Vector-Boson Scattering at the LHC – recent theory developments

Barbara Jäger University of Tübingen

2022

The 10th Annual Large Hadron Collider Physics Conference May 16-20, 2022

outline

- precision calculations for VBS processes
- matching to parton showers
- tools
- polarization observables

vector boson scattering: $VV \rightarrow VV$

weak boson and Higgs sector intimately linked

electroweak symmetry breaking: Higgs mechanism gives masses to W^{\pm}, Z (\rightarrow longitudinal modes)

vector-boson scattering processes are extremely sensitive to new interactions in the gauge boson sector

search for new resonances, anomalous (quartic) gauge-boson couplings, ...

vector boson scattering at colliders: $pp \rightarrow VV+2$ jets

make use of unique VBS topology:

 jets in forward regions of detector,
 decay products of weak bosons at central rapidities

experiment: don't observe gauge bosons of the VVjj final state, but their (hadronic or) leptonic decay products

need predictions for final state with 4 leptons and 2 jets

the W^+W^+ channel: $pp
ightarrow \mu^+
u_\mu e^+
u_e jj$ at ${\cal O}(lpha^6)$

Barbara Jäger

"VBS approximation": only t- and u-channel contributions, no s-channel, no $u \cdot t$ interference

typical VBS search region ($m_{jj} > 500$ GeV, $|\Delta y_{jj}| > 2.5$): VBS approximation works well (better than 5%)

Barbara Jäger

the various contributions to the VVjj final state

EW channels:

 $|\mathcal{M}_{
m EW}|^2 \propto lpha^6$

QCD channels:

interference between QCD and EW channels: possible, but suppressed

Barbara Jäger

outline

- precision calculations for VBS processes
- matching to parton showers
- tools
- polarization observables

fixed-order calculations: state of the art

• NLO-QCD corrections to 4 lepton+2 jet final state at $\mathcal{O}(\alpha^6 \alpha_s)$, using the VBS approximation:

Bozzi, Oleari, Zeppenfeld, B. J. (2006-2009) → VBFNLO Denner, Hosekova, Kallweit (2012)

♦ NLO-QCD corrections to 4 lepton+2 jet final state at O($\alpha^4 \alpha_s^3$):
 (QCD-induced production = irreducible background to VBS signal)

Melia, Melnikov, Röntsch, Zanderighi (2010-2011)
Greiner, Heinrich, Mastrolia, Ossola, Reiter, Tramontano (2012)
Campanario, Kerner, Ninh, Zeppenfeld (2013-14) → VBFNLO

NLO-QCD and EW corrections to 4 lepton+2 jet final state:

Biedermann, Dittmaier, Denner, Maierhöfer, Pellen, Schwan (2016-19) Denner, Franken, Pellen, Schmidt (2020-22)

LHC-2 was operating at 13 TeV

→ energy range sensitive to EW effects; EW corrections can reach some 10%

♦ integrated LHC luminosity will reach several 100 fb⁻¹

→ many measurements at few-percent level (= typical size of EW corrections)

planned high-precision measurements:

EW parameters, (anomalous) couplings,... EW corrections are crucial ingredient

Barbara Jäger

origin of large EW corrections to $W^+W^+ \rightarrow W^+W^+$: double and single Sudakov logarithms of the form

$$egin{aligned} \sigma_{ ext{LL}} &= \sigma_{ ext{LO}}igg[1 & -rac{lpha}{4\pi}rac{8}{\sin^2 heta_W} ext{log}^2\left(rac{Q^2}{M_W^2}
ight) \ &+rac{lpha}{4\pi}rac{19}{3\sin^2 heta_W} ext{log}\left(rac{Q^2}{M_W^2}
ight)igg], \end{aligned}$$

... with scale Q characteristic for VBS $\leftrightarrow m_{4\ell}$ at LHC-13: $\langle m_{4\ell}
angle$ of order 390 GeV

