-0.5

0.5

0

-0.5

, 0.5

-0.5

0

SVS.

May, 19th 2022 LHCP2022

Andrea Sciandra

on behalf of ATLAS & CMS Collaborations

2022

Outline

- Introduction to EFTs & operators relevant to the Higgs-boson sector
- Steps towards global EFT efforts

ATLAS-CONF-2021-053

The **Higgs big picture**: ATLAS combined EFT interpretation of production & decay

ATL-PHYS-PUB-2021-010

ATLAS combination of $H \rightarrow WW^*$ +jets & non-resonant WW measurements

HIGG-2019-13

ATLAS differential & inclusive $H \rightarrow \gamma \gamma$: EFT interpretation

CMS off-shell Higgs production evidence: BSM scenarios for the on/off-shell interplay

Higgs **anomalous couplings** by CMS in the $H \rightarrow ZZ^* \rightarrow 4\ell \& H \rightarrow \tau\tau$ decay channels

2 [Andrea Sciandra | Higgs EFT Results at ATLAS & CMS | LHCP2022 | May, 19th 2022]

HIG-21-013

HIG-20-007

EFTs & Higgs Sector: the Theoretical Framework

- No New Physics (NP) beyond SM + Higgs boson at the LHC, increasing focus on indirect exploration
- Effective Field Theories (EFTs): probe indirect signals of NP in an agnostic & systematic way ("model-independent"), see CAVEATs in <u>J. Rojo's talk</u>
 - Assumption: NP degrees of freedom can be integrated out, Higgs is SM-like & NP can manifest itself through higherdim effective interactions among SM fields
- Non-redundant set of operators generally used by ATLAS & CMS to extract results: Warsaw basis (59+h.c. dim-6 operators)
- Indirect sensitivity to NP effects enhanced on tails (~Q²/¹/²) as compared to bulk (~v²/¹/²)

3

EFT Interpretation of ATLAS Higgs STXS Combination

- STXS framework: fiducial bins to measure kinematic properties of the Higgs boson production across decay
 - channels
 - Kinematic regions help isolate NP effects, typically tails of distributions with enhanced sensitivity
 - This approach does not require detector-level SMEFT simulation -> acceptance corrections
 - **37 kinematic bins** across 5 production modes,
 exploiting 5 major decay channels (*bb, WW*, ττ, ZZ*,*

γγ)

