

2022

LHCP

Higgs decays to 3rd generation fermions

Soumya Mukherjee TIFR, Mumbai (India) On behalf of ATLAS & CMS collaboration 17th May, 2022

10th Edition of the Large Hadron Collider Physics Conference

Introduction

- ☐ Higgs boson properties (mass, production rates, spins)
 - → predominantly constrained from the **bosonic couplings**
- ☐ H couplings with fermions: Hff ~ Yukawa couplings in Standard model

(SM): $y_f \propto m_f$

 \rightarrow 3rd generation fermions (τ or b-quarks) offer a unique opportunity to probe y_f , due to large branching fractions.

■ Main experimental challenges

- i) Degradation of the mass resolution due to neutrinos in leptonic τ decays and B Hadron decays
- ii) Quark or gluon jets are the sources of τ_h mis-identification.
- iii) Significant **QCD multijet backgrounds** for H \rightarrow bb/ $\tau_{\rm h}\tau_{\rm h}$
- Ample use of machine-learning(ML) based algorithms make these decay modes feasible by both ATLAS & CMS experiments.

$H \rightarrow \tau \tau$

Measurements of Higgs boson decays to **τ**-lepton final states from CMS

CMS

- \rightarrow H \rightarrow $\tau\tau$ deacy allows direct coupling of Higgs to fundamental fermions
- \rightarrow Neural network based DEEPTAU algorithm used to identify τ_h
- → All 4 dominant production modes included ggF, VBF, VH & ttH
- → Results interpreted in the common Simplified Template Cross Section (STXS) version 1.2

arXiv: 2204.12957 Submitted to EPJC

→ H→ WW decay modes also used as signal, increased sensitivity in $e\mu$ final state. → CB analysis is less precise but close to the SM value

Measurements of Higgs boson decays to **τ**-lepton final states from CMS

CMS

Interpretation of results in STXS - framework

arXiv: 2204.12957 Submitted to EPJC

- → Neural network (NN) based analysis is more sensitive than the cut based (CB) one
- → NN targets → best possible separation of individual STXS bins and backgrounds at a same time
 - → Constraining power depends on the individual separations among the categories

Measurements of Higgs boson decays to **τ**-lepton final states from ATLAS

- → All major production modes included : ggF, VBF, VH and ttH
- \rightarrow Hadronic tau decay (τ_k) identified by a Recurrent Neural

Network (RNN) based algorithm

arXiv:2201.08269 Submitted to JHEP

 $p p \rightarrow H \rightarrow \tau \tau$ cross-section is measured to be $2.94 \pm 0.21(stat)$ + 0.37 - 0.32(syst) pb

→Differential cross section, measured in a reduced set of bins in **STXS** stage-1.2 framework

→ Corresponding uncertainty is about 20% for the most precise bin

H → bb

Run: 280950 Event: 2059211291 2015-10-04 07:25:29 CEST CMS Experiment at the LHC, CERN
Data recorded: 2017-Oct-24 05:30:27.213248 GMT
Run / Event / LS: 305518 / 207815469 / 107

Inclusive boosted Higgs production and decay to bb from CMS

- Suitable to measure Hbb Yukawa coupling (y_b)
- High end p^H_T can resolve loop-induced contributions to the ggH process from new particles on.
- H is reconstructed using a large radius AK8 (jet radius 0.8) jets.

Jet soft drop mass (m_{sp}) used to extract signal

Significant reduction of tt background

Obs. (exp.) signal significance: **2.5 (0.7)** σ Observed Signal strength: $\mu = 3.7^{+1.2}_{-1.2} \text{ (stat)} + 0.6_{-0.7} \text{ (syst)} + 0.8_{-0.5} \text{ (theo)}$

Inclusive boosted Higgs production and decay to bb from ATLAS

- H is reconstructed by a large radius jets.
- ☐ Events contained two fat jets
- At least one should have the two B- hadron decays, used for Higgs candidate reconstruction

Phys. Rev. D 105, 092003

Signal strengths in the inclusive region. Rates for QCD, Z+Jets, tt processes float freely