[Biedermann, Denner, Pellen (2016)]

Barbara Jäger

first calculation of NLO-EW corrections to same-sign VBS in fully leptonic decay mode $pp
ightarrow \mu^+
u_\mu e^+
u_e jj$

dominant EW corrections of about -16% on fiducial xsec and even more (\sim -30%) in tails of distributions

[Biedermann, Denner, Pellen (2016)]

$pp \rightarrow WZjj$: strong and EW corrections

systematic expansion in strong and electroweak couplings \mathbb{NLO} corrections: $\mathcal{O}(\alpha_s \alpha^6)$ and $\mathcal{O}(\alpha^7)$;

including loop diagrams and real photon or parton emission

very large number of diagrams: computed with the help of automated amplitude generators (OpenLoops and Recola)

[Denner, Dittmaier, Maierhöfer, Pellen, Schwan (2019)]

$pp \rightarrow WZjj$: strong and EW corrections

[Denner, Dittmaier, Maierhöfer, Pellen, Schwan (2019)]

EW corrections larger than QCD corrections, shift xsec by \sim -16%

(compare size of QCD scale uncertainty \$ width of band)

LHCP2022 @ May 2022

$pp \rightarrow WZjj$: strong and EW corrections

[Denner, Dittmaier, Maierhöfer, Pellen, Schwan (2019)]

 $pp
ightarrow W^+W^-jj$

different topologies and production modes

Denner, Franken, Schmidt, Schwan (02/2022)

impact of various contributions depends on selection cuts:

VBS scenario versus Higgs search scenario

$pp ightarrow W^+W^-jj$: impact of contributions at LO

Denner et al. (2022)

order	${\cal O}(lpha^6)$	${\cal O}(lpha_s lpha^5)$	${\cal O}(lpha_s^2 lpha^4)$	${\cal O}(lpha_s^4 lpha^4)$	sum
VBS setup					
$\sigma_{ m LO}[({ m fb})]$	2.6988	0.06491	6.9115	0.1952	9.8704
fraction [%]	27.3	0.7	70.0	2.0	100
Higgs setup					
$\sigma_{ m LO}[({ m fb})]$	1.5322	0.008996	1.6923	0.1057	3.3392
fraction [%]	45.9	0.3	50.7	3.2	100

$pp \rightarrow VVjj$: size of NLO EW corrections

Denner et al. (2022)

process	W^+W^+	W^+Z	ZZ	W^+W^-	W^+W^-
				(VBS setup)	(Higgs setup)
$\sigma^{lpha^6}_{ m LO}[{ m fb}]$	1.4178	0.25511	0.097683	2.6988	1.5322
$\delta^{ ext{EW}} [\%]$	-15.3	-16.0	-15.9	-11.4	-6.7

size of EW corrections depends on channel and cuts

LHCP2022 @ May 2022

outline

- precision calculations for VBS processes
- matching to parton showers
- ♦ tools
- polarization observables

parton shower matching: dedicated implementations

Matching to parton showers for EW production mode:
 Jäger, Karlberg, Scheller, Zanderighi (2011-18) → POWHEG-BOX

Rauch, Plätzer (2016) → HERWIG

★ matching to parton showers for QCD production mode:
 Melia, Nason, Röntsch, Zanderighi (2011) → POWHEG-BOX

matching to EW showers:

Chiesa, Denner, Lang, Pellen (2019) → POWHEG-BOX

parton shower matching: multi-purpose tools

Madgraph5aMC@NLO:

can in principle do NLO-QCD, but is typically used by experiments at LO with factorized on-shell decays of V bosons

Sherpa:

LO for VVjj, but can provide merged samples with up to two extra jets

$pp \rightarrow WZjj$ matched to parton showers at LO

systematic comparison of existing tools matched to parton showers at LO:

 significant discrepancies even for distributions of particles already present at Born level