Measurements statistically limited

ATLAS	Preliminary	<u> </u>			· · · ·	Total Stat.	Syst.
<i>√s</i> = 13 TeV.	139 fb ⁻¹	$B_{\gamma\gamma}/B_{ZZ^*}$		÷	1.09	+0.14 (+0.1	$\frac{2}{1}, \pm 0.06$
$m_{H} = 125.09$	GeV, y, < 2.5	$B_{b\overline{b}}/B_{ZZ^*}$	H		0.78	+0.28 (+0.2	$\frac{1}{3}$, $+0.16$ 8, -0.11)
p _{SM} = 92%	п	B _{WW} /B _{ZZ} .			1.06	+0.14 (+0.1	${}^{1}_{0}, {}^{+0.09}_{-0.08}$
	Stat.	$B_{\tau\tau}/B_{ZZ^*}$		r -	0.86	$^{+0.16}_{-0.14}$ ($^{+0.1}_{-0.1}$	$\binom{2}{0}, \binom{+0.10}{-0.09}$
Syst.	SM	0	0.5	· · · · · · ·	1.5	····	2
						Total Stat	t. Syst.
	0-jet, $p_T^H < 10 \text{ GeV}$				0.89	+0.22 (+0.	18,-0.10)
	0-jet, $10 \le p_T' < 200 \text{ GeV}$				1.14	-0.14 (±0	.12 ,-0.07)
	1-jet, $p_T^{-} < 60 \text{ GeV}$ 1-jet, $60 \le p^{H} < 120 \text{ GeV}$				0.57	$\pm 0.28(-0.+0.+0.28(+0.+0.+0.28)(+0.+0.28)(+0.+0.18)(+0$	21,±0.18 25 +0.13
	1-jet, $120 \le p^{H} < 200 \text{ GeV}$				0.66	-0.27 -0. +0.41 +0.	24 '-0.12 36 +0.19
$g \rightarrow H \times B_{ZZ^*}$	\geq 2-jet, m_{ii} < 350 GeV, p_{-}^{H} < 60 GeV				0.47	-0.39(-0.) $+1.09(\pm 0)$	35 '-0.17 / .98 +0.47
	\geq 2-jet, m_{jj} < 350 GeV, 60 $\leq p_{\tau}^{H}$ < 120	GeV .			0.25	± 0.53 (±0	- 0.39 / .46 ,± 0.26
	\geq 2-jet, $m_{jj} < 350 \text{ GeV}$, $120 \leq p_T^H < 200$) GeV			0.54	+0.44 (+0.	$38 + 0.23 \\ 36 - 0.22$
	\geq 2-jet, 350 \leq m_{jj} < 700 GeV, p_T^H < 200) GeV			2.76	+1.11 (+0.	$^{99}_{93}, ^{+0.52}_{-0.45})$
	\geq 2-jet, $m_{jj} \geq$ 700 GeV, $p_T^H <$ 200 GeV				0.74	+1.54 (+1.	$^{33}_{29},^{+0.76}_{-0.63})$
	$200 \le p_T^H < 300 \text{ GeV}$	_ 6			1.06	+0.35 (+0.	29 + 0.19 27 - 0.15
	$300 \le p_T^{+} < 450 \text{ GeV}$		<u> </u>	_	0.65	-0.43(-0.47)(+0.47)(-0.43)(-	39, -0.16 37, +0.52
	<i>p</i> _T ≥ 450 GeV	L		•	1.86	-1.19 (-1.	12 , - 0.42
	< 1-iet	_			1 40	+1.10 (+1.	02 + 0.40
	≥ 2-jet, <i>m_{ii}</i> < 350 GeV, <i>VH</i> veto				2.98	+1.64 (+1.	46 + 0.75)
	≥ 2-jet, m _{jj} < 350 GeV, <i>VH</i> topo				1.00	+0.58 +0.	51 + 0.28 + 0.23
	\geq 2-jet, 350 \leq m_{jj} < 700 GeV, $p_{_T}^{_H}$ < 200	GeV			0.33	+0.49 (+0.	44 + 0.22 41 - 0.24
a→Haa × B ₃₇₈	\geq 2-jet, 700 \leq m_{jj} < 1000 GeV, p_T^H < 20	00 GeV 📕 💻			0.95	$^{+0.71}_{-0.65}$ ($^{+0.}_{-0.}$	$^{62}_{57},^{+0.35}_{-0.31})$
11 11 22	\geq 2-jet, 1000 \leq m_{jj} < 1500 GeV, p_T^H < 2	200 GeV 🖡			1.38	+0.57 (+0.) -0.49 (-0.) +0.39 (+0.)	$\frac{50}{45}, \frac{+0.29}{-0.21}$
	\geq 2-jet, $m_{jj} \geq$ 1500 GeV, $p_{T}' < 200$ GeV	/ -			1.15	-0.35 (-0.	32 - 0.14 27 + 0.15
	$22 \text{ Jet, } m_{jj} = 330 \text{ GeV}, p_{T} = 200 \text{ GeV}$				1.21	-0.27 (-0.	24,-0.12)
	$p_{\tau}^{V} < 75 \text{ GeV}$			-	2.47	+1.17 (+1.	15 + 0.22
	$75 \le p_{T}^{V} < 150 \text{ GeV}$	e			1.64	+0.99 (+0.	$97 + 0.20 \\ 79 - 0.12$
$qq \rightarrow HIv \times B_{ZZ^*}$	$150 \le p_{T}^{V} < 250 \text{ GeV}$	•			1.42	+0.74 (+0.	$^{61}_{48}$ $^{+0.42}_{-0.33}$)
	$250 \le p_{T}^{V} < 400 \text{ GeV}$	€			1.36	+0.72 (+0.	$^{63}_{48}$, $^{+0.35}_{-0.22}$)
	$p_T^V \ge 400 \text{ GeV}$	•		•	1.91	$^{+1.45}_{-1.08}$ ($^{+1.}_{-0.}$	$^{22}_{95},^{+0.79}_{-0.50})$
	o ^V < 150 GoV					+0.71 (+ 0	F4 + 0.46 V
	$\mu_{\tau} < 150 \text{ GeV}$ 150 < $\mu^{V} < 250 \text{ GeV}$				1.20	-0.76 (± 0 +0.63 (+0.	.54 , 0.53) 53 +0.34
$gg/qq \rightarrow Hll \times B_{ZZ^*}$	$250 \le p^V < 400 \text{ GeV}$				1.30	-0.46 -0. +0.73 +0.	41 '- 0.22) 64 + 0.36
	$p_{\tau}^{V} \ge 400 \text{ GeV}$				0.39	-0.54 \ -0.	48 '-0.23) 04 +0.74) 91 ,_0.60)
	$p_T^H < 60 \text{ GeV}$		-		0.75	+0.78 (+0.	$^{72}_{63}, ^{+0.29}_{-0.21})$
	$60 \le p_T^H < 120 \text{ GeV}$		2		0.69	+0.53 (+0.	$^{49}_{42}$ $^{+0.20}_{-0.15}$)
₹H × B _{77*}	$120 \le p_T'' < 200 \text{ GeV}$	-	2		0.86	+0.55 (+0. -0.47 (-0. +0.62 (+0)	43 - 0.19 56 + 0.25
	$200 \ge p_T^{\prime\prime} < 300 \text{ GeV}$ $300 \le p^H < 450 \text{ GeV}$	<u> </u>			0.96	-0.52 (-0. +0.79 / +0.	48 - 0.20 66 + 0.43
	$p_{\perp}^{H} \ge 450 \text{ GeV}$				0.28	-0.70 -0. +1.93 (+1.	59'-0.38 44 +1.28
	. 1		· · · · · · · · · · · · · · · · · · ·			-1.76 -1.	24 '- 1.25
H × B _{ZZ*}	· · ·	, E			2.90	+3.63 (+3.	35 +1.39 73 -0.89)
•	· · · · · · · · · · · · · · · · · · ·	~ ~ ~	• • • •		<u> </u>	<u> </u>	ا م ہ
-ð -	ю —4 —2	0	2	4	Ь	8	1(
			Para	meter norm	nalised	to SM	1 valu

