Future e+e- and Hadron Colliders

J. Gao

IHEP

LHCP Conference, May 16, 2022

Contents

Introduction

- Electron-positron linear colliders: ILC, CLIC, C3
- Electron-positron circular colliders and hadron colliders: CEPC+SppC, FCCee+FCChh
- ICFA Statement regarding Higgs Factory development and the ILC
- Conclusions

Physics goals of e+e- and hadron colliders

• Electron-positron colliders (91, 160, 240, 360-380, 550, 3000GeV)

- Higgs Factory (>10⁶ Higgs) :
 - Precision study of Higgs(m_H, J^{PC}, couplings), Similar & complementary to e+e- Linear colliders
 - Looking for hints of new physics, DM...
- Z & W factory (>10¹² Z⁰):
 - precision test of SM
 - Rare decays ?
- Flavor factory: b, c, t and QCD studies
- Proton-proton collider(~100 TeV)
 - Directly search for new physics beyond SM
 - Precision test of SM
 - e.g., h³ & h⁴ couplings

$$\begin{split} \vec{\mathcal{L}} &= -\frac{1}{4} \left(2 \overrightarrow{A}_{\nu} - 2 \overrightarrow{A}_{\nu} + 9 \overrightarrow{A}_{\nu} * \overrightarrow{A}_{\nu} \right)^{2} - \frac{1}{4} \left(2 \overrightarrow{B}_{\nu} - 2 \overrightarrow{B}_{\nu} \right)^{2} \\ &- \overrightarrow{R} \gamma^{\mu} \left(2 - i \gamma^{2} \overrightarrow{B}_{\nu} \right) \overrightarrow{R} \quad - \overrightarrow{L} \gamma^{\mu} \left(2 - i \gamma \overrightarrow{F}_{\nu} - \frac{1}{2} \gamma^{2} \overrightarrow{B}_{\nu} \right) \overrightarrow{L} \\ &- \frac{1}{2} \left| 2 \overrightarrow{\rho} \overrightarrow{\rho} - i \gamma \overrightarrow{A}_{\nu} \cdot \overrightarrow{E} \overrightarrow{\rho} + \frac{1}{2} \gamma^{2} \overrightarrow{B}_{\nu} \overrightarrow{\rho} \right|^{2} \\ &- G_{e} \left(\overrightarrow{L} \overrightarrow{\rho} \cdot \overrightarrow{R} + \overrightarrow{R} \overrightarrow{\rho}^{\dagger} \overrightarrow{L} \right) - M_{1}^{2} \left(\gamma^{\dagger} \overrightarrow{\rho} \right) + h \left((\gamma^{\dagger} \overrightarrow{\rho})^{2} \right) \end{split}$$

Have a better and deeper understanding of the fundamental laws of Universe as a whole

Precision measurement + searches: Complementary with each other !

Future circular lepton factories based on proven concepts and techniques from past colliders and light sources

combining successful ingredients of several recent colliders → highest luminosities & energies

Evolution of the energy frontier (hadron)

Proposals of future e+e- and hadron colliders ILC,CLIC, C3, CEPC-SppC: FCC(ee,hh):

250GeV ILC

7

ILC machine parameters

	ilc
Í	international development team

ILC Luminosity Scenario (ECM=250GeV)

ILC	electron/positron	ILC250	Ţ
Beam Energy	GeV	125 (e-) and 125 (e+)	CV mo
Peak Luminosity (10^34)	cm-2 s-1	1.35	FOVO
Int. Luminosity	ab-1/yr	0.24* * 5,000-hour operation at peak luminosity	51 [51
Beam dE/E at IP		0.188% (e-), 0.150% (e+)	
Transv. Beam sizes at IP x/y	nm	515/7.66	
Rms bunch length /	cm	0.03 (σ _z)	
beta*	mm	bx*=13mm, by*=0.41mm	
Crossing angle	mrad	14	ъΓ
Rep./Rev. frequency	Hz	5	1
Bunch spacing	ns	554	
Bunch population		2x10 ¹⁰	
# of bunches		1,312	
Length/Circumference	km	20.5	
Facility site power	MW	111	
Cost (value) range	\$B US	~5 (tunnel and accelerator)	
Timescale till operations	years	(~1) + 4(prep.) + 9(construction)	

Shinichiro Michizono

ILC potential for upgrades

:Ir international development team

The ILC can be upgraded to higher energy and luminosity.

Shinichiro Michizono

			Z-Po	Z-Pole [4]		Higgs [2,5]		500GeV [1*]		TeV [1*]	
			Baseline	Lum. Up	Baseline	Lum, Up	L Up.10Hz	Baseline	Lum, Up	case B	
Center-of-Mass Energy	E _{CM}	GeV	91.2	91.2	250	250	250	500	500	1000	Energy
Beam Energy	E _{beam}	GeV	45.6	45.6	125	125	125	250	250	500	
Collision rate	f _{col}	Hz	3.7	3.7	5	5	10	5	5	4	
Pluse interval in electron main linac		ms	135	135	200	200	100	200	200	200	
Number of bunches	n _b		1312	2625	1312	2625	2625	1312	2625	2450	
Bunch population	N	10 ¹⁰	2	2	2	2	2	2	2	1.737	
Bunch separation	Δt_b	ns	554	554	554	366	366	554	366	366	
Beam current		mA	5.79	5.79	5.79	8.75	8.75	5.79	8.75	7.60	
Average beam power at IP (2 beams)	PB	MW	1.42	2.84	5.26	10.5	21.0	10.5	21.0	27.3	
RMS bunch length at ML & IP	σz	mm	0.41	0.41	0.30	0.30	0.30	0.30	0.30	0.225	
Emittance at IP (x)	γe [*] ×	μm	6.2	6.2	5.0	5.0	5.0	10.0	10.0	10.0	
Emittance at IP (y)	γe [*] y	nm	48.5	48.5	35.0	35.0	35.0	35.0	35.0	30.0	
Beam size at IP (x)	σ^*_{\times}	μm	1.118	1.118	0.515	0.515	0.515	0.474	0.474	0.335	
Beam size at IP (y)	$\sigma^*_{\scriptscriptstyle { m V}}$	nm	14.56	14.56	7.66	7.66	7.66	5.86	5.86	2.66	
_uminosity	L	$10^{34}/cm^2/s$	0.205	0.410	1.35	2.70	5.40	1.79	3.60	5.11	Lumi.
Luminosity enhancement factor	HD		2.16	2.16	2.55	2.55	2.55	2.38	2.39	1.93	
Luminosity at top 1%	$L_{0.01}/L$	%	99.0	99.0	74	74	74	58	58	45	
Number of beamstrahlung photons	n _g		0.841	0.841	1.91	1.91	1.91	1.82	1.82	2.05	
Beamstrahlung energy loss	δΒS	%	0.157	0.157	2.62	2.62	2.62	4.5	4.5	10.5	
AC power [6]	Psite	MW			111	138	198	173	215	300	
Site length	Lsite	km	20.5	20.5	20.5	20.5	20.5	31	31	40	

