Higgs Properties from CMS and ATLAS

Jeffrey Davis LHCP 17 May 2022

Γ_H Measurements

Events / 40 μm

Observed

SM signal

cτ_=100 μm $qq \rightarrow 4\ell bkg$.

aā→4ℓ bka

Z+X

Early measurements set limits on Γ_H by measuring the Higgs lifetime or the width of the on-shell peak: $\sim 3 \times 10^{-3} eV < \Gamma_H < \sim 1 - 3 GeV$ $\Gamma_{H.SM} = 4.07 MeV$

Need to include off-shell information to increase precision

Assuming on-shell and off-shell couplings are equal

 $\mu_{\text{off-shell}}$ $\Gamma_H/\Gamma_H^{\rm SM}$ $\mu_{\text{on-shell}}$

This is measured for different production modes (ggH VBF ATLAS), (ttH,VH,VBF,ggH CMS) including 4 and 2 l2v final states

Note: Can only be done in $H \rightarrow WW, ZZ \rightarrow 4l$ channel

Higgs CP Properties at the LHC

SM Higgs is even under CP inversion

Observing anything other than CP-even interactions of the Higgs indicates BSM physics.

Family	CP structure probed	Scale of CP-odd contributions
Fermion	Htt,Ηττ	O(1) (Tree level)
Gluon	Hgg	O(1/v^2) Dim 6
EW Vector Boson	HZZ,HWW,HZγ,Hγγ	O(1/v^2) Dim 6

Summary of CP measurements from Atlas and CMS

CP structure Higgs Tau Tau

Effective Lagrangian for Yukawa Coupling to tau leptons parameterized by CP-Even and CP-odd components

$$\mathcal{L}_{H\tau\tau} = -\frac{m_{\tau}}{v} \kappa_{\tau} (\cos \phi_{\tau} \bar{\tau} \tau + \sin \phi_{\tau} \bar{\tau} i \gamma_{5} \tau) H$$

 ϕ_{τ} (ATLAS) = $\alpha^{H\tau\tau}$ (CMS) = Effective CP mixing angle

Measure $\phi_{CP}(\phi_{CP}^*)$ to directly probe CP structure of Yukawa Coupling

H

π

 ϕ_{CP}

Results in agreement with SM expectations as well as each other

CP Structure of Higgs Top Yukawa

Similarly, effective Lagrangian for Yukawa Coupling to top quarks parameterized by CP-Even and CP-odd components

$$\mathcal{L}_{t\bar{t}H} = -\kappa'_t y_t \phi \overline{\psi_t} (\cos \alpha + i\gamma_5 \sin \alpha) \psi_t \qquad g$$

Analyze ttH, or tH production to probe CP structure g QQQQQ

000000

H

ATLAS and CMS construct BDTs for classification and optimal observables

CP Structure of Higgs Top Yukawa

JEFFREY DAVIS (JHU)

CP Structure of HVV couplings

No CP–Odd HVV at tree level allowed under SU(2)xU(1)

-Dimension 6 operators allow for CP-Odd HVV interactions

EFT provides general coupling framework to probe HVV CP-structure

ATLAS and CMS use different formalism but both place constraints on Dim 6 CP-Odd contributions

$$\mathcal{A}(\text{HVV}) \sim \left[a_{1}^{\text{VV}} + \frac{\kappa_{1}^{\text{VV}} q_{1}^{2} + \kappa_{2}^{\text{VV}} q_{2}^{2}}{\left(\Lambda_{1}^{\text{VV}}\right)^{2}} \right] m_{\text{V1}}^{2} \epsilon_{\text{V1}}^{*} \epsilon_{\text{V2}}^{*} + a_{2}^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + a_{3}^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu} \right]$$
$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \tilde{g}_{HAA} H \tilde{A}_{\mu\nu} A^{\mu\nu} + \tilde{g}_{HAZ} H \tilde{A}_{\mu\nu} Z^{\mu\nu} + \tilde{g}_{HZZ} H \tilde{Z}_{\mu\nu} Z^{\mu\nu} + \tilde{g}_{HWW} H \tilde{W}_{\mu\nu}^{+} W^{-\mu\nu},$$

Hgg CP-structure inaccessible in decay

CP-Odd terms in ggH loop approximated at point-like coupling

$$\mathcal{L}_{0}^{\text{loop}} = -\frac{g_{Hgg}}{4} \left(\kappa_{gg} \cos(\alpha) G^{a}_{\mu\nu} G^{a,\mu\nu} + \kappa_{gg} \sin(\alpha) G^{a}_{\mu\nu} \tilde{G}^{a,\mu\nu} \right) H$$

17 May 2022 JEFFREY DAVIS

·

JEFFREY DAVIS

CMS HVV CP Structure

HVV couplings parameterized by tensor structures in scattering amplitude which allow for modelling of any EFT effects

$$\begin{aligned} \mathcal{A}(\text{HVV}) \sim \left[a_{1}^{\text{VV}} + \frac{\kappa_{1}^{\text{VV}} q_{1}^{2} + \kappa_{2}^{\text{VV}} q_{2}^{2}}{\left(\Lambda_{1}^{\text{VV}}\right)^{2}} \right] m_{\text{V1}}^{2} \epsilon_{\text{V1}}^{*} \epsilon_{\text{V2}}^{*} + a_{2}^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + a_{3}^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu} \\ \text{Fractional contribution} \quad f_{a3} = \frac{|a_{3}|^{2} \sigma_{3}}{|a_{1}|^{2} \sigma_{1} + |a_{2}|^{2} \sigma_{2} + |a_{3}|^{2} \sigma_{3} + |\kappa_{1}|^{2} \sigma_{\Lambda 1} + |\kappa_{1}^{Z\gamma}|^{2} \sigma_{\Lambda 1}^{Z\gamma}} \operatorname{sgn} \left(\frac{a_{3}}{a_{1}} \right) \end{aligned}$$

Multiple analyses constraining HVV couplings with ggH, VBF, VH, ttH, tH production and $H \rightarrow \tau \tau$, $H \rightarrow 4I$, $H \rightarrow \gamma \gamma$ decay

17 May 2022

JEFFREY DAVIS

CMS HVV results

Measurements consistent with SM expectation

Conclusion

Higgs mass measured to great precision

Expect improvement with full Run 2 dataset

First evidence of Higgs Off Shell Production!

 Γ_{H} =3.2 $^{+2.5}_{-1.7}$ MeV

In the fermion sector tau and top quark CP-structure is probed New for Run 2: Pure CP-odd coupling excluded at > 3σ

CP-structure of Higgs gluon couplings probed with jet correlations in the gluon fusion loop

CP-structure of HVV couplings probed through a variety of production and decay modes

Stronger constraints expected with Run 3 data!