ATLAS-

CONF-2021-053

<u>ATLAS-</u> <u>CONF-2021-053</u>

- SMEFT dependence parameterised as polynomials in Wilson coefficients
 - Only linear dependence considered for current result
 - <u>SMEFTSim</u> (<u>SMEFTatNLO</u>) for tree-level EFT contributions (loop-induced QCD processes)
- Relative impact of most relevant operators wrt SM
 - Increasing impact vs. p_T^V~p_T^H
 - Strong effects in the $H \rightarrow \gamma \gamma$ decay BR
- Many operators lead to similar modifications: not enough info in measurements to constrain them all
 - -> Principal Component Analysis

When Information is Not Enough... PCA

- What if we really wanted to constrain many operators at the same time?
 - Many operators tend to have similar impact •
 - Not enough information in measurements to constrain all EFT • parameters
- Principal Component Analysis (PCA) of Fisher information to identify sensitive directions
- Fit **basis** defined with PCA in operator groups fit only sensitive components, rest fixed to SM
- Operator grouping dictated by experimental sensitivity

 $\Delta(\sigma \times B)(c_i)/SM$

0.5

0

-0.5

-1

7. 101, 120

ATLAS Preliminary $\sqrt{s} = 13$ TeV, 139 fb⁻¹

EFT Interpretation of ATLAS Higgs STXS Combination

<u>ATLAS-</u> CONF-2021-053

Towards a Global EFT: $H \rightarrow WW^*$ & WW Combination

Towards a Global EFT: $H \rightarrow WW^*$ & WW Combination

<u>ATL-PHYS-</u> <u>PUB-2021-010</u>

• **PCA** exploited

Inclusive & Diff Fiducial Cross-Sections in $H \rightarrow yy$: EFT <u>HIGG-2019-13</u>

- $\Delta \Phi_{ii}$ observable only is sensitive to CP-odd coefficients, with interference only
- Sizable effect of quadratic terms from dim-6 operators
 - Same order as neglected

interference terms from dim-8 operators

c_{HW} [10⁻²] SMEFT constraints extracted on $c_{_{H\widetilde{W}}}$ [10¹] с_{нв} [10⁻³] 8 Wilson coefficients (one at a $c_{_{H\widetilde{B}}}[10^3]$ с_{нив} [10⁻²] time, others fixed to 0) $c_{H\tilde{W}B} [10^2]$

[Andrea Sciandra | Higgs EFT Results at ATLAS & CMS | LHCP2022 | May, 19th 2022] 11

 $c_{HG} [10^{-2}]$

Off-Shell Evidence & BSM Scenarios

<u>HIG-21-013</u>

- Measurement of Higgs width
 - Null width \leftrightarrow no SM H contribution , large width \leftrightarrow

increased $d\sigma / dm_{2\ell 2\nu}$

• Off-shell Higgs production in $H \rightarrow ZZ^* \rightarrow 2\ell 2v$ is very sensitive to