Technical preparation

international development team

IDT-WG2 summarized the technical preparation as work packages (WPs) in the technical preparation document.

Shinichiro Michizono

1MILCU=1M\$(2012)

ILC construction/operation cost

ILC accelerator (including tunnel) construction cost is ~5 B\$. Shinichiro Michizono

	TDR: ILC500 [B ILCU] (Estimated by GDE)	ILC250 [B ILCU] [*] (Estimated by LCC)	Conversion to: [B JPY] (Reported to MEXT/SCJ)
Accelerator Construction: sum	n/a	n/a	635.0 ~ 702.8
Value: sub-sum	7.98	4.78 ~ 5.26	515.2 ~ 583.0
Tunnel & building Accelerator & utility	1.46 6.52	1.01 3.77 ~ 4.24	111.0 ~ 129.0 404.2 ~ 454.0
Labor: Human Resource	22.9 M person-hours (13.5 K person-years)	17.2 M person-hours (10.1 K person-years)	119.8
Detector Construction: sum	n/a	n/a	100.5
Value: Detectors (SiD+ILD)	0.315+0.392	0.315+0.392	76.6
Labor: Human Resource (SiD + ILD)	748+1,400 person-years	748+1,400 person-years	23.9
Operation/year (Acc.) : sum	n/a	n/a	36.6 ~ 39.2
Value: Utilities/Maintenance	0.390	0.290 ~ 0.316	29.0 ~ 31.6
Labor: Human Resource	850 FTE	638 FTE	7.6
Others (Acc. Preparation)	n/a	n/a	23.3
Uncertainty	25%	25%	25%
Contingency	10%	10%	10%
Decommission	n/a	n/a	Equiv. to 2-year op. cost

16/05/2022 J. Gao

*1 ILCU= 1 US\$ in 2012 prices

11

ILC timeline

Now we are at pre-preparation phase (waiting for the preparation phase). Four years preparation (@ILC Pre-Lab) and ~10 years construction (@ ILC Lab.).

	2022															
	IDT		ILC P	re-Lat)						ILC	Lab.				
	PP	P1	P2	P3	P4	1	2	3	4	5	6	7	8	9	10	Phys. Exp.
Preparation CE/Utility, Survey, Design Acc. Industrialization prep.																
Construction																
Civil Eng.																
Building, Utilities																
Acc. Systems																
Installation																
Commissioning																
Physics Exp.																

2022

IDT

ILC International Development Team

Executive Board

Americas LiaisonAndrew Lankford (UC Irvine)Working Group 2 ChairShinichiro Michizono (KEK)Working Group 3 ChairHitoshi Murayama (UC Berkeley/U. Tokyo)Executive Board Chair and Working Group 1 ChairTatsuya Nakada (EPFL)KEK LiaisonYasuhiro Okada (KEK)Europe LiaisonSteinar Stapnes (CERN)Asia-Pacific LiaisonGeoffrey Taylor (U. Melbourne)

Working Group 1
Pre-Lab SetupWorking Group 2
AcceleratorWorking Group 3
Physics & Detectors

The Compact Linear Collider (CLIC)

12 GHz (L~25 cm)

- **Timeline**: Electron-positron linear collider at CERN for the era beyond HL-LHC
- **Compact:** Novel and unique two-beam accelerating technique with high-gradient room temperature RF cavities (~20'500 structures at 380 GeV), ~11km in its initial phase
- Expandable: Staged programme with collision energies from 380 GeV (Higgs/top) up to 3 TeV (Energy Frontier)
- CDR in 2012 with focus on 3 TeV. Updated project overview documents in 2018 (Project Implementation Plan) with focus 380 GeV for Higgs and top.
- Cost: 5.9 BCHF for 380 GeV (stable wrt 2012)
- **Power:** 110 MW at 380 GeV corresponding to ~50% of CERN's energy consumption today
- Comprehensive Detector and Physics studies

Snowmass (https://arxiv.org/abs/2203.09186)

CLIC / Stapnes

Steinar Stapnes

CLIC parameters

Parameter Unit Stage 2 Stage 3 Stage 1 Centre-of-mass energy GeV380 15003000 Repetition frequency Hz5050 50 Nb. of bunches per train 352312312**Bunch** separation 0.50.50.5ns Pulse length 244244244 ns Accelerating gradient MV/m 72/10072/10072 $1{\times}10^{34}\,{\rm cm}^{-2}\,{\rm s}^{-1}$ 3.7 5.9 Total luminosity 2.3 $1 \times 10^{34} \, \mathrm{cm}^{-2} \, \mathrm{s}^{-1}$ Lum. above 99 % of \sqrt{s} 1.31.4 2 fb^{-1} Total int. lum. per year 276708 444 50.1Main linac tunnel length km 11.4 29.0Nb. of particles per bunch 1×10^{9} 5.23.73.744 44 Bunch length 70 um IP beam size $\sim 60/1.5$ 149/2.0 $\sim 40/1$ nmFinal RMS energy spread % 0.350.350.3520 Crossing angle (at IP) mrad 16.520

 Table 1.1: Key parameters of the CLIC energy stages.

