Upgrade of Trackers at LHC

Stefania Maria Beolé on behalf of

2022

The 10th Annual Large Hadron Collider Physics Conference May 16-20, 2022

Charged particle tracker

• GOALS

- Reconstruct charged particles trajectories = "tracks"
- measure position of primary and secondary vertices
- identify particles
- Traditional silicon sensor technologies:
 - microstrips
 - hybrid pixels
 - drift detectors (ALICE only)

All trackers need to be upgraded (sensors replaced) to satisfy HL requirements:

- Peak luminosity: 5-7.5 x 10^{34} cm⁻²s⁻¹
- Collision rates up to 1MHz
- Average pile-up (PU): up to ~200
- Total Ionizing Dose (TID) up to 1 Grad
- Particle fluence up to 2 x 10^{16} n_{eq}cm⁻² in the vertex region
- improved traditional technologies
- new tecnologies for present and future upgrades
 - CMOS sensors
 - 4D sensors

- Challenging requirements:
 - excellent pointing resolution
 - position resolution
 - material budget
 - distance from IP of the first layer
 - high data rates
 - radiation tolerant

LHC Experiments upgrades program

intermediate upgrade

ATLAS ITk

hybrid pixels

microstrip

- Goal: maintain/improve RUN2 tracking performance ٠
- Challenges: •
 - Peak luminosity: 5-7.5 x 10^{34} cm⁻²s⁻¹ $\rightarrow \sim \times$ 5-7
 - Average pile-up (PU): up to $\sim 200 \rightarrow \sim \times 5$
- ٠ Layout
 - Factor of 2.7 larger than current ATLAS ID
 - coverage up to 4 η with at least 9 space point per track
 - 4 strip and 5 pixel (flat + inclined) barrel layers
 - 2x6 strip disks and a novel pixel ring structure

- New Pixel system ٠
 - ~13 m² of active area (~9200 modules) 5.1 Giga-pixels
 - Impact parameter resolution improved by finer segmented inner pixel • layer (25×100 μm²) and reduction of material
 - The two innermost pixel layers are replaceable (mitigate radiation • damage)
- New Strip system
 - ~165 m² of silicon (**17888 modules**) ~60 Mega-channels

Technical Design Report for the ATLAS Inner Tracker Pixel Detector https://cds.cern.ch/record/2285585

ATLAS: focus on pixel sensors and chips

- Sensors with 50×50 μm² pixels in 3D (100μm thick) and planar (150 μm thick) technologies (25×100 μm² 3D inner barrel layer)
 - Pre-production 3D sensors in hand (67% yield)
 - Pre-production planar sensors order finalized and first sensors in hand
- ITkPixV1 pixel FE chip: Joint ATLAS-CMS effort (RD53) using TSMC 65 nm
 - Radiation hard > 500 Mrad (10¹⁶ n_{eq}cm⁻²)
 - Single Event Effects (SEE) hardened
 - Trigger rate: 1 MHz
 - High hit rate: 3 GHz/cm²
 - Improved shuntLDO design for serial powering
 - Data format including compression
 - Average chip yield of 75%
- Several RD53A and first ITkPixV1 electrical modules assembled and under-test

https://rd53.web.cern.ch/

400 pixels / 20 mm

S.Beolé – LHCP 2022

ATLAS: tracker performance

- achieve similar performance (slightly improved) in the central barrel (pile-up = 140-200) + coverage extended up to $|\eta|{<}4$
 - Track selection: 2 GeV muons
 - Transverse impact parameter (d_0) <100 μ m
 - Relative p_T resolution <10%

CMS: inner + outer tracker

Technology:

- hybrid pixels
- microstrip

- Goals: maintain/improve RUN2 tracking performance
- Change in running conditions for LHC to HL-LHC
 - Pileup increasing from 25 to ~200
 - Hit rate from 0.58 to 3.2 GHz/cm²
- Requirements:
 - Smaller pixels to reduce occupancy
 - Lower detection threshold to allow two track separation
 - Reduced material budget
 - Increased radiation-hardness