$pp \rightarrow WZjj$ matched to parton showers at LO

systematic comparison of existing tools matched to parton showers at LO:

- significant discrepancies even for distributions of particles already present at Born level
- up to 100% differences in distributions of 3rd jet, like

$$z=rac{y_{j3}-rac{y_{j1}+y_{j2}}{2}}{|y_{j1}-y_{j2}|}$$

pp ightarrow WZjj matched to parton showers at NLO-QCD

parton-shower settings have little impact on tagging jets; larger differences for non-tagging jets

Barbara Jäger

$pp \rightarrow WZjj$ matched to parton showers at NLO-QCD

parton-shower settings modify rapidity distribution of 3rd jet

LHCP2022 @ May 2022

$pp ightarrow W^+W^+jj$ at NLO-EW matched to a QED shower

matching of NLO EW calculation to QED shower:

 typical Sudakov suppression in tails because of EW corrections

- extra shower radiation: additional decrease
- ✓ implementation available in the POWHEG-BOX

outline

- precision calculations for VBS processes
- matching to parton showers

polarization observables

LO comparison for $pp ightarrow W^+W^+ jj$

VBS-typical cuts:

 $p_{T,\ell} > 20 \text{ GeV}, |y_\ell| < 2.5, \Delta R_{\ell\ell} > 0.3$ $p_{T,miss} > 40 \text{ GeV},$ $p_{T,j} > 30 \text{ GeV}, |y_j| < 4.5, \Delta R_{j\ell} > 0.3$ $m_{jj} > 500 \text{ GeV}, |\Delta y_{jj}| > 2.5$

tuned comparison of existing
tools performed in context of
VBS-COST action
[Ballestrero et al. (2018)]

$\sigma [{ m fb}]$
1.43636 ± 0.00002
1.44092 ± 0.00009
1.43796 ± 0.00005
$1.4374 \ \pm 0.0006$
$1.4381 \ \pm 0.0002$
$1.4304 \ \pm 0.0007$
1.43476 ± 0.00009

NLO-QCD comparison for $pp ightarrow W^+W^+jj$

Barbara Jäger

parton-shower comparison for $pp ightarrow W^+W^+ jj$

differences between various simulations reduced when going from LO+PS to NLO+PS

Barbara Jäger

outline

- precision calculations for VBS processes
- matching to parton showers
- tools
- polarization observables

polarization effects in VV scattering

recall: longitudinal gauge boson modes W_L^{\pm}, Z_L intimately linked to Higgs mechanism

can we isolate longitudinal polarization modes of the gauge bosons in VBS processes?

major obstacle: experimentally accessible process is $pp \rightarrow 4$ fermions + 2 jets, not $VV \rightarrow VV!$

initial state: collider does not provide polarized gauge bosonsfinal state contains contributions from non-resonant diagrams

Barbara Jäger

polarized VV scattering: Monte-Carlo tools

tools featuring (approximate) methods to treat spin correlations and off-shell effects for processes involving weak bosons:

♦ MG5_aMC@NLO:

- \cdot polarized on-shell V bosons (up to NLO+PS) in SM and several BSM models;
- spin-correlated decays in NWA (with MadSpin or via decay chain)

♦ WHIZARD:

polarized on shell V bosons (NWA, cascade decay), within SM or SMEFT

♦ PHANTOM:

generation of polarized V bosons in $2 \to 6$ processes, including all spin correlations and off-shell effects at LO in SM, Higgsless and Singlet Extension

♦ WZDECAY:

generator-independent package for decaying polarized V bosons in NWA

impressive number of experimental results on VBS

... but also status of theoretical work is very advanced:

theorists provide precision calculations and tools:
 NLO QCD, NLO EW, NLO QCD+EW,
 matching to parton showers, ...

new line of investigation: polarization effects in VBS processes

tools are on the market which allow for

simulations at high degree of accuracy

they can only unfold their potential if used

Barbara Jäger

... for your attention

Barbara Jäger