Steinar Stapnes

CLIC is a mature design/study

Steinar Stapnes

The CLIC accelerator studies are mature:

Optimised design for cost and power

Many tests in CTF3, FELs, lightsources and test-stands

Technical developments of "all" key elements

Cost-I

Steinar Stapnes

M achine has been re-costed bottom -up in 2017-18

- Methods and costings validated at review on 7 November 2018 -sim ilar to LHC, ILC, CLIC CDR
- Technicaluncertainty and commercialuncertainty estimated

Domain	Sub Domain	Cost [M	CHF]
Domain	Sub-Domain	Drive-Beam	Klystror
	Injectors	175	175
Main Beam Production	Damping Rings	309	309
	Beam Transport	409	409
	Injectors	584	_
Drive Beam Production	Frequency Multiplication	379	
	Beam Transport	76	—
M The M. L.L.	Main Linac Modules	1329	895
Main Linac Modules	Post decelerators	37	—
Main Linac RF	Main Linac Xband RF		2788
Beer Deliner and	Beam Delivery Systems	52	52
Beam Delivery and	Final focus, Exp. Area	22	22
Post Collision Lines	Post-collision lines/dumps	47	47
Civil Engineering	Civil Engineering	1300	1479
	Electrical distribution	243	243
Infrastructures and Comisses	Survey and Alignment	194	147
infrastructure and Services	Cooling and ventilation	443	410
	Transport / installation	38	36
	Safety system	72	114
Machine Control, Protection	Machine Control Infrastructure	146	131
and Safety systems	Machine Protection	14	8
	Access Safety & Control System	23	23
Total (rounded)		5890	7290

 \rightarrow CLIC 380 GeV Drive-Beam based:

 \rightarrow CLIC 380 GeV Klystron based:

5.89Billion CHF

7.29Billion CHF

 5890^{+1470}_{-1270} MCHF;

 7290^{+1800}_{-1540} MCHF.

CLIC power and energy

Fig. 4.8: Breakdown of power consumption between different domains of the CLIC accelerator in MW at a centre-of-mass energy of 380 GeV. The contributions add up to a total of 110 MW. (image credit: CLIC)

Table 4.2: Estimated power consumption of CLIC at the three centre-of-mass energy stages and for different operation modes. The 380 GeV numbers are for the drive-beam option and have been updated as described in Section 4.4, whereas the estimates for the higher energy stages are from [57].

Collision energy [GeV]	Running [MW]	Standby [MW]	Off [MW]
380	110	25	9
1500	364	38	13
3000	589	46	17

Steinar Stapnes

The CLIC project

O. Brunner^a, P. N. Burrows^b, S. Calatroni^a, N. Catalan Lasheras^a, R. Corsini^a, G. D'Auria^c, S. Doebert^a, A. Faus-Golfe^d, A. Grudiev^a, A. Latina^a, T. Lefevre^a, G. Mcmonagle^a, J. Osborne^a, Y. Papaphilippou^a, A. Robson^e, C. Rossi^a, R. Ruber^f, D. Schulte^a, S. Stapnes^a; I. Syratchev^a, W. Wuensch^a

^aCERN, Geneva, Switzerland, ^bJohn Adams Institute, University of Oxford, United Kingdom, ^cElettra Sincrotrone Trieste, Italy, ^dIJCLab, Orsay, France, ^eUniversity of Glasgow, United Kingdom, ^fUppsala University, Sweden

April 4, 2022

Abstract

The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e^+e^- collider under development by the CLIC accelerator collaboration, hosted by CERN. The CLIC accelerator has been optimised for three energy stages at centre-of-mass energies 380 GeV, 1.5 TeV and 3 TeV [21]. CLIC uses a novel two-beam acceleration technique, with normal-conducting accelerating structures operating in the range of 70 MV/m to 100 MV/m.

The report describes recent achievements in accelerator design, technology development, system tests and beam tests. Large-scale CLIC-specific beam tests have taken place, for example, at the CLIC Test Facility CTF3 at CERN [39], at the Accelerator Test Facility ATF2 at KEK [53, 67], at the FACET facility at SLAC [35] and at the FERMI facility in Trieste [36]. Crucial experience also emanates from the expanding field of Free Electron Laser (FEL) linaces and recent-generation light sources. Together, they demonstrate that all implications of the CLIC design parameters are well understood and reproducible in beam tests and prove that the CLIC performance goals are realistic. An alternative CLIC scenario for the first stage, where the accelerating structures are powered by X-band klystrons, is also under study. The implementation of CLIC near CERN has been investigated. Focusing on a staged approach starting at 380 GeV, this includes civil engineering aspects, electrical networks, cooling and ventilation, installation scheduling, transport, and safety aspects. All CLIC studies have put emphasis on optimising cost and energy efficiency, and the resulting power and cost estimates are reported. The report follows very closely the accelerator project description in the CLIC Summary Report for the European Particle Physics Strategy update 2018-19 [22].

Detailed studies of the physics potential and detector for CLIC, and R&D on detector technologies, have been carried out by the CLIC detector and physics (CLICdp) collaboration. CLIC provides excellent sensitivity to Beyond Standard Model physics, through direct searches and via a broad set of precision measurements of Standard Model processes, particularly in the Higgs and top-quark sectors. The physics potential at the three energy stages has been explored in detail [2, 3, 17] and presented in submissions to the European Strategy Update process.

> Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

Submitted to Snowmass21 (https://arxiv.org/abs/2203.09186)

CLIC CE, timeline and schedules

Project Readiness Report as a step toward a TDR – for next ESPP Assuming ESPP in 2026, Project Approval ~ 2028, Project (tunnel) construction can start in ~ 2030.