Layout:

- Inner Tracker (IT) replaces silicon pixel detector
- Outer Tracker (OT) replaces silicon strip tracker
- Inner Tracker:
 - 4 barrel layers, 8 small disks, 4 large discs per side
 - Pixel size options: 50 x 50 μm^2 , 25 x 100 μm^2
 - n in p type Si sensors + 65 nm C-ROC developed in CMOS 65nm technology within the CERN RD53 project
- Outer Tracker:
 - 6 barrel layers, 5 discs per side
 - 9.5 million channels, 44M strips + 174M macropixels

TDR: The Phase-2 Upgrade of the CMS Tracker https://cds.cern.ch/record/2272264

CMS: focus on outer tracker (strips+macro pixels)

- Upgraded CMS outer tracker to be segmented into three regions and **two module types**
- PS module = pixel-strip module, composed of a strip sensor and a macro-pixel sensor on top of each other
- 2S module = 2 layers of strip sensors

 p_T module = module intrinsically capable to identify particles above a chosen p_T value.

- Exploits p_T dependent bending of tracks in B
- Select tracks with p_T > 2 GeV

- Electrically, the basic building block is the module
 - no common service boards
- Each module is connected directly to the back-end

CMS tracker performance

track selection: single muons with $p_T = 10 \text{ GeV}$

- Transverse momentum resolution significantly improved
- Transverse impact parameter resolution improved:
 - ranging from below 10 μm in the central region to about 20 μm at the edge of the acceptance

LHCb: upgrade I

- Increase in luminosity by factor 5, to = 2×10^{33} cm⁻² s⁻¹
- Transform entire detector to 40 MHz readout

VELO: 52 hybrid pixel modules (more in next slides)

Technology:

hybrid pixels

microstrip

- Situated between VELO and dipole magnet
- 4 planes of Si microstrip detectors: ~1000 sensors
- improved performance wrt TT:
 - coverage, radiation hardness, 40 MHz readout, improved granularity, less material
- 4192 ASICs with 128 channels each:
 - 130 nm-TSMC with 30 MRad radiation tolerance

LHCb Tracker Upgrade Technical Design Report <u>https://cds.cern.ch/record/1647400</u> LHCb VELO Upgrade Technical Design Report <u>https://cds.cern.ch/record/1624070</u>

LHCb upgrade I: focus on VELO

- GOAL: improve impact parameter resolution
- Challenges:
 - Vertex detector surrounding collision region
 - In vacuum
 - Close to the beam: 5.1 mm
 - Radiation Hardness:
 - $8 \times 10^{15} n_{eq}/cm^2$
 - non-uniform ~ $r^{-2.1}$
 - Readout: triggerless at 40MHz
 - Data rates: up to 20 Gbit/s for central ASICs (~ 3 Tbit/s in total)
- TECHNOLOGY CHOICE: HYBRID PIXELS

Hybrid Pixels instead of **strips**: better performance for impact parameter resolution and efficiency (red dots)

rows of silicon microstrip modules

rows of silicon hybrid pixel modules

LHCb: VELO Upgrade layout

LAYOUT:

- Four hybrid pixel sensors (active area 0.12 m²) per double sided module.
- Sensor:
 - p-type, 8.10¹⁵ 1 MeV n_{eq}/cm² lifetime fluence
 - area 43 x 15 mm
 - 768.256 pixels, each 55.55 μm^2
- VeloPix ASICs:
 - Derived from Timepix3 (TSMC 130 nm CMOS)
 - 624 ASICs, ~41 Mpixels thinned to 200 μm
 - Trigger-less, data driven readout (~2.9 Tbits/s)
 - Radiation hardness to 400 MRad
 - SEU/SEL tolerance

Cooling:

- Solution provided evaporative CO2 in 120 μm x 200 μm channels in silicon substrate. Total thickness: 500 μm

Foil:

- The VELO is separated from the primary vacuum by the 1.1 m long thin walled "RF foil"
- final thickness of 250 μm
- at just 3.5 mm from the beam and 900 μm from the sensors

