The ATLAS New Small Wheel Simulation and Reconstruction Software and Detector Performance Studies

ATLAS

LHCP 2022 - Online format - 16-20 May 2022

Maria Carnesale (Sapienza Università di Roma) - on behalf of the ATLAS Muon Spectrometer Project

SAPIENZA Università di Roma

Why a New Small Wheel (NSW)?

At high luminosity values → Increase of the rate in the forward region [1]

2 main problems:

0 200 400 600 800 1000 1200 1400 Hit Rate (kHz/Tube) Efficiency for MDT tube hit (solid) and track segment (dashed)

High rate of fake Level-1 triggers

ATLAS Run 201289 II 8 96-56IL LHC FB 2514. Apr 15 2012 50m sparsing

ATLAS

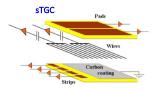
In JAM/II

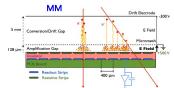
In matched to recombucted much

matched to p₁ 1004V neco. much

p_T > 10 GeV

GOAL: angular resolution ~ 1mrad, spatial resolution ~ 100 μm


NSW layout


Small-strip Thin Gas Chambers (sTGC) → strips with pitch~3.2 mm, pads and wires

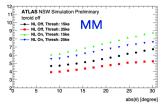
MicroMegas (MM) → strips with pitch~400 µm

- Based on gas ionization by charged particle
- Charge induced on readout strips

A NSW has 16 trapezoidal **sectors**, detectors arranged in 4-layers multiplets in the order: sTGC – MM – MM - sTGC

Simulation

- simulate interactions of particles with detector (GEANT4)
 - NSW geometry fully simulated (support, shielding and active material)



"Parameter books" collect all information

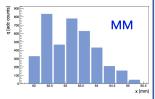
Digitization

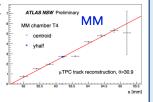
Simulation of detector active area interactions and electronic signal formation Also takes into account electronics response.

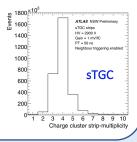
- •MM digitization: analytical approach •sTGC digitization:
- •sTGC digitization: parameterization approach
- •Parameters tuned on data collected from cosmic tests

Reconstruction

- Takes into account as-built parameters and alignment
- Hit position reconstructed from clusterization
- **Clusters**: groups of consecutive firing strips
- Charge threshold to exclude detector noise

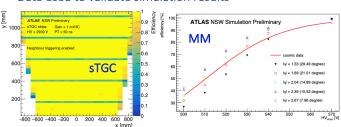

Different algorithms


- Centroid: applied to both MM and sTGC $\sum_{\text{strips}} x \cdot q$
- µTPC: used for MM
- Caruana method: gaussian fit used for sTGC


Tracking

Hits used to reconstruct tracks. Different steps applied:

- Pattern finding
- Fit of muon track in the Muon Spectrometer
- Combination with track in ATLAS inner tracker



Performance

- MM and sTGC performances tested with cosmic rays or test beams, to ensure they meet required specifications
- Studied in terms of spatial resolution and efficiency maps
- Data used to validate simulation results

- | ATLAS NSW Simulation Preliminary | UTPC core resolution | Section | Sectio
- High single layer efficiency important to ensure a large number of hits enter the track fit
- Good spatial resolution fundamental to achieve the required resolution on muon transverse momentum (15% at 1 TeV) [1]