- 3.6σ exclusion of no off-shell (no-width) scenario, first
 evidence for off-shell production of the Higgs boson !
- The combination of 2l2v off-shell analysis with 4l analyses
 has significant sensitivity to HVV CP contributions

Off-Shell Evidence & BSM Scenarios

- Effect of HVV couplings on the Higgs width tested
 - Parameterisation of anomalous HVV contributions: a₂ CP-conserving, a₃ CP-violating & Λ₁ first-order term in the expansion of SM-like tensor structure with dipole form factor in invariant masses of the 2 Z bosons

HIG-21-013

Ratios of couplings can be expressed through fractional contributions fai of the couplings ai to xsec of a given decay
 Assumption: ggH loop amplitudes

Constraints on Anomalous Higgs Couplings using $H \rightarrow 4\ell$ HIG-19-009

- Comprehensive study: CP-violation, anomalous couplings & tensor structure of Higgs interactions in H→ZZ*→4ℓ decay
- Detector-level matrix-element based observables defined using kinematic properties of particles in production & decay
- Parameterisation of production & decay based on scattering amplitude then connected to SMEFT formulation
 - CP-even/odd Higgs-gluon effective & top-quark Yukawa couplings constrained by ggH & ttH
 - Impose SU(2)×U(1) symmetry to relate parameters to SMEFT
 - Operator basis chosen as couplings of mass eigenstates: translation of SMEFT results to bosonic **dim-6 operators in Warsaw basis**

Channels	Coupling	Observed	Expected
Assumption: only 1/3	$c_{\mathrm{H}\square}$	$0.04\substack{+0.43\\-0.45}$	$0.00\substack{+0.75 \\ -0.93}$
parameters in (CHW, CHWB,	$c_{ m HD}$	$-0.73^{+0.97}_{-4.21}$	$0.00^{+1.06}_{-4.60}$
с _{нв}) is independent	$c_{ m HW}$	$0.01\substack{+0.18 \\ -0.17}$	$0.00\substack{+0.39\\-0.28}$
VBF & VH & H $\rightarrow 4\ell$	$c_{\rm HWB}$	$0.01\substack{+0.20\\-0.18}$	$0.00\substack{+0.42\\-0.31}$
	c_{HB}	$0.00\substack{+0.05\\-0.05}$	$0.00\substack{+0.03\\-0.08}$
	$\mathcal{C}_{\mathrm{H}\tilde{\mathrm{W}}}$	$-0.23\substack{+0.51\\-0.52}$	$0.00^{+1.11}_{-1.11}$
	$c_{\mathrm{H}\tilde{\mathrm{W}}\mathrm{B}}$	$-0.25\substack{+0.56\\-0.57}$	$0.00^{+1.21}_{-1.21}$
	$\mathcal{C}_{\mathbf{LI}\widetilde{\mathbf{P}}}$	$-0.06^{+0.15}_{-0.16}$	$0.00^{+0.33}_{-0.33}$

in ATLAS-CONF-2022-016

- Diff cross-sections parameterised
 - *a_i*=real couplings describing *HVV*, *Hff* or *Hgg* vertex
- Signal strength parameters unconstrained in all cases
 - Measured signal strengths: $\mu_{ggH}=0.86^{+0.13}-0.11$, $\mu_{VH+VBF}=1.10^{+0.50}-0.42$, $\mu_{ttH}=0.17^{+0.70}-0.17$

[Andrea Sciai

LAS & CMS | LHCP2022 | May, 19th 2022] 15

Constraints on Anomalous Higgs Couplings using $H \rightarrow \tau \tau$

- Study of anomalous interactions of the *H* boson with vector bosons, including CP violation in the *H→ττ* decay channel produced through ggH & VBF+VH
 - Use 4 most sensitive channels: $\tau_{had}\tau_{had}$, $\mu\tau_{had}$, $e\tau_{had}$, $e\mu$
- Matrix-element variables used to separate anomalous couplings from SM
- Combination with 42 & yy to constrain anomalous couplings
- Anomalous CP-even/odd couplings translated into EFT parameters in addition to κ_f & κ_f⁻ :

$$\begin{aligned} \mathcal{A}(\text{HVV}) \sim \left[a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} q_1^2 + \kappa_2^{\text{VV}} q_2^2}{\left(\Lambda_1^{\text{VV}}\right)^2} \right] m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* + \frac{a_2^{\text{VV}}}{a_2^{\text{VV}}} f_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + \frac{a_3^{\text{VV}}}{a_3^{\text{VV}}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu} \right] \\ c_{gg} = -\frac{1}{2\pi\alpha_s} a_2^{gg} \qquad \widetilde{c}_{gg} = -\frac{1}{2\pi\alpha_s} a_3^{gg} \end{aligned}$$

 c_{gg} & c_{gg} constraints profiling κ_t & κ_t (constrained by $ttH/tH(4\ell/\gamma\gamma)$)