LHCb upgrade II

- Likely machine parameters for Phase II upgrade:
 - Pileup ~ 42, L_{max} =1.5 x 10³⁴ cm⁻² s⁻¹
- Goal: same quality performance as Upgrade I with
 - 10 x higher particle multiplicity, radiation damage, data-out rates, denser primary vertex environment
- New detectors:
 - new VELO (precision timing)
 - new Upstream Tracker (timing)
 - Mighty Tracker (SciFi + silicon)
 - Magnet stations (possibly) \rightarrow p_T below 5 GeV/c
- Move towards 4D tracker concept with addition of timing:
 - Timing information will contribute to Pattern Recognition
 - Track time stamping for PV association, PV timing
- Sensor: R&D thin planar, LGAD, 3D concepts, MAPS (with timing?)
- ASIC: 28nm, based on Timepix4, 20-50 ps time resolution

neworl

ALICE2 UPGRADE: ITS + MFT

Inner Tracking System

GOALS:

- improve pointing resolution
 - reduced material
 - closer to IP (39mm -> 22mm)
 - better spatial resolution (-> $5x5\mu m^2$)
- faster readout (1->100kHz)

Detector layout

- Inner Barrel: 3 layers, 48 staves
- Outer Barrel: 4 layers, 144 staves In total ~24000 chips = 12.5 Gpixels ~10m² of silicon pixel sensors

Muon Forward Tracker

GOALS:

add capabilities for secondary vertex measurement at forward rapidity

Detector layout

- upstream of the absorber
- 10 half-disks, 2 detection planes each
- 280 ladders of 25 sensors each: 920 chips (0.4 m²)

ITS Inner and outer barrels + MFT disk 0 during installation

S.Beolé – LHCP 2022

ITS TDR: J. Phys. G: Nucl. Part. Phys. 41 (2014) 087002 MFT: CERN-LHCC-2015-001. ALICE-TDR-018 https://cds.cern.ch/record/1981898

ALICE

ALPIDE: CMOS monolithic active pixel sensor

CMOS Pixel Sensor – Tower Semiconductor 180nm CMOS Imaging Sensor (CIS) Process

- Deep PWELL shields NWELL of PMOS transistors (full CMOS circuitry within pixel active area)
- R&D effort within the ALICE collaboration
 - excellent collaboration with foundry
 - more than 70k produced and tested (for ALICE and other applications)
 - ALICE ITS pioneers large area trackers built of MAPS (see ALICE 3)
- in parallel studies to optimise process to reach full depletion and improve time response and radiation hardness up to 10¹⁵ 1MeV/n_{eq} : - More details: NIM A871 (2017) https://doi.org/10.1016/j.nima.2017.07.046

 - Now being further pursued: MALTA, CLICpix, FastPix, ...

ALPIDE Key Features

- In-pixel: Amplification, Discrimination, multi event buffer
- In-matrix zero suppression: priority encoding
- Ultra-low power < 40mW/cm² (< 140mW full chip)
- Detection efficiency > 99%
- Spatial resolution ~5μm
- Low fake-hit rate: << 10⁻⁶/pixel/event (10⁻⁸/pixel/event measured during) commissioning)
- Radiation tolerance:
 - 270 krad total ionising dose (TID),
 - > 1.7 10^{13} 1MeV/n_{eg} non-ionising energy loss (NIEL)

ALICE 2.1: ITS3 all silicon detector

ITS2 Layer 0: X/X0=0.35

ITS3 only silicon: X/X0=0.05

- Goal: improve vertexing at high rate
- Layout: 3 layers, replace ITS Inner Barrel,
 - beam pipe: smaller inner radius (18.2 mm to 16 mm) and reduced thickness (800μm to 500μm)
 - innermost layer: mounted around the beam pipe, radius 18mm (was 23mm)
- Technology choices:

-

- 65 nm CIS of Tower & Partners Semiconductor (TPSCo):
 - larger wafers: 300 mm instead of 200 mm,
 - single "chip" equips an ITS3 half-layer (through stitching technology)
 - 6 sensors in total
- thinned down to 20-40μm
 - -> flexible
 - bent to target radii
- mechanically held by carbon foam ribs with low density and high thermal conductivity

Letter of Intent for an ALICE ITS Upgrade in LS3 https://cds.cern.ch/record/2703140

ALICE 2.1: ITS3 R&D first results

Bending: tests on bent ALPIDE

- > 99.9% efficiency at threshold of 100 e⁻ (nominal operating point of ALPIDE)
- Proving that bent MAPS are operable and perform well
- 1st paper published: <u>https://doi.org/10.1016/j.nima.2021.166280</u>
- Technology: First chip submission in 65 nm TPSCo process
 - First design and submission of 65 nm technology, MLR1, in collaboration with CERN EP R&D:
 - transistor test structures, DACs, analog pixel matrices, digital pixel matrices, ...)
 - First wafers were received in summer 2021
 - Laboratory characterisation and yest-beam campaigns started and ongoing
 - Many Institutes and groups involved
 - first results on DPTS (preliminary):
 - Efficiency: >99%
 - Time resolution: O(10ns)
 - Radiation hardness: OK for ALICE
 - Spatial resolution: O(3-4 μm)
- Stitching: ER1 submission in summer 2022
 - Stitched prototypes to develop stitching know-how
 - Focus on power distribution, signal routing, yield

charge collection/sharing

ALICE 3: tracker + vertex detector

GOALS:

- Tracking and PID over large acceptance
- Excellent vertexing
- Continuous readout

REQUIREMENTS

- Tracker: low power, large surface 60 m² (challenges: yield, fill factor)
 - Monolithic CMOS sensors with timing (4D tracking)
- Vertex detector: very close to IP (challenges: high rate, high radiation load)
 - Retractable detector (iris tracker) $R_{in} \approx 5 \text{ mm}$
 - Wafer-scale monolithic CMOS sensors

S.Beolé – LHCP 2022

[CERN-LHCC-2022-009] LHCC review of Letter of Intent: very positive evaluation

• Conceptual study of iris tracker

- wafer-sized, bent MAPS (leveraging on ITS3 activities)
- rotary petals (thin Be walls) for secondary vacuum
- match beampipe parameters (impedance, aperture, ...)
- feed-throughs for power, cooling, data

• **R&D programme** on mechanics, cooling, radiation tolerance

Conclusions

ATLAS EXPERIMENT

Present achievements:

- Amazing progress in hybrid technologies:
 - Rad Hard sensors and ASICS (up to >500Mrad)
 - fast readout (up to 1MHz)
- CMOS pixel detectors used to build a full tracking system
 - low material budget (down to 0.1% X0)
 - reasonable cost for large areas
- Massive R&D campaigns for all components
- Synergies among experiments

Future goals:

- Wafer scale, rad hard, fast response MAPS
- timing information in hybrid and MAPS to build 4D trackers

Event display of a PbPb collision (emulated in ALICE ITS)

BACK UP SLIDES

HL-LHC Upgrade schedule

- Peak luminosity: 5-7.5 x 10^{34} cm⁻²s⁻¹ $\rightarrow \sim \times$ 5-7
- Average pile-up (PU): up to $\sim 200 \rightarrow \sim \times 5$
- Integrated luminosity: 4000 fb⁻¹ $\rightarrow \sim \times 10$

- Particle multiplicity
 - About 10 times more track density
 - Needs better tracking granularity
- Radiation damage
 - Radiation dose becomes critical closer to the beam line
 - Total Ionizing Dose (TID) up to 1 Grad
 - Particle fluence up to $2 \times 10^{16} n_{eq} \text{cm}^{-2}$ in the vertex region (x 20)

ATLAS: strip sensors and chips

STRIPS - 8 sensor geometries:

