel, G.
Kasieczka, T. Plehn, J. Thompson, 1808.08979; + many more



Weakly-supervised

Weakly-supervised = noisy labels

Typically, the goal of these methods is to look for events with
high p(possibly signal-enriched)/o(possibly signal-depleted)

Signal enriched Signal depleted

E. Metodiev, BN, J. Thaler, 1708.02949; J. Collins, K. Howe, BN, 1805.02664; + many more



Semi-supervised

Semi-supervised = partial labels

ypically, these methods use some signal
simulations to build signal sensitivity

VS

Image credit: https://www.particlezoo.net

e.g. SM background
Versus many signals




Overview of New ldeas

Approach:  Unsupervised Weak_ly
supervised
BSM Signal is rare S|g:1al S an
assumption (low p) Ve dens!ty
(high p ratio)
. rare IS not invariant”
Main .
under coordinate need two samples
drawback

transformations!

*for a detailed discussion about this, see K. Desai, BN, J. Thaler, 2112.05722



Overview of New ldeas

: Weakly
A h: .
pproac Unsupervised supervised
BSM Signal is rare g\g?zle'rs];r;
assumption (low p) (high p ratio)

rare IS not Invariant™
under coordinate need tw samples
transformations!

Main
drawback

Cannonical example:
resonances!

*for a detailed discussion about this, see K. Desal, BN, J. Thaler, 2112.05722



Resonant Anomalies

A relatively general, but powerful assumption is that the
anomaly Is localized somewhere In phase space.

0
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e background / noise
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(anomaly)

AW

Mres

Generically true when there are on-shall new particles.



A Worked Example: dijets @ LHC

I'll walk you through a weakly-supervised approach.

background / noise

dN/dMyres

signal
(anomaly)



A Worked Example: dijets @ LHC

I'll walk you through a weakly-supervised approach.

background / noise

/

dN/dMyres

signal
(anomaly)

AW

Mres

First: we will need to generate noisy labels.



A Worked Example: dijets @ LHC
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First: we will need to generate noisy labels.



A Worked Example: dijets @ LHC
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/

Extended
feature space
for machine Mres
learning

(Shown as 1D, but can be many-dimensional)



Example: two-jet search

O —

\mres = mass of
WoO-jet system
|
W, -\
Yy — \ \\ \
| | l k2
/ jet 2

collisions in/out of page X = many features of the two jets




ATLAS Aﬁ
Vs =13 TeV, 139 fb-"

Injected Signal
| ma =3000 GeV

mg =400 GeV
m¢c =80 GeV

= mass of

A first version of this
search has been
performed by ATLAS!
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Collaboration Site | Physics Results

ATLAS ABOUT DISCOVER RESOURCES UPDATES O SEARCH

EXPERIMENT

All News Briefings Features Portraits Press Blog

updates > briefing > Machine learning qualitatively changes the search for new particles

Machine learning qualitatively changes the search for new
particles

machine learning,

analysis 13 May 2020 | By ATLAS Collaboration
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While powerful, the approach I've just described
has multiple challenges when scaling up.



While powerful, the approach I've just described
has multiple challenges when scaling up.

Example Challenge: Decorrelation

The approach doesn’t work if
Mres @Nd X are strongly related.

For instance, consider the extreme
case where mres IS part of x.

Mres

K. Benkendorfer, L. Le Pottier, BN, 2009.02205

A. Hallin et al., 2109.00546

A. Andreassen, BN, D. Shih, PRD 101 (2020) 095004, 2001.05001

See also e.g. J. Raine et al., 2203.09470 BN and D. Shih, PRD 101 (2020) 075042, 2001.04990
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We also need to benchmark new approaches.

The LHC Olympics 2020 Comparing model
" Derection in High Energy Physics iIndependent approaches is

difficult, which is why we put
together the LHC Olympics
datasets + challenge

(see also Dark Machines and ADC2021)

G. Kasieczka, BN, D. Shih et al., 2101.08320


https://arxiv.org/abs/2105.14027
https://mpp-hep.github.io/ADC2021/

It Is an exciting time to work on anomaly
detection for the LHC and beyond!

This is a rapidly
growing area with lots
of room for innovation
(and from physicists!)
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We will need many
approaches to achieve ‘?\.\\‘
broad coverage B

See the Living Review for more refs!



http://iml-wg.github.io/hepml-livingreview







Results with data

Phys. Rev. Lett. 125 (2020) 131801, 2005.02983
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