The CLIC study is mature: (<u>https://arxiv.org/abs/2203.09186</u>)

Accelerator Complex

- 8 km footprint for 250/550 GeV CoM > 70/120 MeV/m
 - 7 km footprint at 155 MeV/m for 550 GeV CoM present Fermilab site
- Large portions of accelerator complex are compatible between LC technologies
 - Beam delivery and IP modified from ILC (1.5 km for 550 GeV CoM)
 - Damping rings and injectors to be optimized with CLIC as baseline
 - Costing studies use LC estimates as inputs

Emilio Nanni

C3 linear collider table of parameters

Collider	NLC[28]	CLIC[29]	ILC[5]	C^3	C^3
CM Energy [GeV]	500	380	250 (500)	250	550
$\sigma_z \; [\mu { m m}]$	150	70	300	100	100
$eta_x \mathrm{[mm]}$	10	8.0	8.0	12	12
$eta_y [{ m mm}]$	0.2	0.1	0.41	0.12	0.12
$\epsilon_x \; [ext{nm-rad}]$	4000	900	500	900	900
$\epsilon_y \; [\text{nm-rad}]$	110	20	35	20	20
Num. Bunches per Train	90	352	1312	133	75
Train Rep. Rate [Hz]	180	50	5	120	120
Bunch Spacing [ns]	1.4	0.5	369	5.26	3.5
Bunch Charge [nC]	1.36	0.83	3.2	1	1
Beam Power [MW]	5.5	2.8	2.63	2	2.45
Crossing Angle [rad]	0.020	0.0165	0.014	0.014	0.014
Crab Angle	0.020/2	0.0165/2	0.014/2	0.014/2	0.014/2
Luminosity $[x10^{34}]$	0.6	1.5	1.35	1.3	2.4
	(w/ IP dil.)	$(\max is 4)$			
Gradient [MeV/m]	37	72	31.5	70	120
Effective Gradient [MeV/m]	29	57	21	63	108
Shunt Impedance $[M\Omega/m]$	98	95		300	300
Effective Shunt Impedance $[M\Omega/m]$	50	39		300	300
Site Power [MW]	121	168	125	$\sim \! 150$	~ 175
Length [km]	23.8	11.4	20.5(31)	8	8
L^* [m]	2	6	4.1	4.3	4.3

Emilio Nanni

-SLAC

C3 linear collider power consumption

For the initial construction of the Main Linac, each of the cryomodules is powered by four RF sources (modulator and klystron), see Fig. 4. The sources operate at 5.712 GHz and deliver 65 MW for every 2 meters of structure. The power is split in a hybrid and transported to each accelerating structure. The klystron design will be based on advances developed through the High Efficiency International Klystron Activity (HEIKA) collaboration. This includes the implementation of the core oscillation method to retrofit exisiting 50 MW designs to boost power and efficiency [40]. Demonstrations of this design from commercial prototypes at X-band are expected in 2022.

Parameter	Unit	Value	Value
Center of Mass Energy	GeV	250	550
Temperature	K	~ 80	~ 80
Pulse Length	ns	700	250
Cryogenic Load ~ 80 K	MW	9	9
Est. RF Power (Both Linacs)	MW	40	58
Est. Power for Cryogenic Cooling (Both Linacs)	MW	60	60
Total Est. Power (Both Linacs)	MW	100	118
RF Source efficiency (AC line to linac)	%	65	65

Table 5: Main Linac power parameters for C^3 at 250 GeV and 550 GeV center of mass energy

Emilio Nanni

Costing Studies for C³ (\$=CHF=ILCU)

- Ongoing development of a cost model for C3 -> following other LC formats
 - Capital Costs M&S/Construction External vendors \$
 - FTE Lab Labor
- Using CLIC-k vs ILC Inputs for C³ 250 CoM 60 MeV/m gradient cost difference for M&S vs. Construction was 1.3% (ILC Inputs Cheaper)
 - · Main difference ILC itemizes conventional facilities CLIC-k lumps them together
- Use a hybrid-model built from ILC, CLIC-k and vendor estimates
 - · Use itemized ILC conventional facilities for scaling of cost per meter for the main linac
- C³ costs are ~35% sources, ~35% main linac, ~15% IP, ~15% supporting infrastructure
 - Unique position for LC cost not dominated by the main linac improvements to the full complex can have a significant effect
- Working estimate for Capital Costs 3.5-4B\$ (10% RF margin, 10 GeV energy margin, 250 GeV CoM)
- Labor CLIC-k and ILC quote similar #s 1.8-1.9FTE/M\$
 - Need to assess the validity of this for C³
- Reached the limit of cost scaling need to evaluate C³ specific subsystems of accelerator complex

Emilio Nanni

-SL/

$C^3 - \sqrt{s} = 250 - 550 \text{ GeV} - Potential Coordinates}$

16/05/2022 J. Gao

LHCP Conference, May 16, 2022

Timeline for C³ 250/550

 Technically limited timeline following community engagement through the full Snowmass process to define the parameters of the C³ proposal

Emilio Nanni

SLAC

CEPC TDR layout

£ CEPC as a Higgs Factory : H, W, Z, upgradable to tt-bar, followed by a SppC ~125TeV **30MW SR power per beam (upgradale to 50MW)** H/tt-bar **Off-axis injection Off-axis injection** H Mode Outer Ring Outer Ring **Positron Ring Electron Ring** W and Z Inner Ring Inner Ring CEPC MDI W & Z Mode Outer Ring Outer Ring TUNNEL CROSS SECTION OF THE ARC AREA Inner Ring Inner Ring **RF** station **Injection energy 20GeV** CEPC Outside of the ring RF RF Booster Linac **On-axis injection On-axis injection** CEPC booster ring (100km) CEPC collider ring (100km) **CEPC Civil Engineering CEPC TDR S+C-band 20GeV linac injector** ESBS: Electron source & bunching system PSPAS: Positron source & pre-accelerating section FAS: First accelerating section Second accelerating section SAS: EBTL: Electron bypass transport line TAS: Third accelerating section DR: EBTL Damping ring PSPAS SAS TAS FAS 11 50MeV 1.1GeV 4GeV 200MeV 1.1GeV 1.1GeV 20GeV 335.5m 17.7m 102.4m 250.2m 67.6m 777.1m 350.6m 1215m

Z [mm]