- 2 for the barrel, 6 for the end-caps
- 320 μ m thick n-in-p silicon
- 75.5 μm strip pitch barrel
- From 70 to 80 μm pitch in the petals
- Bias voltage: -100 V to -500 V

Three chips all made in 130 nm technology

- ABCStar (Front End (FE) chip)
 - Binary readout: 256 channels
 - High yield in pre-production, 92%, some concerns on SRAM corners tests
- HCCStar (FE Interface Chip)
 - Controller chip on hybrid
 - Interface between ABCStar chips and off-detector
- AMACStar (Power control and environment monitoring)
 - Monitoring and control chip on Powerboard

All three chips were extensively modified to improve SEE protection

- Tested in heavy-ions and protons with excellent performance
- Pre-production ABCStar with triplication enabled had no measured Single Event Upset (SEU)

CMS: inner tracker (pixels)

- 50 μm ×50 μm 25 μm ×100 μm
- n in p type Si sensors of 150 μm thickness
 - segmented into pixel sizes of 25 x 100 μm^2 or 50 x 50 μm^2 for better resolution
 - 1 x 2 modules (with 2 chips) in inner 2 layers and inner 2 rings.
 - 2 x 2 modules (with 4 chips) in outer 2 layers and outer 2 and 3 rings
 - 65 nm C-ROC developed in CMOS 65nm technology within the CERN RD53 project

RD53B on single-chip test card

- Increased granularity (x6 smaller pixels, 2500 μm²)
 - Hybrid technology. Total active surface of ~4.9 m² 3892 modules 2G pixels
- Increased detection coverage ($|\eta| \le 4$)
- Reduced material budget (CF mechanics, serial powering, CO2)
- Lower detection threshold (new readout chip)
- Simple installation and removal

CMS outer tracker: 2S & PS modules

• Electrically, the basic building block is the module

• no common service boards

• Each 2S module contain

- Front-end hybrids (FEH): readout and concentrator ASICs
- Service hybrids (SEH): power and opt. comm.
- AICF-bridges: high thermal conductivity and similar CTE as silicon
- HV isolation and HV connection

- Each PS module contain
 - Front-end hybrids (FEH): readout and concentrator ASICs
 - Power Hybrid (POH): power connections
 - Readout hybrid (ROH): data serialisation + Opto-el. conversion
- Each module is connected with 3 wires and 2 fibers directly to the back-end

CMS Tracker performance

TRACKING EFFICIENCY AND FAKE RATE

TRANSVERSE MOMENTUM AND IMPACT PARAMETER RESOLUTION

- The tracking efficiency is around 90% in the central region, dropping off at $|\eta|>3.8$
- Fake rate is < 2% in the entire range of η for 140 pileup events (< 3% for PU=200).
- track selection: $p_T > 0.9 \text{ GeV/c}$, $|d_0| < 3.5 \text{ cm}$

Better hit resolution of the Phase-2 tracker and the reduction of the material budget results in:

- Transverse momentum resolution significantly improved
- transverse impact parameter resolution improved: ranging from below 10 μm in the central region to about 20 μm at the edge of the acceptance
- track selection: single muons with $p_T = 10 \text{ GeV}$

ATLAS ITk tracking performance

Tracking efficiency at 200 pileup (5x compared to Run-2)

- Similar performance to Run-2 in the barrel
- Improved efficiency (over 85%) at high- η
- Improved fake rate even considering the increased in pile-up

26

LHCb: VELO Upgrade cooling and ASICs

Cooling:

- Solution provided by the novel technique of evaporative CO2 circulating in 120 μm x 200 μm channels within a silicon substrate. Total thickness: 500 μm
 - High thermal efficiency
 - CTE match to silicon components
 - Minimum and uniform material
 - radiation hard

Foil:

- The VELO is separated from the primary vacuum by the 1.1 m long thin walled "RF foil"
- At just 3.5 mm from the beam and 900 μm from the sensors
- The final foil
 - withstands 10 mbar pressure variations,
 - leak tight
 - final thickness of 250 μm

Main channel: 120 x 200 µm²