HIG-20-007

Conclusion

- Several Higgs EFT studies produced by the ATLAS & CMS Collaborations
- No significant deviations from the Standard Model observed (so far!)
- Innovative techniques & growing pool of EFT combinations to overcome limited info/ sensitivity from "single" inputs
 - Use of **basis rotation** to extract maximum information
 - Tests of combinations of measurements from Higgs & other sectors
- Clear roadmap ahead: combine Higgs with EW & top measurements
 - Combined EW interpretation available already, see talk by <u>E. Soldatov</u>
- Stay tuned for more & more stringent EFT results to come!

ADDITIONAL MATERIAL

EFTs & Higgs Sector: List of dim-6 Operators

Wilson coefficients c_i & corresponding dimension-6 SMEFT operators O_i⁽⁶⁾ used in <u>ATLAS-CONF-2021-053</u>

Wilson coefficient	Operator	Wilson coefficient	Operator
$C_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$	C_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \tilde{H} G^A_{\mu\nu}$
C _{HDD}	$\left(H^{\dagger}D^{\mu}H ight)^{*}\left(H^{\dagger}D_{\mu}H ight)$	c_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{H} W^I_{\mu\nu}$
c_{HG}	$H^{\dagger}H G^{A}_{\mu\nu}G^{A\mu\nu}$	c_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$
C_{HB}	$H^\dagger H \dot{B}_{\mu u}B^{\mu u}$	c'_{ll}	$(\bar{l}_p \gamma_\mu l_t) (\bar{l}_r \gamma^\mu l_s)$
c_{HW}	$H^{\dagger}H W^{I}_{\mu u}W^{I\mu u}$	$c_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_t) (\bar{q}_r \gamma^\mu q_s)$
C_{HWB}	$H^{\dagger} au^{I} H^{I} W^{I}_{\mu u} B^{\mu u}$	$C_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$
C_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	C_{qq}	$(\bar{q}_p \gamma_\mu q_t) (\bar{q}_r \gamma^\mu q_s)$
c_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$	$c_{qq}^{(31)}$	$(\bar{q}_p \gamma_\mu \tau^I q_t) (\bar{q}_r \gamma^\mu \tau^I q_s)$
c_{dH}	$(H^{\dagger}H)(\bar{q}_p d_r \widetilde{H})$	Сии	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$
$c_{Hl}^{\scriptscriptstyle (1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$	$\mathcal{C}_{\boldsymbol{u}\boldsymbol{u}}^{(1)}$	$(\bar{u}_p \gamma_\mu u_t)(\bar{u}_r \gamma^\mu u_s)$
$c_{Hl}^{\scriptscriptstyle (3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	$\mathcal{C}_{oldsymbol{q}oldsymbol{u}}^{(1)}$	$(\bar{q}_p \gamma_\mu q_t)(\bar{u}_r \gamma^\mu u_s)$
c_{He}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	$c_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$
$c^{\scriptscriptstyle (1)}_{Hq}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$	$\mathcal{C}_{oldsymbol{qu}}^{(8)}$	$(\bar{q}_p\gamma_\mu T^A q_r)(\bar{u}_s\gamma^\mu T^A u_t)$
$c_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	$c_{qd}^{_{(8)}}$	$(\bar{q}_p\gamma_\mu T^A q_r)(\bar{d}_s\gamma^\mu T^A d_t)$
c_{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$	CW	$\epsilon^{IJK} W^{I u}_\mu W^{J ho}_ u W^{K\mu}_ ho$
c_{Hd}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	c_G	$f^{ABC}G^{A\nu}_{\mu}G^{B ho}_{\nu}G^{C\mu}_{ ho}$