Result	μ_H	μ_Z	$\mu_{tar{t}}$
		1.00 ± 0.17 1.29 ± 0.22	

Jet mass used to extract signal

STXS Signal strengths in differential signal region

First cross section measurement of $p_T^H > 1000$ GeV from ATLAS $\sigma(p_T^H > 1 \text{ TeV}) = 2.3 \pm 3.9 \text{ (stat.)} \pm 1.3 \text{ (syst.)} \pm 0.5 \text{ (theo)}$ fb

Higgs boson decay into b-quarks in VH production (VH \rightarrow bb) from ATLAS

(Resolved analysis)

Analysis Overview

Eur. Phys. J. C 81 (2021) 178

- \rightarrow Tagged by leptonic decay of vector boson (W or Z)
- \rightarrow Energy/momentum correction applied on the b-jet to improve mbb resolution

Corrections applied on b-jet scale & resolution, and m_{bb} spectrum

MVA Output scores used to extract signal

with the Standard Model expectations \rightarrow Relative uncertainty is ~30% in high p^V₁ bins

→ Measured cross-section consistent

 \rightarrow Observed (expected) signal significance WH : **4.0 (4.1) std. dev.**

 \rightarrow Observed (expected) signal significance ZH : **5.3 (5.1) std. dev.**

Observed signal strength μ : 1.02 $^{+0.18}$

Higgs boson decay into **b**-quarks in VH production (VH \rightarrow bb) from ATLAS

Phys. Lett. B 816 (2021) 136204

Analysis Overview

(Boosted analysis)

- \rightarrow Tagged by leptonic decay of vector boson (W or Z)
- \rightarrow Targets the high p_T Higgs regime (> 250 GeV)

 \rightarrow Observed (expected) signal significance : **2.1 (2.7) std. Dev.**

Cross section measured w.rt p_T^V

In Different analysis categories

Observed signal strength μ : $0.72^{0.39}_{-0.36}$

Higgs boson decay into **b**-quarks in associated production with a top-quark pair

$(ttH \rightarrow bb)$ from ATLAS

Analysis Overview

- → Targets semileptonic and di-leptonic decay of tt pair
- \rightarrow Results extracted for both boosted & non-boosted of Higgs p_T

arXiv:2111.06712 Submitted to JHEP

Inclusive

g 7000000

Observed μ lower than SM predicted value

Observed (expected) signal significance : 1.0 (2.7) std. dev.

Higgs boson decay into **b**-quarks in associated production with a top-quark pair

arXiv:2111.06712 Submitted to JHEP

In STXS p^H_T categories

Upper limit on cross section @95% CL In the STXS p^H_T categories

Summary

- → From **Run-I** to **Run-II** we benefited in terms of **CoM energy** and **total data volume** and moved from **evidence to precision measurements in the Higgs sector**.
- → Higgs decays to **3rd generation fermions** have been studied by **ATLAS & CMS** collaborations.
- → These are important inputs to the global measurements of Higgs properties.
- → **Differential measurements** provide more sensitivities towards individual production modes.
 - All the analyses target STXS (v-1.2) common framework.
- → Till now, good agreement of measurements with SM predictions.
- → Run-II data analysis is not yet over, more results to come soon.
- \rightarrow More precise physics interpretation will come in the upcoming Run-3 \rightarrow Stay tuned!

Backup

(ttH \rightarrow bb) using 2016 + 2017 Data from CMS

CNS

Analysis Overview

- → Targets all possible decay modes of top pairs: hadronic, semileptonic and leptonic
- \rightarrow In the leptonic channel, the invariant mass of the two leptons outside of 76
- $< m_{_{\rm II}} < 106~{\rm GeV} \rightarrow {\rm suppress~the~Z+jets~background}$
- \rightarrow Events are first categorized by the number of leptons in each event \rightarrow further subdivided based on jet multiplicity and flavour tagging

Multivariate analysis techniques used to gain sensitivity in individual analysis categories

CMS-PAS-HIG-18-030

 $\hat{\mu} = \hat{\sigma}/\sigma_{\text{SM}}$

Obs. (exp.) signal significance: **3.9 (3.5)** σ Signal strength:

$$\mu$$
 = 1.15^{+0.15}_{-0.15} (stat) ^{+0.28}_{-0.25} (syst)