Inside of the rind

CEPC TDR parameters

	Higgs	W	Z	ttbar			
Number of IPs		2					
Circumference [km]		100.	0				
SR power per beam [MW]		30					
Half crossing angle at IP [mrad]		16.5	5				
Bending radius [km]		10.7	7				
Energy [GeV]	120	80	45.5	180			
Energy loss per turn [GeV]	1.8	0.357	0.037	9.1			
Piwinski angle	5.94	6.08	24.68	1.21			
Bunch number	249	1297	11951	35			
Bunch spacing [ns]	636	257	23 (10% gap)	4524			
Bunch population [10 ¹⁰]	14	13.5	14	20			
Beam current [mA]	16.7	84.1	803.5	3.3			
Momentum compaction [10 ⁻⁵]	0.71	1.43	1.43	0.71			
Phase advance of arc FODOs [degree]	90	60	60	90			
Beta functions at IP (bx/by) [m/mm]	0.33/1	0.21/1	0.13/0.9	1.04/2.7			
Emittance (ex/ey) [nm/pm]	0.64/1.3	0.87/1.7	0.27/1.4	1.4/4.7			
Beam size at IP (sx/sy) [um/nm]	15/36	13/42	6/35	39/113			
Bunch length (SR/total) [mm]	2.3/3.9	2.5/4.9	2.5/8.7	2.2/2.9			
Energy spread (SR/total) [%]	0.10/0.17	0.07/0.14	0.04/0.13	0.15/0.20			
Energy acceptance (DA/RF) [%]	1.7/2.2	1.2/2.5	1.3/1.7	2.3/2.6			
Beam-beam parameters (xx/xy)	0.015/0.11	0.012/0.113	0.004/0.127	0.071/0.1			
RF voltage [GV]	2.2 (2cell)	0.7 (2cell)	0.12 (1cell)	10 (5cell)			
RF frequency [MHz]		650)				
Beam lifetime [min]	20	55	80	18			
Luminosity per IP[10 ³⁴ /cm ² /s]	5.0	16.0	115.0	0.5			

Dou Wang

CEPC Accelerator white paper to Snowss21 arXiv:2203.09451

The AC power is 270MW

CEPC TDR parameters (upgrade)

				tthar	
	Higgs	W	Z	ttbal	Dou wang
Number of IPs			2		
Circumference [km]			100.0		This parameter table
SR power per beam [MW]			50		is used by US
Half crossing angle at IP [mrad]			16.5		Snowmass21
Bending radius [km]			10.7		for CEDC physics
Energy [GeV]	120	80	45.5	180	Tor CEPC physics
Energy loss per turn [GeV]	1.8	0.357	0.037	9.1	performance potential
Piwinski angle	5.94	6.08	24.68	1.21	evaluation
Bunch number	415	2162	19918	58	
Bunch spacing [ns]	385	154	15(10% gap)	2640	CEPC Accelerator white
Bunch population [10 ¹⁰]	14	13.5	14	20	
Beam current [mA]	27.8	140.2	1339.2	5.5	paper to Snowss21
Momentum compaction [10 ⁻⁵]	0.71	1.43	1.43	0.71	arXiv:2203.09451
Phase advance of arc FODOs [degree]	90	60	60	90	
Beta functions at IP (bx/by) [m/mm]	0.33/1	0.21/1	0.13/0.9	1.04/2.7	
Emittance (ex/ey) [nm/pm]	0.64/1.3	0.87/1.7	0.27/1.4	1.4/4.7	
Beam size at IP (sx/sy) [um/nm]	15/36	13/42	6/35	39/113	The AC power is
Bunch length (SR/total) [mm]	2.3/3.9	2.5/4.9	2.5/8.7	2.2/2.9	350MW
Energy spread (SR/total) [%]	0.10/0.17	0.07/0.14	0.04/0.13	0.15/0.20	
Energy acceptance (DA/RF) [%]	1.7/2.2	1.2/2.5	1.3/1.7	2.3/2.6	
Beam-beam parameters (xx/xy)	0.015/0.11	0.012/0.113	0.004/0.127	0.071/0.1	
RF voltage [GV]	2.2 (2cell)	0.7 (2cell)	0.12 (1cell)	10 (5cell)	
RF frequency [MHz]			650		
Beam lifetime [min]	20	55	80	18	
Luminosity per IP[10 ³⁴ /cm ² /s]	8.3	26.6	191.7	0.8	

CEPC collider ring IR for all energies

(Higgs, W, Z and tt-bar)

For the interaction region, the IP beta functions are refitted with the different combination of Yiwei Wang final doulets and the matching quadruples.

	QD	QF
Z	Q1A	Q1B
W/H	Q1A+Q1B	Q2
ttbar	Q1A+Q1B+Q2	add quad Q3A and Q3B

Higgs: L*=1.9m, LQ1A=1.22m, LQ1B=1.22m, LQ2=1.5m, d=0.3m, GQ1A=142T/m, GQ1B=96T/m, GQ2=56T/m

CEPC collider ring TDR lattice dynamic apertures with errors for Higgs energy

Yiwei Wang

CEPC CDR power consumption cost estimate as a Higgs Factory

CEPC CDR Cost Breakdwon

	Contorn for Illings	Location and electrical demand(MW)							
	(30MW)	Ring	Booster	LINAC	BTL	IR	Surface building	(MW)	
1	RF Power Source	103.8	0.15	5.8				109.75	
2	Cryogenic System	11.62	0.68			1.72		14.02	
3	Vacuum System	9.784	3.792	0.646				14.222	
4	Magnet Power Supplies	47.21	11.62	1.75	1.06	0.26		61.9	
5	Instrumentation	0.9	0.6	0.2				1.7	
6	Radiation Protection	0.25		0.1				0.35	
7	Control System	1	0.6	0.2	0.005	0.005		1.81	
8	Experimental devices					4		4	
9	Utilities	31.79	3.53	1.38	0.63	1.2		38.53	
10	General services	7.2		0.2	0.15	0.2	12	19.75	
	Total	213.554	20.972	10.276	1.845	7.385	12	266.032	