EFT Interpretation of ATLAS Higgs STXS Combination

$qq \rightarrow Hlv \times B_{ZZ^*}$	$p_{T}^{V} < 75 \text{ GeV}$ $75 \le p_{T}^{V} < 150 \text{ GeV}$ $150 \le p_{T}^{V} < 250 \text{ GeV}$ $250 \le p_{T}^{V} < 400 \text{ GeV}$ $p_{T}^{V} \ge 400 \text{ GeV}$				2.47 1.64 1.42 1.36 1.91	$\begin{array}{c} +1.17 \\ -1.02 \\ +0.99 \\ -0.80 \\ +0.74 \\ -0.58 \\ +0.72 \\ -0.53 \\ -0.53 \\ -1.08 \\ -0 \\ \end{array}$	$\begin{array}{c} .15 & + 0.22 \\ .02 & - 0.12 \\ .97 & + 0.20 \\ .79 & - 0.12 \\ .61 & + 0.42 \\ .48 & - 0.33 \\ .63 & + 0.35 \\ .48 & - 0.22 \\ .48 & - 0.22 \\ .22 & + 0.79 \\ .95 & - 0.50 \end{array}$
gg/qq→Hll × B _{ZZ*}	$p_{T}^{V} < 150 \text{ GeV}$ $150 \le p_{T}^{V} < 250 \text{ GeV}$ $250 \le p_{T}^{V} < 400 \text{ GeV}$ $p_{T}^{V} \ge 400 \text{ GeV}$				0.21 1.30 1.28 0.39	$\begin{array}{c} + 0.71 \\ - 0.76 \\ + 0.63 \\ - 0.46 \\ + 0.73 \\ - 0.54 \\ - 0.54 \\ - 1.14 \\ \end{array} \begin{pmatrix} \pm 0 \\ - 0 \\ - 0 \\ + 1 \\ - 0 \\ \end{array}$	(0.54 + 0.46 - 0.53) (.53 + 0.34 + 0.36) (.41 - 0.22) (.64 + 0.36) (.48 - 0.23) (.04 + 0.74) (.91 - 0.68)
t ī H×B _{zz*}	$p_T^H < 60 \text{ GeV}$ $60 \le p_T^H < 120 \text{ GeV}$ $120 \le p_T^H < 200 \text{ GeV}$ $200 \le p_T^H < 300 \text{ GeV}$ $300 \le p_T^H < 450 \text{ GeV}$ $p_T^H \ge 450 \text{ GeV}$				0.75 0.69 0.86 0.96 0.28 0.16	$\begin{array}{c} + 0.78 \\ - 0.66 \\ - 0.66 \\ + 0.53 \\ - 0.44 \\ - 0 \\ + 0.55 \\ - 0.47 \\ - 0.47 \\ - 0.52 \\ - 0.52 \\ - 0.52 \\ - 0.79 \\ - 0.70 \\ + 1.93 \\ - 1.76 \\ - 1 \end{array}$	$\begin{array}{rrrr} .72 & + 0.29 \\ .63 & - 0.21 \\ .49 & + 0.20 \\ .42 & - 0.15 \\ .50 & + 0.23 \\ .43 & - 0.19 \\ .56 & + 0.25 \\ .48 & - 0.20 \\ .66 & + 0.43 \\ .59 & - 0.38 \\ .59 & - 0.38 \\ .44 & + 1.28 \\ .24 & - 1.25 \end{array}$
$tH \times B_{ZZ^*}$					 2.90	+3.63 (+3 -2.87 (-2	.35 + 1.39 .73 ,-0.89)
-8 -	6 -4 -	2 0	2	4	6	8	10
			Para	meter n	ormalisec	l to SN	/I value

ATLAS-

CONF-2021-053

EFT Interpretation of ATLAS Higgs STXS Combination

SMEFT calculations

- Calculations for most Higgs production and decay modes have been performed at LO accuracy in QCD with <u>SMEFTSim</u>
- Assumption of a U(3)5 flavour symmetry, providing the Fermi constant, and the Z and W boson masses as inputs
- Exceptions are:
 - ggH, gg->ZH and H->gg calculations, performed at NLO accuracy in QCD with <u>SMEFTatNLO</u>
 - Calculations for SMEFT-SM interference terms in H->γγ, performed at NLO accuracy in QED (Phys. Rev. D 98, 095005)
 - SMEFT modifications to background processes neglected

EFT Interpretation of ATLAS Higgs STXS Combination

SM expected covariance *matrix* ~ *Fisher info matrix* $V_{\text{SMEFT}}^{-1} = P_{(i,X)\to(i)}^T V_{\text{STXS}}^{-1} P_{(i,X)\to(j)}$ $P_{(i,X)\to(j)} = A_j^{\sigma_i} + A_j^{\Gamma^H\to x} - A_j^{\Gamma^H}$ ATLAS-CONF-2020-053 Rotation matrix $\frac{\sigma_{\rm int}^{\iota}}{\sigma_{\rm SM}^{i}} = \sum_{i} A_{j}^{\sigma_{i}} c_{j}$ $\frac{\Gamma_{\text{int}}^{H \to X}}{\Gamma_{\text{SM}}^{H \to X}} = \sum_{i} A_{j}^{\Gamma^{H \to X}} c_{j}$ Linear model $\frac{\Gamma_{\text{int}}^{H}}{\Gamma_{\text{out}}^{H}} = \sum_{i} A_{j}^{\Gamma^{H}} c_{j}$

Observed & Expected measurement of c'_i parameters with the SMEFT linearized models

Model Parameter Observe		Observed		Expe	ected
$(\Lambda = 1 \text{ TeV})$	Best-fit	68% CI	95% CI	68% CI	95% CI
$c_{Hq}^{\scriptscriptstyle (3)}$	0.0	[-0.04, 0.05]	[-0.08, 0.1]	[-0.04, 0.05]	[-0.08, 0.09]
C _{dH}	3.2	[0.5, 6]	[-2.1,9]	[-2.7, 2.7]	[-5,5]
C _{eH}	1.8	[0.23, 4]	[-1.5, 5]	[-1.7, 1.7]	[-3.5, 3.2]
$c_{HW,HB,HWB,HDD,uW,uB,W}^{[1]}$	0.001	[-0.004, 0.005]	[-0.009, 0.01]	[-0.005, 0.004]	[-0.009, 0.009]
$c^{[2]}_{HW,HB,HWB,HDD,uW,uB,W}$	0.4	[-0.30, 1.0]	[-0.9, 1.7]	[-0.6, 0.6]	[-1.3, 1.3]
$c_{HW,HB,HWB,HDD,uW,uB,W}^{[3]}$	-0.4	[-4, 1.9]	[-6,5]	[-2.7, 2.8]	[-5,6]
$c^{[1]}_{Hl^{(1)},He}$	-0.4	[-1.4, 0.7]	[-2.5, 1.7]	[-1.0, 1.0]	[-2.0, 2.0]
$c^{[1]}_{Hu,Hd,Hq^{(1)}}$	0.0	[-0.4, 0.4]	[-0.9, 0.8]	[-0.4, 0.4]	[-0.9, 0.8]
$c^{[2]}_{Hu,Hd,Hq^{(1)}}$	-0.8	[-6,4]	[-10,9]	[-5, 5]	[-10, 10]
$c^{[1]}_{Hl^{(3)},ll'}$	0.15	[-0.4, 0.7]	[-0.9, 1.3]	[-0.5, 0.5]	[-1.0, 1.0]
$c_{HG,uG,uH}^{[1]}$	-0.005	[-0.01, -0.0018]	[-0.013, 0.0021]	[-0.004, 0.004]	[-0.008, 0.008]
$c_{HG,uG,uH}^{[2]}$	-0.23	[-0.7, 0.18]	[-1.1,0.6]	[-0.4, 0.5]	[-0.9, 0.9]
$c_{top}^{[1]}$	0.15	[-0.18, 0.5]	[-0.5, 0.8]	[-0.4, 0.4]	[-0.7, 0.7]

Correlation from the linearised SMEFT model for the observed data

ATLAS-

CONF-2021-053

Correlation matrix of the signal strength modifiers of the $H \rightarrow WW$ analysis & the WW measurement

ATLAS Preliminary $\sqrt{s} = 13$ TeV, 36.1 fb⁻¹

Inclusive & Diff Fiducial Cross-Sections in $H \rightarrow \gamma \gamma$: EFT <u>HIGG-2019-13</u>

Coefficient	95% CL, interference-only terms	95% CL, interference and quadratic terms		
c_{HG}	$[-6.1, 11.0] \times 10^{-3}$	$[-6.5, 10.2] \times 10^{-3}$		
$C_{H\tilde{G}}$	[-0.12, 0.23]	$[-3.1, 3.5] \times 10^{-2}$		
c_{HW}	$[-1.9, 0.9] \times 10^{-2}$	$[-1.8, 1.0] \times 10^{-2} \cup [0.28, 0.30]$		
$c_{H\widetilde{W}}$	[-10.2, 5.2]	$[-7.3, 7.3] \times 10^{-2}$		
C_{HB}	$[-5.8, 2.8] \times 10^{-3}$	$\begin{bmatrix} -5.5, 3.0 \end{bmatrix} \times 10^{-3} \cup \begin{bmatrix} 8.4, 9.3 \end{bmatrix} \times 10^{-2}$		
$C_{H\widetilde{B}}$	$[-21.8, 5.7] \times 10^2$	$[-2.3, 2.3] \times 10^{-2}$		
C_{HWB}	$[-5.2, 10.7] \times 10^{-3}$	$[-0.17, -0.15] \cup [-5.5, 9.8] \times 10^{-3}$		
$C_{H\widetilde{W}B}$	$[-2.5, 4.0] \times 10^2$	$[-4.0, 4.0] \times 10^{-2}$		
		I H		
Including quadratic dimension-6 terms				