266MW

The total cost of CEPC~35Billion RMB~5Billion US\$ (Accelerator+2 Detectors+Civil+Contigence)

CEPC TDR parameters (upgrade)

	Higgs	w	Z	ttbar	Dou Wang
Number of IPs			2		
Circumference [km]		This parameter table			
SR power per beam [MW]			is used by US		
Half crossing angle at IP [mrad]	Snowmass21				
Bending radius [km]					
Energy [GeV]	120	80	45.5	180	Tor CEPC physics
Energy loss per turn [GeV]	1.8	0.357	0.037	9.1	performance potential
Piwinski angle	5.94	6.08	24.68	1.21	evaluation
Bunch number	415	2162	19918	58	
Bunch spacing [ns]	385	154	15(10% gap)	2640	CEPC Accolorator white
Bunch population [10 ¹⁰]	14	13.5	14	20	
Beam current [mA]	27.8	140.2	1339.2	5.5	paper to Snowss21
Momentum compaction [10 ⁻⁵]	0.71	1.43	1.43	0.71	arXiv:2203.09451
Phase advance of arc FODOs [degree]	90	60	60	90	
Beta functions at IP (bx/by) [m/mm]	0.33/1	0.21/1	0.13/0.9	1.04/2.7	
Emittance (ex/ey) [nm/pm]	0.64/1.3	0.87/1.7	0.27/1.4	1.4/4.7	
Beam size at IP (sx/sy) [um/nm]	15/36	13/42	6/35	39/113	The AC power is
Bunch length (SR/total) [mm]	2.3/3.9	2.5/4.9	2.5/8.7	2.2/2.9	350MW
Energy spread (SR/total) [%]	0.10/0.17	0.07/0.14	0.04/0.13	0.15/0.20	
Energy acceptance (DA/RF) [%]	1.7/2.2	1.2/2.5	1.3/1.7	2.3/2.6	
Beam-beam parameters (xx/xy)	0.015/0.11	0.012/0.113	0.004/0.127	0.071/0.1	
RF voltage [GV]	2.2 (2cell)	0.7 (2cell)	0.12 (1cell)	10 (5cell)	
RF frequency [MHz]			650		
Beam lifetime [min]	20	55	80	18	
Luminosity per IP[10 ³⁴ /cm ² /s]	8.3	26.6	191.7	0.8	

CEPC TDR R&D of key technologies

CEPC CDR-Higgs

Peak Luminosity = 3×10^{34} cm⁻²s⁻¹

Ingetrated Luminosity = 5.6 ab^{-1}

Higgs annual luminosity =0.8 ab⁻¹

CEPC CDR Vol. I, Accelerator

IHEP-CEPC-DR-2018-01 IHEP-AC-2018-01

CEPC Conceptual Design Report

Volume I - Accelerator

The CEPC Study Group August 2018

CEPC TDR-Higgs

Peak Luminosity = 5×10^{34} cm⁻²s⁻¹

Ingetrated Luminosity = 9.3 ab^{-1}

Higgs annual luminosity =1.3 ab⁻¹

CEPC Accelerator Snowmass 21 AF White Paper

1) CEPC Accelerator white paper to Snowmass21, arXiv:2203.09451

2) CEPC CDR Vol. I, Accelerator ,http://cepc.ihep.ac.cn/CEPC_CDR_Vol1_Accelerator.pdf

3) CEPC CDR Vol. II, Physics and Detector, http://cepc.ihep.ac.cn/CEPC_CDR_Vol2_Physics-Detector.pdf

CEPC TDR-Higgs (upgrade)

Peak Luminosity = 8.3× 10³⁴cm⁻²s⁻¹

Ingetrated Luminosity = 15.4 ab⁻¹

Higgs annual luminosity =2.2 ab⁻¹

These parameters are used for Snowmass21

CEPC CDR Vol. II, Physics/Detector

IHEP-CEPC-DR-2018-02 IHEP-EP-2018-02 IHEP-TH-2018-02

CEPC Conceptual Design Report

Volume II - Physics & Detector

The CEPC Study Group October 2018

SppC Collider Accelerator Physics -Parameter list (updated Feb. 2022)

Jingyu Tang Haocheng Xu

Main parameters			Normalized rms transverse emittance	1.2	um
Circumference	100	km	Beam life time due to burn-off	81	hour
Beam energy	62.5	TeV	Turnaround time	23	hour
Lorentz gamma	66631		Total cycle time	10.4	hour
Dipole field	20.00	Т	Total / inelastic cross section	161	mbarn
Dipole curvature radius	10415.4	m	Deduction feature lawin asity	0.91	moarm
Arc filling factor	0.780		Reduction factor in luminosity	0.81	1100
Total dipole magnet length	65442.0	m	Full crossing angle	73	µrad
Arc length	83900	m	rms bunch length	60	mm
Total straight section length	16100	m	rms IP spot size	3.0	μm
Energy gain factor in collider rings	19.53		Beta at the 1st parasitic encounter	28.625	m
Injection energy	3.20	TeV	rms spot size at the 1st parasitic encoun	22.7	μm
Number of IPs	2		Stored energy per beam	4.0	GJ
Revolution frequency	3.00	kHz	SR power per ring	2.2	MW
Revolution period	333.3	μs	SR heat load at arc per aperture	26.3	W/m
Physics performance and beam paran	ieters		Critical photon energy	8.4	keV
Initial luminosity per IP	4.3E+34	$cm^{-2}s^{-1}$	Energy loss per turn	11.40	MeV
Beta function at initial collision	0.5	m	Damping partition number	1	
Circulating beam current	0.19	A	Damping partition number	1	
Nominal beam-beam tune shift limit per	0.015		Damping partition number	2	
Bunch separation	25	ns	Transverse emittance damning time	0.51	hour
Bunch filling factor	0.756		Longitudinal emittance damping time	0.25	hour
Number of bunches	10080		Longitudinal emittance damping time	0.23	noui
Bunch population	4.0E+10				
A second start and starts a second second	100114				

16/05/2022 J. Gao Accumulated particles per beam

-- -

4.0E+14HCP Conference, May 16, 2022

SppC lattice design

Lattice of SPPC ring, IP and collimator • section ╢╌║╌╌╌╢╌║┼┼╌┾╟╢╢║║ SPPC RING COLL ß B đ Luot-. 2 5 B (m). 1400. - 2.0 B (m), B (m) - 1.5 1200. -1.0 1000. -- 0.5 12. - 0.0 800. 10. - 1.0 -0.5 -10 600. - 0.5

• Dynamic Aperture Optimization

Haocheng Xu

Yiwei Wang

2.5

2.0

1.5

1.0

0.5

0.0

-1.0

High field SC dipoles R&D with HTS for SppC

Scientific merit

-Even high collision energy is expected with the CEPC tunnel : SppC -Energy is proportional to the dipole field

 $E[GeV] = 0.3 \times B[T] \times \rho[m]$

HTS Magnet is the only measure for ultra high field ($12 \sim 24$ T), IBS has a bright prospect.

Thousands of HTS magnet are needed for SPPC or FCC

37 CEPC-SPPC tunnel

Latest performance of LPF1-U (SppC)

Qingjin Xu

Picture of LPF1-U

Dual aperture superconducting dipole achieves 12.47 T at 4.2 K Entirely fabricated in China. The next step is reaching 16-19T field

Development of CCT dipole magnets for HL-LHC by IHEP

- The first set of CCT superconducting magnets MCBRD01 with satisfactory field strength and field quality, has been shipped to Europe in October, 2021.
- The assembly of the 2nd set of HL-LHC CCT superconducting magnets has been finished in Jan, 2022, and now the magnet is tested at IMP
- Fabrication of a full size prototype magnet MCBRDP2 was completed in May, 2020. Both apertures reached the ultimate current.

Qingjin Xu

CEPC Project Timeline

16/05/2022 J. Gao

Perspective for accelerator TDR and EDR plans

• CEPC Accelerator TDR completion time: Dec. 2022

-Consistent TDR high luminosity parameter design as Higgs factory
 -Key components with prototyping, techincal feasibility demonstrated, no technical show stopper
 -Design and R&D technical documentation (Data, drawings, etc.)
 -CEPC accelerator TDR document release in 2023

• CEPC Accelerator EDR Phase Plan:Jan. 2023-Dec. 2025

-CEPC site study converging to one or two with detailed feasibility studies (tunnel and infrastructures, environment)

-Engineering design of CEPC accelerator systems and components towards fabrication in an industrial way -Site dependent civil engineering design implementation preparation

-EDR document completed for government's approval of starting construction around 2026 (the starting of the "15th five year plan")

CEPC Video (BIM design)

- 1) http://cepc.ihep.ac.cn/Qinhuang_Island.mp4
- 2) http://cepc.ihep.ac.cn/Huzhou.mp4
- 3) http://cepc.ihep.ac.cn/Changsha.mp4

FCC-ee collider parameters (stage 1) K. Oide

Parameter [4 IPs, 91.2 km,T _{rev} =0.3 ms]	Z	WW	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1400	135	26.7	5.0
number bunches/beam	8800	1120	336	42
bunch intensity [10 ¹¹]	2.76	2.29	1.51	2.26
SR energy loss / turn [GeV]	0.0391	0.37	1.869	10.0
total RF voltage 400/800 MHz [GV]	0.120/0	1.0/0	2.48/0	4.0/7.67
long. damping time [turns]	1170	216	64.5	18.5
horizontal beta* [m]	0.15	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horizontal geometric emittance [nm]	0.71	2.17	0.64	1.49
vertical geom. emittance [pm]	1.42	4.34	1.29	2.98
horizontal rms IP spot size [µm]	10	21	14	39
vertical rms IP spot size [nm]	34	66	36	69
beam-beam parameter ξ_x / ξ_y	0.004/ .159	0.011/0.111	0.0187/0.129	0.096/0.138
rms bunch length with SR / BS [mm]	4.32 / 15.2	3.55 / <mark>7.02</mark>	2.5 / <mark>4.45</mark>	1.67 / <mark>2.54</mark>
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	181	17.3	7.2	1.25
total integrated luminosity / year [ab-1/yr]	86	8	3.4	0.6
beam lifetime rad Bhabha / BS [min]	19 / ?	^{6, 2022} 20 / ?	10 / 19	12 / 46

FUTURE CIRCULAR COLLIDER

16/05/2022 J.

Frank Zimmermann

Cost estimate from FCCee CDR (2018)

Total construction cost: ~10,500 MCHF (for Z, W and H working points)

Cost estimates for the accelerators (collider and injector complex) and technical infrastructure are based on machine and system inventories. Cost estimate for civil engineering is based on an analysis of construction methods for underground and surface structures, the associated material quantities and unit prices, derived from several recent large-scale tunnel and civil engineering projects in Central Europe. Precision of the overall cost estimate is at $\pm 30\%$ level.

Frank Zimmermann

Operation at the $t\bar{t}$ working point will require later installation of additional RF cavities and associated cryogenic cooling infrastructure with a corresponding total cost of 1,100 MCHF.

Changes that might affect cost: fewer surface sites $(12 \rightarrow 8)$, reduced size of experimental caverns, perhaps 4 instead of 2 exp.'s, ... 16/05/2022 J. Gao LHCP Conference, May 16, 2022

CIRCULAR FCC-hh (pp) collider parameters (stage 2)							
parameter	FCC	-hh	HE-LHC	HL-LHC	LHC		
collision energy cms [TeV]	10	00	27	14	14	Frank	
dipole field [T]	17 (16 c.f.)		16 8.33	8.33			
circumference [km]	91.	17	26.7 26.7	26.7	26.7]	
beam current [A]	0.	5	1.1	1.1	0.58	1	
bunch intensity [10 ¹¹]	1	1	2.2	2.2	1.15	1	
bunch spacing [ns]	25	25	25	25	25]	
synchr. rad. power / ring [kW]	2700		100	7.3	3.6		
SR power / length [W/m/ap.]	32.1		4.6	0.33	0.17		
long. emit. damping time [h]	0.4	45	1.8	12.9	12.9	1	
beta* [m]	1.1	0.3	0.45	0.15 (min.)	0.55]	
normalized emittance [mm]	2.	2	2.5	2.5	3.75	1	
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	16	5 (lev.)	1]	
integr. luminosity / yr [fb-1/yr]	≥ 250	≥ 1000	500	≥ 300	55]	
events/bunch crossing	170	1000	460	132	27		
average turnaround time [h]	5	4	5	4	5]	
optimum run time [h]	11.6	3.7	5.3	13 - 18	10		
stored energy/beam [GJ]	7.	8	1.4	0.7	0.36	44	

Total construction cost FCC-ee (Z, W, H) amounts to 10,500 MCHF & 1,100 MCHF (tt).