Considered operators

$$\mathcal{L}_{\text{eff}}^{\text{SMEFT}} \supset \qquad c_{HG}O'_g + c_{HW}O'_{HW} + c_{HB}O'_{HB} + c_{HWB}O'_{HWB} + c_{H\widetilde{G}}\widetilde{O}'_g + c_{H\widetilde{W}}\widetilde{O}'_{HW} + c_{H\widetilde{B}}\widetilde{O}'_{HB} + c_{H\widetilde{W}B}\widetilde{O}'_{HWB}$$

 $\sigma \propto |\mathcal{M}_{\rm EFT}|^2 = |\mathcal{M}_{\rm SM}|^2 + 2Re(\mathcal{M}_{\rm SM}^*\mathcal{M}_{\rm d6}) + |\mathcal{M}_{\rm d6}|^2$

<u>SMEFTSim</u> package exploited

Off-Shell Evidence & BSM Scenarios

[Andrea Sciandra | Higgs EFT Results at ATLAS & CMS | LHCP2022 | May, 19th 2022]

HIG-21-013

Constraints on Anomalous Higgs Couplings using $H \rightarrow 4\ell$

[Andrea Sciandra | Higgs EFT Results at ATLAS & CMS | LHCP2022 | May, 19th 2022] 2

29

Constraints on Anomalous Higgs Couplings using $H \rightarrow \tau \tau$

<u>HIG-20-007</u>

ATLAS $H \rightarrow WW^* + 2j$ CP Properties

<u>HIGG-2017-13</u>

Observed

ggF + 2 jets

ggF + 0/1 jets

Other Higgs W + jets

//// Total unc.

VBF

| Z + jets | Diboson | tī, Wt

 $\overline{2}\pi$

• $H \rightarrow WW^*(ev \mu v) + 2j$ signature

model

- Determine constraints on CP-even & CP-odd mixing contributions to **Higgs-gluon effective interaction**
 - ggH dedicated category & Higgs Characterisation

 $\Delta \Phi_{\rm ii}$ **∆** NLL ATLAS ATLAS ד ⊲1.2 Signed angul Expected Expected √s=13 TeV, 36.1 fb⁻¹ - √*s*=13 TeV, 36.1 fb⁻¹ 6 Observed Observed $H \rightarrow WW^* \rightarrow ev\mu v$ $H \rightarrow WW^* \rightarrow ev\mu v$ N N μ^{VBF} fixed to SM, κ_{gg} = 1 μ^{VBF} fixed to SM, $\kappa_{aa} = 1$ 1σ categories (Bl 0.8 0.6 3 -> Stringent 0.4 contribution 0.2 -6 -2 2 Ó 4 6 8 -2 2 6 8 -8 n $\mathcal{L}_{0}^{\text{loop}} = -\frac{g_{Hgg}}{\Lambda} \left(\kappa_{gg} \right)$ $tan(\alpha)$ $tan(\alpha)$ $\tan(\alpha) = 0.0 \pm 0.4(\text{stat.}) \pm 0.3(\text{syst.})$ Higgs-gluon interaction effective Lagrangian

∑ weights / bir

Data / pred

0.8 0.6

15

ATLAS

√s = 13 TeV, 36.1 fb

 $H \rightarrow WW^* \rightarrow evuv$

ggF + 2 jets SR

ATLAS $H \rightarrow WW^* + 2j$ CP Properties

<u>HIGG-2017-13</u>

Observed

ggF + 2 jets

| Other Higgs | W + jets | Z + jets | Diboson | tī. Wt

ggF + 0/1 jets

//// Total unc.

VBF

- Likelihood scan where only the shape of the $\Delta \Phi_{jj}$ distribution is fitted
- Weaker constraints on tan(*a*), but smaller sensitivity to CP-even components - thus, more model-independent probe of CP violation

Σ weights / bir

Data / pred

0.8 0.6

15

ATLAS

√s = 13 TeV, 36.1 fb¹

 $H \rightarrow WW^* \rightarrow ev\mu v$

ggF + 2 jets SR