Total construction cost for subsequent FCC-hh amounts to 17,000 MCHF.

(FCC-hh stand alone cost would be 25 BCHF); cost target 2 MCHF/ dipole magnet

HE-LHC cost estimate

Total construction cost HE-LHC amounts to 7,200 MCHF (of which 1,1 MCHF for injector); cost target 2.3 MCHF / dipole magnet

CIRCULAR FCC"low risk" placement & layout (2021)

Frank Zimmermann

Double ring pp and heavy-ion collider

Common footprint with FCC-ee, except near IPs

Main experiments in PA & PG, secondary experiments in PD & PJ

Extraction & β collimation in PB & PF (2.16 km each); 400 MHz RF in PL as for FCC-ee, momentum collimation in PH

Injection tunnel shared with FCC-ee; hadron injection may require transfer lines LHCP Conference in Mcofficer tunnel from PA till PL and PB\$6

Timeline of FCC integrated programme

	√s	L /IP (cm ⁻² s ⁻¹)	Int. L /IP(ab ⁻¹)	Comments
e⁺e⁻ FCC-ee	~90 GeV Z 160 WW	230 x10 ³⁴ 28	75 5	2-4 experiments
	240 H ~365 top	8.5 1.5	2.5 0.8	Total ~ 15 years of operation
рр FCC-hh	100 TeV	5 x 10 ³⁴ 30	20-30	2+2 experiments Total ~ 25 years of operation
PbPb FCC-hh	√ <u>s_{NN}</u> = 39TeV	3 x 10 ²⁹	100 nb ⁻¹ /run	1 run = 1 month operation
<mark>ep</mark> Fcc-eh	3.5 TeV	1.5 10 ³⁴	2 ab ⁻¹	60 GeV e- from ERL Concurrent operation with pp for ~ 20 years
e-Pb Fcc-eh	√s _{eN} = 2.2 TeV	0.5 10 ³⁴	1 fb ⁻¹	60 GeV e- from ERL Concurrent operation with PbPb

Realistic timeline matched to HL-LHC:
Feasibility Study: 2021-2025
If project approved before end of decade → construction can start beginning 2030s
FCC-ee operation ~2045-2060
FCC-hh operation 2070-2090++

F. Gianotti

ICFA Statement Regarding Higgs Factory Development and the ILC

https://icfa.hep.net/wp-content/uploads/ICFA_Statement_April2022_Final.pdf

ICFA Statement Regarding Higgs Factory Development and the ILC

The International Committee for Future Accelerators (ICFA) recently met to review global progress and plans in high-energy physics. ICFA reconfirms the international consensus on the importance of a Higgs Factory as the highest priority for realizing the scientific goals of particle physics. This view has only strengthened over time based on results from the world's particle physics facilities. Various design studies based on different technologies are in progress, including both circular colliders (FCC-ee and CEPC) and linear colliders (ILC and CLIC). ICFA follows with great attention the development of Higgs Factory proposals worldwide and recognizes the importance of advancing such concepts.

ICFA also reaffirms the importance of the regional planning activities that have recently been completed and those underway, which for decades have underpinned the global strategy for the field. Indeed, following the 2020 update to the European Strategy for Particle Physics, Europe is now undertaking a feasibility study for FCC. ICFA eagerly awaits the results of ongoing strategic planning activities in the U.S., China and elsewhere.

Concerning the International Linear Collider (ILC), ICFA reaffirms its position that the concept for the ILC is technically robust and has reached a level of maturity which supports its moving forward with the engineering design study toward its timely realization. Indeed, recent accelerator projects across the globe confirm the readiness of the foundational superconducting accelerator technology.

ICFA commits to continuing efforts within the International Development Team (IDT) over the next year to coordinate the global research community's activities toward further developing and realizing the ILC in Japan. In particular, the IDT will work to further strengthen international collaboration among institutes and laboratories, and to expand the broad support from various stakeholders. ICFA will monitor developments over the next year to assess availability of resources and progress in international discussions.

ICFA continues to encourage inter-governmental discussion between Japan and potential partner nations to advance international collaboration toward important research and development activities as well as coordination toward realization of an ILC.

Various design studies based on different technologies are in progress, including both circular colliders (FCC-ee and CEPC) and linear colliders (ILC and CLIC). ICFA follows with great attention the development of Higgs Factory proposals worldwide and recognizes the importance of advancing such concepts.

Conclusions

- The discovery of Higgs boson in on July 4, 2012 on LHC at CERN marks the most important milestone for the human being in understanding the fundamental laws of Universe
- Electron positron Higgs factories are the most demanded near term colliders for precision studies and discoveries both within and beyond SM
- Proton proton colliders as long term projects permit our exploring new energy frontiers
- Ambisious proposals from Asia (ILC, CEPC-SppC), Europe (CLIC, FCCee,hh) and America (C3...) have demonstrated their strong willingness and abilities towards future
- We will have a fruitful future in providing new kowledges and technologies for the good of the world with extensive collaborations

Acknowledgements

Thanks go to Shinichiro Michizono, Steinar Stapnes, Emilio Nanni, Frank Zimmermann, Jingyu Tang, Xingjin Xu, Haocheng Xu and CEPC team colleagues for their providing information during preparation of this presentation.